Funkcja systemu: Różnice pomiędzy wersjami

Z Brain-wiki
 
(Nie pokazano 15 pośrednich wersji utworzonych przez tego samego użytkownika)
Linia 1: Linia 1:
=[[Analiza_sygnałów_-_lecture|AS/]] Transformata Z i widmo procesu AR=
+
=[[Analiza_sygnałów_-_lecture|AS/]] Transformacja <math>\mathcal{Z}</math> i widmo procesu AR=
 
 
 
 
 
 
 
 
==Transformata Z==
 
  
 +
=Transformacja <math>\mathcal{Z}</math>=
 
Jednostronna transformata <math>\mathcal{Z}</math> ciągu liczb <math>x[n]</math> definiowana jest jako funkcja zmiennej <math>z</math> będąca sumą szeregu
 
Jednostronna transformata <math>\mathcal{Z}</math> ciągu liczb <math>x[n]</math> definiowana jest jako funkcja zmiennej <math>z</math> będąca sumą szeregu
  
Linia 20: Linia 16:
  
  
Dla <math>z=e^{i \omega}</math> dostajemy Dyskretną Transformatę Fouriera.
+
Dla <math>z=e^{i \omega}</math> dostajemy Dyskretną Transformację Fouriera.
  
 
:<math>
 
:<math>
Linia 28: Linia 24:
  
  
Transformata <math>\mathcal{Z}</math> jest liniowa  
+
Transformacja <math>\mathcal{Z}</math> jest liniowa  
  
 
:<math>
 
:<math>
Linia 60: Linia 56:
 
więc
 
więc
  
:<math>\mathcal{Z}\lbrace x[n-k]\rbrace = z^{-k} \sum_{j=0}^{\infty} x[j] z^{-j}</math>
 
  
 +
:<math>\displaystyle
 +
\mathcal{Z}\lbrace x[n-k]\rbrace = z^{-k} \sum_{j=0}^{\infty} x[j] z^{-j}
 +
</math>
  
 +
==Transformata <math>\mathcal{Z}</math> splotu==
 
Niech <math>x[n]=x_1[n]*x_2[n]</math>; wtedy transformata <math>\mathcal{Z}</math> splotu to iloczyn transformat <math>\mathcal{Z}</math>:
 
Niech <math>x[n]=x_1[n]*x_2[n]</math>; wtedy transformata <math>\mathcal{Z}</math> splotu to iloczyn transformat <math>\mathcal{Z}</math>:
  
<math> \mathcal{Z}\{x[n]\} = X(z) = \mathcal{Z}\{x_1[n]\} \mathcal{Z}\{x_2[n]\} = X_1(z)  X_2(z) </math>  
+
 
 +
::<math>  
 +
\displaystyle
 +
\mathcal{Z}\{x[n]\} = X(z) = \mathcal{Z}\{x_1[n]\} \mathcal{Z}\{x_2[n]\} = X_1(z)  X_2(z)  
 +
</math>  
 +
 
  
 
Dowód:
 
Dowód:
Linia 87: Linia 91:
 
:::<math>=  \displaystyle X_1(z) X_2(z) </math>
 
:::<math>=  \displaystyle X_1(z) X_2(z) </math>
  
 
+
=Widmo procesu AR=
 
 
 
 
 
 
==Widmo procesu AR==
 
 
kładąc <math> a_0 = 1</math>, proces AR o znanych współczynnikach <math>a_i</math>
 
kładąc <math> a_0 = 1</math>, proces AR o znanych współczynnikach <math>a_i</math>
 
:<math>
 
:<math>
Linia 168: Linia 168:
 
<math>\vec{s}(t)</math>. Wielozmienny model AR (MVAR, multivariate
 
<math>\vec{s}(t)</math>. Wielozmienny model AR (MVAR, multivariate
 
autoregressive) można wówczas opisać wzorem:  
 
autoregressive) można wówczas opisać wzorem:  
 +
  
 
<math>
 
<math>
 +
\displaystyle
 
\vec{s}(t)=\sum_{i=1}^p A(i) \vec{s}(t-i) + \vec{\epsilon}(t) ,
 
\vec{s}(t)=\sum_{i=1}^p A(i) \vec{s}(t-i) + \vec{\epsilon}(t) ,
 
</math>  
 
</math>  
 +
  
 
gdzie <math>\vec{\epsilon}(t)</math> będzie wektorem
 
gdzie <math>\vec{\epsilon}(t)</math> będzie wektorem
 
szumów, zaś <math>A(i)</math> będą macierzami współczynników modelu.
 
szumów, zaś <math>A(i)</math> będą macierzami współczynników modelu.
 
Przechodząc do przestrzeni częstości otrzymamy:  
 
Przechodząc do przestrzeni częstości otrzymamy:  
 +
  
 
<math>
 
<math>
\vec{s}(\omega)=A^{-1}(\omega)\vec{\epsilon}(\omega)=H(\omega)\vec{\epsilon}(\omega),  
+
\displaystyle
 +
\vec{s}(\omega)=A^{-1}(\omega) \, \vec{\epsilon}(\omega)=H(\omega)\vec{\epsilon}(\omega),  
 
</math>  
 
</math>  
  
gdzie <math>H(\omega)</math> jest macierzą przejścia.  MVAR jest modelem typu "czarna skrzynka", gdzie na wejściu występują szumy, na wyjściu sygnały, a system jest opisany przez macierz przejścia. Zawiera on informacje o własnościach widmowych sygnałów i związkach między nimi.
+
 
 +
gdzie <math>H(\omega)</math> jest macierzą przejścia.  MVAR jest modelem typu "czarna skrzynka", gdzie na wejściu występują szumy, na wyjściu sygnały, a system jest opisany przez macierz przejścia. Zawiera ona informacje o własnościach widmowych sygnałów i związkach między nimi.
 +
 
  
 
Na podstawie macierzy <math>H(\omega)</math> można obliczyć macierz
 
Na podstawie macierzy <math>H(\omega)</math> można obliczyć macierz
Linia 196: Linia 203:
 
chociaż nie są one ze sobą bezpośrednio powiązane, natomiast
 
chociaż nie są one ze sobą bezpośrednio powiązane, natomiast
 
koherencja cząstkowa nie wykaże związku między nimi.
 
koherencja cząstkowa nie wykaże związku między nimi.
 +
  
 
Macierz <math>H(\omega)</math> jest niesymetryczna, a jej wyrazy
 
Macierz <math>H(\omega)</math> jest niesymetryczna, a jej wyrazy
pozadiagonalne mają sens przyczynowości Grangera, co oznacza, że
+
pozadiagonalne są najczęściej stosowanymi estymatami [https://pl.wikipedia.org/wiki/Przyczynowość_w_sensie_Grangera przyczynowości w sensie Grangera] — 
 
uwzględnienie wcześniejszej informacji zawartej w jednym z sygnałów
 
uwzględnienie wcześniejszej informacji zawartej w jednym z sygnałów
 
zmniejsza błąd predykcji drugiego sygnału. Opierając się na tej
 
zmniejsza błąd predykcji drugiego sygnału. Opierając się na tej
Linia 205: Linia 213:
 
<math>H(\omega)</math>.  DTF opisuje kierunek propagacji i skład
 
<math>H(\omega)</math>.  DTF opisuje kierunek propagacji i skład
 
widmowy rozchodzących się sygnałów.
 
widmowy rozchodzących się sygnałów.
 +
  
 
Otrzymamy w ten sposób całościowy opis zmian wszystkich sygnałów
 
Otrzymamy w ten sposób całościowy opis zmian wszystkich sygnałów
Linia 216: Linia 225:
 
częstości pojawiają się wcześniej.
 
częstości pojawiają się wcześniej.
  
[[Plik:DTF.png|400px|thumb|center|MVAR, dzięki uprzejmości Macieja Kamińskiego]]
+
[[Plik:DTF.png|400px|thumb|center|MVAR w EEG, dzięki uprzejmości Macieja Kamińskiego]]
  
 
<references/>
 
<references/>
 +
 +
 +
 +
 +
<div align="right">
 +
[[Systemy_liniowe_niezmiennicze_w_czasie_(LTI)|⬅]] [[Analiza_sygnałów_-_wykład|⬆]] [[Filtry|⮕]]
 +
</div>

Aktualna wersja na dzień 21:01, 14 lis 2024

AS/ Transformacja [math]\mathcal{Z}[/math] i widmo procesu AR

Transformacja [math]\mathcal{Z}[/math]

Jednostronna transformata [math]\mathcal{Z}[/math] ciągu liczb [math]x[n][/math] definiowana jest jako funkcja zmiennej [math]z[/math] będąca sumą szeregu

[math] \displaystyle \mathcal{Z}\{x[n]\} = X(z)= \sum_{n=0}^{\infty} x[n] z^{-n} [/math]

czyli np. [math] \mathcal{Z}\{(2, 7, 3)\} = 2 z + 7 z^{-1} + 3 z^{-2} [/math]


Dla [math]z=e^{i \omega}[/math] dostajemy Dyskretną Transformację Fouriera.

[math] \displaystyle X(z=e^{i \omega})= \sum_{n=0}^{\infty} x[n] e^{- i \omega n} [/math]


Transformacja [math]\mathcal{Z}[/math] jest liniowa

[math] \displaystyle \mathcal{Z}\lbrace a x[n] + b y[n]\rbrace =a X[z] + b Y[z] [/math]


a dla przesunięcia w czasie

[math] \displaystyle \mathcal{Z}\lbrace x[n-k]\rbrace = z^{-k}X(z) [/math]


Dowód:

[math] \displaystyle \mathcal{Z}\lbrace x[n-k]\rbrace = \sum_{n=0}^{\infty} x[n-k] z^{-n} \;\; \stackrel{ j \rightarrow n-k }{=} \;\; \sum_{j=-k}^{\infty} x[j] z^{-(j+k)} = [/math]
[math] \displaystyle = \sum_{j=-k}^{\infty} x[j] z^{-j} z^{-k} = z^{-k} \sum_{j=-k}^{\infty} x[j] z^{-j} [/math]


dla systemów przyczynowych [math]x[j][/math] są niezerowe dla [math]j\gt 0[/math] (por. LTI/Splot i przyczynowość) więc


[math]\displaystyle \mathcal{Z}\lbrace x[n-k]\rbrace = z^{-k} \sum_{j=0}^{\infty} x[j] z^{-j} [/math]

Transformata [math]\mathcal{Z}[/math] splotu

Niech [math]x[n]=x_1[n]*x_2[n][/math]; wtedy transformata [math]\mathcal{Z}[/math] splotu to iloczyn transformat [math]\mathcal{Z}[/math]:


[math] \displaystyle \mathcal{Z}\{x[n]\} = X(z) = \mathcal{Z}\{x_1[n]\} \mathcal{Z}\{x_2[n]\} = X_1(z) X_2(z) [/math]


Dowód:

[math] \displaystyle \mathcal{Z}\{x_1(n)*x_2(n)\} = X(z) = [/math]
[math] \displaystyle \sum_{n=-\infty}^\infty\left[\sum_{k = -\infty}^\infty x_1(k)x_2(n-k)\right]z^{-n}[/math]
[math]= \displaystyle \sum_{k = -\infty}^\infty x_1(k)\left[\sum_{n=-\infty}^\infty x_2(n-k)z^{-n}\right][/math]
[math]= \displaystyle \sum_{k = -\infty}^\infty x_1(k)\left[\sum_{n = -\infty}^\infty x_2(n-k)z^{-(n-k)}z^{-k}\right] [/math]


niech [math]n-k = l[/math]
[math] \displaystyle X(z) = \sum_{k = -\infty}^\infty x_1(k)\left[z^{-k}\sum_{l=-\infty}^\infty x_2(l)z^{-l}\right][/math]
[math]= \displaystyle \sum_{k = -\infty}^\infty x_1(k) z^{-k} X_2(z)[/math]
[math]= \displaystyle X_1(z) X_2(z) [/math]

Widmo procesu AR

kładąc [math] a_0 = 1[/math], proces AR o znanych współczynnikach [math]a_i[/math]

[math] \displaystyle x[n] = \sum_{i=1}^M a_i x[n-i] + \epsilon[n] [/math]

możemy zapisać jako

[math] \displaystyle \sum_{i=0}^M a_i x[n-i] = \epsilon[n] [/math]

Biorąc transformatę Z obu stron

[math] \displaystyle \mathcal{Z}\left\{\sum_{i=0}^M a_i x[n-i] \right\} = \mathcal{Z}\left\{ \epsilon[n] \right\} [/math]


dostajemy

[math] A(z) X(z) = E(z) [/math]

[math] X(z) = \dfrac{E(z)}{A(z)} [/math]


oznaczając

[math]\displaystyle H(z) \stackrel{def}{=} A^{-1}(z) = \dfrac{1}{\sum a_i z^{-i}}[/math]

dostajemy

[math] X(z) = H(z) E(z) = \dfrac{E(z)}{a_0 + a_1 z^{-1} + a_2 z^{-2} + \ldots} [/math]


podstawiając [math]z=e^{i\omega t}[/math] przechodzimy z transformaty [math]\mathcal{Z}[/math] do transformaty Fouriera [math]\mathcal{F}(x) = \hat{x}(\omega)[/math]


[math] \hat{x}(\omega) = H(\omega) E(\omega) [/math]


widmo to kwadrat modułu transformaty Fouriera


[math] \displaystyle \left| \hat{x}(\omega) \right| ^2 = \left| H(\omega) E(\omega) \right|^2 = \\ \,\;\;\;\;\;\;\;\;\;\; = \left| H(\omega) \right|^2 \sigma^2 = \dfrac{\sigma^2}{\left| {A(e^{-i\omega n})} \right|^2} = \dfrac{\sigma^2}{\left|a_0 + a_1 e^{-i\omega} + a_2 e^{- 2 i\omega} + \ldots \right|^2} [/math]


gdzie [math]\sigma^2[/math] to wariancja nieskorelowanego szumu [math]\epsilon[/math], którego widmo jest płaskie (nie zależy od częstości)

Wielozmienny model AR

Model AR opisuje wartość sygnału w chwili [math]t[/math] jako kombinację liniową jego wartości w chwilach poprzednich (oraz szumu). W przypadku wielowymiarowym możemy włączyć do tego opisu wartości wszystkich sygnałów [math]s_i[/math], czyli wektora [math]\vec{s}(t)[/math]. Wielozmienny model AR (MVAR, multivariate autoregressive) można wówczas opisać wzorem:


[math] \displaystyle \vec{s}(t)=\sum_{i=1}^p A(i) \vec{s}(t-i) + \vec{\epsilon}(t) , [/math]


gdzie [math]\vec{\epsilon}(t)[/math] będzie wektorem szumów, zaś [math]A(i)[/math] będą macierzami współczynników modelu. Przechodząc do przestrzeni częstości otrzymamy:


[math] \displaystyle \vec{s}(\omega)=A^{-1}(\omega) \, \vec{\epsilon}(\omega)=H(\omega)\vec{\epsilon}(\omega), [/math]


gdzie [math]H(\omega)[/math] jest macierzą przejścia. MVAR jest modelem typu "czarna skrzynka", gdzie na wejściu występują szumy, na wyjściu sygnały, a system jest opisany przez macierz przejścia. Zawiera ona informacje o własnościach widmowych sygnałów i związkach między nimi.


Na podstawie macierzy [math]H(\omega)[/math] można obliczyć macierz gęstości widmowej zawierającą widma mocy dla pojedynczych kanałów jak również funkcje wzajemnej gęstości mocy pomiędzy kanałami. Stosując tego typu podejście, w którym wszystkie sygnały generowane przez pewien proces są rozpatrywane jednocześnie, można policzyć z macierzy spektralnej nie tylko koherencje zwykłe pomiędzy dwoma kanałami, ale również koherencje wielorakie opisujące związek danego kanału z pozostałymi i koherencje cząstkowe opisujące bezpośrednie związki między dwoma kanałami po usunięciu wpływu pozostałych kanałów. W przypadku gdy pewien kanał 1 będzie wpływał na kanały 2 i 3, obliczając koherencję zwykłą znajdziemy związek między 2 oraz 3, chociaż nie są one ze sobą bezpośrednio powiązane, natomiast koherencja cząstkowa nie wykaże związku między nimi.


Macierz [math]H(\omega)[/math] jest niesymetryczna, a jej wyrazy pozadiagonalne są najczęściej stosowanymi estymatami przyczynowości w sensie Grangera — uwzględnienie wcześniejszej informacji zawartej w jednym z sygnałów zmniejsza błąd predykcji drugiego sygnału. Opierając się na tej własności zdefiniowano Kierunkową Funkcję Przejścia (DTF, directed transfer function) jako znormalizowany element pozadiagonalny [math]H(\omega)[/math]. DTF opisuje kierunek propagacji i skład widmowy rozchodzących się sygnałów.


Otrzymamy w ten sposób całościowy opis zmian wszystkich sygnałów jednocześnie. Co ciekawe, obliczona na tej podstawie funkcja charakteryzująca zależności między sygnałami [math]s_i[/math] (funkcja przejścia) nie jest symetryczna, w przeciwieństwie do np. korelacji. Dzięki temu może służyć wnioskowaniu nie tylko o sile zależności między poszczególnymi sygnałami składowymi, ale też o kierunku przepływu informacji między nimi. W przybliżeniu odpowiada to informacji, w którym z sygnałów struktury odpowiadające danej częstości pojawiają się wcześniej.

MVAR w EEG, dzięki uprzejmości Macieja Kamińskiego