Analiza sygnałów - ćwiczenia: Różnice pomiędzy wersjami

Z Brain-wiki
m
m
 
(Nie pokazano 1 pośredniej wersji utworzonej przez tego samego użytkownika)
Linia 14: Linia 14:
  
 
[[ZasadyZaliczenia|Zasady zaliczenia ćwiczeń]]
 
[[ZasadyZaliczenia|Zasady zaliczenia ćwiczeń]]
 +
 +
Zbiór zadań z pythona, które mają na celu pomoc w opanowaniu podstaw Pythona, ze szczególnym naciskiem na rozwinięcie kompetencji potrzebnych w analizie sygnałów, takich jak: pogłębiona znajomość biblioteki numpy, praca z plikami multipleksowanymi, wykorzystanie Pythona jako narzędzia do analizy danych. https://gitlab.com/pbieganski/podstawy-pythona
 +
 +
 +
[[File:Okladka.jpeg|thumb|upright=0.25| Dostępna w bibliotece]] W bibliotece Wydziału Fizyki dostępne są książki: Practical biomedical signal analysis using Matlab / K. J. Blinowska J. Żygierewicz. (katalog: https://chamo.buw.uw.edu.pl:8443/lib/item?id=chamo:895791&fromLocationLink=false&theme=system)
  
 
Dla grupy o 10:15 link do podłączania się: Analiza Sygnałów  
 
Dla grupy o 10:15 link do podłączania się: Analiza Sygnałów  
 
https://meet.google.com/inx-rxqe-fku
 
https://meet.google.com/inx-rxqe-fku
  
# [https://drive.google.com/file/d/1Cr8CCPoh_G-iAq8x2Bm0YxwAcsrNwqir/view?usp=sharing Sygnały AS_1.ipynb]
+
# [https://drive.google.com/file/d/1Cr8CCPoh_G-iAq8x2Bm0YxwAcsrNwqir/view?usp=sharing Sygnały AS_1.ipynb]  [https://drive.google.com/file/d/1J_7pyTO00r-OyhyrMd1v_dAoiIU0C-3k/view?usp=sharing notebook wypełniony]
 
#  [https://colab.research.google.com/drive/1y81wGZHwpUf4J6IIApPdqahgUN9Bad0p?usp=sharing Transformata Fouriera 1 (FFT) AS2_Transformata_fouriera.ipynb]
 
#  [https://colab.research.google.com/drive/1y81wGZHwpUf4J6IIApPdqahgUN9Bad0p?usp=sharing Transformata Fouriera 1 (FFT) AS2_Transformata_fouriera.ipynb]
 
#[https://colab.research.google.com/drive/18nU5rWKinO697M3Pgnp6luiC-NcBYD-9?usp=sharing Transformata Fouriera 2 AS3_Transformata_fouriera_2.ipynb]
 
#[https://colab.research.google.com/drive/18nU5rWKinO697M3Pgnp6luiC-NcBYD-9?usp=sharing Transformata Fouriera 2 AS3_Transformata_fouriera_2.ipynb]

Aktualna wersja na dzień 13:58, 28 paź 2024



Zasady zaliczenia ćwiczeń

Zbiór zadań z pythona, które mają na celu pomoc w opanowaniu podstaw Pythona, ze szczególnym naciskiem na rozwinięcie kompetencji potrzebnych w analizie sygnałów, takich jak: pogłębiona znajomość biblioteki numpy, praca z plikami multipleksowanymi, wykorzystanie Pythona jako narzędzia do analizy danych. https://gitlab.com/pbieganski/podstawy-pythona


Dostępna w bibliotece

W bibliotece Wydziału Fizyki dostępne są książki: Practical biomedical signal analysis using Matlab / K. J. Blinowska J. Żygierewicz. (katalog: https://chamo.buw.uw.edu.pl:8443/lib/item?id=chamo:895791&fromLocationLink=false&theme=system)

Dla grupy o 10:15 link do podłączania się: Analiza Sygnałów https://meet.google.com/inx-rxqe-fku

  1. Sygnały AS_1.ipynb notebook wypełniony
  2. Transformata Fouriera 1 (FFT) AS2_Transformata_fouriera.ipynb
  3. Transformata Fouriera 2 AS3_Transformata_fouriera_2.ipynb
  4. Okienkowanie AS4_okienkowanie.ipynb
  5. Estymacja widma mocy AS5_Widmo_mocy.ipynb
  6. kontynuacja notebook AS5
  7. Model AR AS6_1_ProcesyAR.ipynb
  8. Estymacja parametryczna widma procesu AS6_2_Widmo_Procesu_AR.ipynb
  9. Filtry notebook7
  10. kontynuacja notebook7
  11. Metody czas-częstość STFT i falki: notebook8
    notebook 10
    lektura uzupełniająca: Estimating and Interpreting The Instantaneous Frequency of a Signal-Part 1: Fundamentals

Materiały dodatkowe:

playlista na YouTube z filmami nagranymi w czasie zdalnych ćwiczeń w roku 2020/21


Przed kolokwium 1

  1. Zagadnienia przygotowawcze do 1 kolokwium
  2. zadania powtórzeniowe do kolokwium 1

autorzy: Jarosław Żygierewicz, Maciej Kamiński, Magdalena Zieleniewska, wersja z notebookami Jan Mąka i Piotr Biegański