Ćwiczenia 2 2: Różnice pomiędzy wersjami

Z Brain-wiki
 
(Nie pokazano 20 wersji utworzonych przez 3 użytkowników)
Linia 5: Linia 5:
 
=Odwracalność transformaty=
 
=Odwracalność transformaty=
 
Reprezentacja sygnałów w dziedzinie częstości jest dualna do reprezentacji  w dziedzinie czasu. To znaczy, że jedną reprezentację można przekształcić w drugą. Do przejścia z dziedziny czasu do częstości używaliśmy transformaty Fouriera (zaimplemantowanej w <tt>fft</tt>). Przejścia z dziedziny częstości do czasu dokonujemy przy pomocy odwrotnej transformaty Fouriera (zaimplementowanej jako <tt>ifft</tt>. Mając (zespolone) współczynniki w dziedzinie częstości dla pewnego sygnału, możemy odzyskać jego przebieg czasowy.
 
Reprezentacja sygnałów w dziedzinie częstości jest dualna do reprezentacji  w dziedzinie czasu. To znaczy, że jedną reprezentację można przekształcić w drugą. Do przejścia z dziedziny czasu do częstości używaliśmy transformaty Fouriera (zaimplemantowanej w <tt>fft</tt>). Przejścia z dziedziny częstości do czasu dokonujemy przy pomocy odwrotnej transformaty Fouriera (zaimplementowanej jako <tt>ifft</tt>. Mając (zespolone) współczynniki w dziedzinie częstości dla pewnego sygnału, możemy odzyskać jego przebieg czasowy.
 
+
===Zadanie 1===
 
* Proszę wygenerować sygnał <math>s(t) = \sin(2\pi t \cdot 1)+\sin\left(2 \pi  t \cdot 3+\frac{\pi}{5}\right) </math> o długości 2,5 s próbkowany 100 Hz, obliczyć jego transformatę Fouriera za pomocą <tt>fft</tt>, a następnie zrekonstruować przebieg czasowy za pomocą <tt>ifft</tt>. Sygnał oryginalny i zrekonstruowany wykreślić na jednym rysunku.  ''Uwaga: funkcja ifft zwraca wektor liczb zespolonych. Sprawdź jaka jest jegeo część urojona. Na wykresie rekonstrukcji przedstaw jego część rzeczywistą.''
 
* Proszę wygenerować sygnał <math>s(t) = \sin(2\pi t \cdot 1)+\sin\left(2 \pi  t \cdot 3+\frac{\pi}{5}\right) </math> o długości 2,5 s próbkowany 100 Hz, obliczyć jego transformatę Fouriera za pomocą <tt>fft</tt>, a następnie zrekonstruować przebieg czasowy za pomocą <tt>ifft</tt>. Sygnał oryginalny i zrekonstruowany wykreślić na jednym rysunku.  ''Uwaga: funkcja ifft zwraca wektor liczb zespolonych. Sprawdź jaka jest jegeo część urojona. Na wykresie rekonstrukcji przedstaw jego część rzeczywistą.''
  
Linia 133: Linia 133:
  
 
-->
 
-->
=Rozdzielczość widma mocy obliczanego za pomocą FFT =
+
 
Poniżej będziemy zajmować się sygnałami rzeczywistymi, więc stosujemy funkcje z rodziny Real FFT:
+
=Badanie rozdzielczości sygnałami testowymi=
 +
* Poniżej będziemy zajmować się sygnałami rzeczywistymi, więc stosujemy funkcje z rodziny Real FFT:
 
https://docs.scipy.org/doc/numpy/reference/routines.fft.html
 
https://docs.scipy.org/doc/numpy/reference/routines.fft.html
  
==Badanie rozdzielczości sygnałami testowymi==
+
* W poniższych przykładach jako widmo będziemy rozumieli widmo amplitudowe, tzn wartość bezwzględną ze współczynników szeregu Fouriera.
 +
 
 +
==Widmo sinusoidy i delty==
 
Najprostsza sytuacja: Badamy współczynniki zwracane przez <tt>fft</tt> dla sinusoid o różnych częstościach.  
 
Najprostsza sytuacja: Badamy współczynniki zwracane przez <tt>fft</tt> dla sinusoid o różnych częstościach.  
 
+
===Zadanie 2===
 
* Proszę kolejno wygenerować sinusoidy o długości 1s próbkowaną 32Hz i częstościach 1,10, 16  i  0 Hz. Dla tych sinusoid proszę policzyć transformaty Fouriera i wykreślić zarówno sygnały jak i wartość bezwzględne otrzymanych współczynników.
 
* Proszę kolejno wygenerować sinusoidy o długości 1s próbkowaną 32Hz i częstościach 1,10, 16  i  0 Hz. Dla tych sinusoid proszę policzyć transformaty Fouriera i wykreślić zarówno sygnały jak i wartość bezwzględne otrzymanych współczynników.
 
** Jak wyglądają otrzymane wykresy?
 
** Jak wyglądają otrzymane wykresy?
 
** Czy coś szczególnego dzieje się dla częstości 0 i 16Hz? Czy w tych skrajnych przypadkach faza sygnału ma wpływ na wynik transformaty?  
 
** Czy coś szczególnego dzieje się dla częstości 0 i 16Hz? Czy w tych skrajnych przypadkach faza sygnału ma wpływ na wynik transformaty?  
 +
===Zadanie 3===
  
 +
* Proszę wygenerować sygnał delta położony w sekundzie 0,5 na odcinku czasu o długości 1s próbkowany 128Hz. Dla takiego sygnału proszę policzyć transformatę Fouriera i wykreślić zarówno sygnały jak i wartość bezwzględne otrzymanych współczynników.
 +
** Jak wygląda transformata funkcji delta?
 +
** Jakie częstości w sobie zawiera?
  
* Proszę wygenerować sygnał delta położony w sekundzie 0,5 na odcinku czasu o długości 1s próbkowany 128Hz. Dla takiego sygnału proszę policzyć transformatę Fouriera i wykreślić zarówno sygnały jak i wartość bezwzględne otrzymanych współczynników.
 
** Jak wygląda transformata funkcji delta? Jakie częstości w sobie zawiera?
 
*
 
 
<!--
 
<!--
 
<source lang=python>
 
<source lang=python>
Linia 211: Linia 215:
  
 
=== Efekt nieciągłości funkcji ===
 
=== Efekt nieciągłości funkcji ===
 +
====Zadanie 4====
 
* Wygenerować sinusoidę o następujących własnościach: f=10 Hz, T=1, Fs=100 Hz, i fazie = 1;
 
* Wygenerować sinusoidę o następujących własnościach: f=10 Hz, T=1, Fs=100 Hz, i fazie = 1;
 
* Przy pomocy subplotów proszę sporządzić rysunek zgodnie z ponższym opisem:
 
* Przy pomocy subplotów proszę sporządzić rysunek zgodnie z ponższym opisem:
 
** subplot(2,2,1): przebieg sygnału w czasie  
 
** subplot(2,2,1): przebieg sygnału w czasie  
** subplot(2,2,2): moduł jego transformaty Fouriera (narysować za pomocą funkcji <tt>py.stem</tt>, skalę na osi częstości można uzyskać wywołując funkcję <tt>F = FFT.fftfreq(len(s), 1/Fs)</tt> gdzie <tt>s</tt> to nasz sygnał),
+
** subplot(2,2,2): moduł jego transformaty Fouriera (narysować za pomocą funkcji <tt>py.stem</tt> wraz zprawidłową osią częstości,
 
** subplot(2,2,3): Proszę wykreślić trzykrotnie periodycznie powielony oryginalny sygnał. Można go skonstruować wywołując funkcję: <tt>s_period = np.concatenate((s,s,s))</tt>.
 
** subplot(2,2,3): Proszę wykreślić trzykrotnie periodycznie powielony oryginalny sygnał. Można go skonstruować wywołując funkcję: <tt>s_period = np.concatenate((s,s,s))</tt>.
** subplot(2,2,4): moduł transformaty Fouriera <tt>s_period</tt> (narysować za pomocą funkcji <tt>py.stem</tt>, skalę na osi częstości można uzyskać wywołując funkcję <tt>F = FFT.fftfreq(3*len(s), 1/Fs)</tt>
+
** subplot(2,2,4): moduł transformaty Fouriera <tt>s_period</tt> (narysować za pomocą funkcji <tt>py.stem</tt> wraz zprawidłową osią częstości
  
 
* Powtórz te same kroki dla sinusa o częstości 10.3 Hz.
 
* Powtórz te same kroki dla sinusa o częstości 10.3 Hz.
 
Pytania:
 
Pytania:
# Czym różnią się przedłużenia sinusoidy 10 Hz od sinusoidy 10.3 Hz? Proszę zwrócić uwagę na miejsca sklejania sygnałów. <!--Porównaj z wynikami otrzymanymi w zagadnieniu '''Rekonstrukcja na dłuższym odcinku czasu'''.-->
+
# Czym różnią się przedłużenia sinusoidy 10 Hz od sinusoidy 10.3 Hz? Proszę zwrócić uwagę na miejsca sklejania sygnałów.
 +
<!--Porównaj z wynikami otrzymanymi w zagadnieniu '''Rekonstrukcja na dłuższym odcinku czasu'''.-->
 
# Skąd bierze się widoczna różnica w widmie sinusoidy 10 Hz i 10.3 Hz?  
 
# Skąd bierze się widoczna różnica w widmie sinusoidy 10 Hz i 10.3 Hz?  
*
+
 
 
<!--
 
<!--
 
<source lang = python>
 
<source lang = python>
Linia 229: Linia 235:
 
import pylab as py
 
import pylab as py
 
import numpy as np
 
import numpy as np
import numpy.fft as FFT
+
from numpy.fft import rfft, rfftfreq
  
 
def sin(f = 1, T = 1, Fs = 128, phi =0 ):
 
def sin(f = 1, T = 1, Fs = 128, phi =0 ):
'''sin o zadanej częstości (w Hz), długości, fazie i częstości próbkowania
+
    '''sin o zadanej częstości (w Hz), długości, fazie i częstości próbkowania
Domyślnie wytwarzany jest sygnał reprezentujący  
+
    Domyślnie wytwarzany jest sygnał reprezentujący  
1 sekundę sinusa o częstości 1Hz i zerowej fazie próbkowanego 128 Hz
+
    1 sekundę sinusa o częstości 1Hz i zerowej fazie próbkowanego 128 Hz
'''
+
    '''
 
dt = 1.0/Fs
 
t = np.arange(0,T,dt)
 
s = np.sin(2*np.pi*f*t + phi)
 
return (s,t)
 
 
(s,t) = sin(f = 10.3, T =1, Fs = 100, phi = 1)
 
  
py.subplot(2,2,1)
+
    dt = 1.0/Fs
py.plot(t,s)
+
    t = np.arange(0,T,dt)
py.subplot(2,2,2)
+
    s = np.sin(2*np.pi*f*t + phi)
S = FFT.fft(s)
+
    return (s,t)   
F = FFT.fftfreq(len(s),0.01)
+
   
py.stem(F,np.abs(S)/len(S))
+
for f in (10, 10.3):
 
+
    py.figure()
py.subplot(2,2,3)
+
    (s,t) = sin(f = f, T =1, Fs = 100, phi = 1)
s_period = np.concatenate((s,s,s))
+
   
t_period = np.arange(0,3,0.01)
+
    py.subplot(2,2,1)
py.plot(t_period,s_period)
+
    py.plot(t,s)
 
+
    py.title(f)
py.subplot(2,2,4)
+
    py.subplot(2,2,2)
S_period = FFT.fft(s_period)
+
    S = rfft(s)
F_period = FFT.fftfreq(len(s_period),0.01)
+
    F = rfftfreq(len(s),0.01)
py.stem(F_period,np.abs(S_period)/len(S_period))
+
    py.stem(F,np.abs(S)/len(S))
 +
   
 +
    py.subplot(2,2,3)
 +
    s_period = np.concatenate((s,s,s))
 +
    t_period = np.arange(0,3,0.01)
 +
    py.plot(t_period,s_period)
 +
   
 +
    py.subplot(2,2,4)
 +
    S_period = rfft(s_period)
 +
    F_period = rfftfreq(len(s_period),0.01)
 +
    py.stem(F_period,np.abs(S_period)/len(S_period))
 
</source>
 
</source>
  
Linia 265: Linia 274:
  
 
===Długość sygnału a rozdzielczość widma FFT ===
 
===Długość sygnału a rozdzielczość widma FFT ===
Z dotychczasowych rozważań o transformacie Fouriera ograniczonych w czasie sygnałów dyskretnych wynika, że w widmie reprezentowane są częstości od <math>-F_N</math> do <math>F_N</math> gdzie <math>F_N</math> to częstości Nyquista. Dostępnych binów częstości jest ''N'' - tyle samo ile obserwowanych punktów sygnału. Zatem zwiększenie długości sygnału w czasie poprawia "rozdzielczość"  reprezentacji częstotliwościowej sygnału.  
+
Z dotychczasowych rozważań o transformacie Fouriera ograniczonych w czasie sygnałów dyskretnych wynika, że w widmie reprezentowane są częstości od <math>-F_N</math> do <math>F_N</math> gdzie <math>F_N</math> to częstości Nyquista. Dostępnych binów częstości jest ''N'' - tyle samo ile obserwowanych punktów sygnału.
 +
 
 +
* jaki dostęp między binami częstotliwości mamy dla 1 s sygnału próbkowanego 10Hz?
 +
* jaki dostęp między binami częstotliwości mamy dla 1 s sygnału próbkowanego 100Hz?
 +
* jaki dostęp między binami częstotliwości mamy dla 1 s sygnału próbkowanego 1000Hz?
 +
* jaki dostęp między binami częstotliwości mamy dla 10 s sygnału próbkowanego 10Hz?
 +
* jaki dostęp między binami częstotliwości mamy dla 100 s sygnału próbkowanego 10Hz?
 +
 
 +
Zatem zwiększenie długości sygnału w czasie poprawia "rozdzielczość"  reprezentacji częstotliwościowej sygnału.  
  
 
Załóżmy, że dysponujemy jedynie sekwencją ''N'' próbek pewnego sygnału. Rozważymy teraz jakie można przyjąć strategie przedłużania tego sygnału w celu zwiększenia gęstości binów częstotliwościowych i jakie te strategie mają konsekwencje.
 
Załóżmy, że dysponujemy jedynie sekwencją ''N'' próbek pewnego sygnału. Rozważymy teraz jakie można przyjąć strategie przedłużania tego sygnału w celu zwiększenia gęstości binów częstotliwościowych i jakie te strategie mają konsekwencje.
Linia 322: Linia 339:
 
-->
 
-->
  
====Przedłużanie sygnału zerami ====
+
====Przedłużanie sygnału ====
Inną popularną metodą na zwiększanie ilości binów w transformacie Fouriera jest przedłużanie sygnału zerami (zero-padding). Jest to szczególny przypadek następującego podejścia: Nasz "prawdziwy" sygnał jest długi. Oglądamy go przez prostokątne okno, które ma wartość 1 na odcinku czasu dla którego próbki mamy dostępne i 0 dla pozostałego czasu (więcej o różnych oknach będzie na kolejnych zajęciach). W efekcie możemy myśleć, że oglądany przez nas sygnał to efekt przemnożenia "prawdziwego" sygnału przez okno. Efekty takiego przedłużania proszę zbadać przy użyciu poniższego kodu.  
+
=====Przedłużanie przez cykliczne powielenie=====
 +
Zobaczmy co się stanie jesli przedłużymy sygnał prze jego periodyczne przedłużenie. Efekty takiego przedłużania proszę zbadać przy użyciu poniższego kodu:
 +
<source lang = python>
 +
# -*- coding: utf-8 -*-
 +
import pylab as py
 +
import numpy as np
 +
from numpy.fft import rfft, rfftfreq
 +
 
 +
def sin(f = 1, T = 1, Fs = 128, phi =0 ):
 +
'''sin o zadanej częstości (w Hz), długości, fazie i częstości próbkowania
 +
Domyślnie wytwarzany jest sygnał reprezentujący
 +
1 sekundę sinusa o częstości 1Hz i zerowej fazie próbkowanego 128 Hz
 +
'''
 +
 +
dt = 1.0/Fs
 +
t = np.arange(0,T,dt)
 +
s = np.sin(2*np.pi*f*t + phi)
 +
return (s,t)
 +
 
 +
Fs =100
 +
T =0.1
 +
 
 +
(s,t) = sin(f = 10.0, T=T, Fs=Fs)
 +
 
 +
 
 +
py.figure()
 +
py.subplot(2,2,1)
 +
py.plot(t,s)
 +
py.subplot(2,2,2)
 +
S = rfft(s)/len(s)
 +
F = rfftfreq(len(s),1/Fs)
 +
py.stem(F,np.abs(S))
 +
 
 +
z= np.zeros(len(s))
 +
py.subplot(2,2,3)
 +
n = 10
 +
s_period = np.hstack(n*(s,))# n razy powtarzamy s
 +
t_period = np.arange(0,T*n,1/Fs)
 +
py.plot(t_period,s_period)
 +
 
 +
py.subplot(2,2,4)
 +
S_period = rfft(s_period)/len(s)
 +
F_period = rfftfreq(len(s_period),1/Fs)
 +
py.stem(F_period,np.abs(S_period)/(len(s_period)))
 +
py.stem(F,np.abs(S),linefmt='r-', markerfmt='ro')
 +
 
 +
py.show()
 +
</source>
 +
 
 +
=====Przedłużanie zerami=====
 +
Metodą na zwiększanie ilości binów w transformacie Fouriera jest przedłużanie sygnału zerami (zero-padding). Jest to szczególny przypadek następującego podejścia: Nasz "prawdziwy" sygnał jest długi. Oglądamy go przez prostokątne okno, które ma wartość 1 na odcinku czasu, dla którego próbki mamy dostępne i 0 dla pozostałego czasu (więcej o różnych oknach będzie na kolejnych zajęciach). W efekcie możemy myśleć, że oglądany przez nas sygnał to efekt przemnożenia "prawdziwego" sygnału przez okno. Efekty takiego przedłużania proszę zbadać:
 +
* dla sygnału sinusoidalnego o dł. 0.1s i częstości 10Hz próbkowanego 100 Hz
 +
* dla sygnału sinusoidalnego o dł. 0.1s i częstości 22Hz próbkowanego 100 Hz
 +
* dla sygnału będącego suma dwóch powyższych
 
* Jak można zinterpretować wyniki tego eksperymentu w świetle [[Twierdzenia_o_splocie_i_o_próbkowaniu_(aliasing)#Twierdzenie_o_splocie|twierdzenia o splocie]]?
 
* Jak można zinterpretować wyniki tego eksperymentu w świetle [[Twierdzenia_o_splocie_i_o_próbkowaniu_(aliasing)#Twierdzenie_o_splocie|twierdzenia o splocie]]?
 +
<!--
 
<source lang = python>
 
<source lang = python>
 
# -*- coding: utf-8 -*-
 
# -*- coding: utf-8 -*-
 +
 +
"""
 +
Created on Fri Oct 21 15:51:33 2016
 +
 +
@author: admin
 +
"""
  
 
import pylab as py
 
import pylab as py
 
import numpy as np
 
import numpy as np
import numpy.fft as FFT
+
from numpy.fft import rfft, rfftfreq
  
 
def sin(f = 1, T = 1, Fs = 128, phi =0 ):
 
def sin(f = 1, T = 1, Fs = 128, phi =0 ):
Linia 342: Linia 419:
 
s = np.sin(2*np.pi*f*t + phi)
 
s = np.sin(2*np.pi*f*t + phi)
 
return (s,t)
 
return (s,t)
+
 
(s1,t) = sin(f = 15.0, T =0.1, Fs = 100, phi = 0)
+
Fs =100
(s2,t)= sin(f = 20.0, T =0.1, Fs = 100, phi = 0)
+
T =0.1
 +
n = 10
 +
(s1,t) = sin(f = 10.0, T=T, Fs=Fs)
 +
(s2,t)= sin(f = 22.0, T =0.1, Fs = Fs)
 
s=s1+s2
 
s=s1+s2
py.clf()
+
 
 +
py.figure()
 
py.subplot(2,2,1)
 
py.subplot(2,2,1)
 
py.plot(t,s)
 
py.plot(t,s)
 
py.subplot(2,2,2)
 
py.subplot(2,2,2)
S = FFT.fft(s)
+
S = rfft(s)/len(s)
F = FFT.fftfreq(len(s),0.01)
+
F = rfftfreq(len(s),1/Fs)
py.stem(F,np.abs(S)/len(S))
+
py.stem(F,np.abs(S))
py.xlim((-50,50))
+
 
py.ylim((0,0.7))
 
 
z= np.zeros(len(s))
 
z= np.zeros(len(s))
 
py.subplot(2,2,3)
 
py.subplot(2,2,3)
 
s_period = np.concatenate((s,z,z,z,z,z,z,z,z,z))
 
s_period = np.concatenate((s,z,z,z,z,z,z,z,z,z))
t_period = np.arange(0,len(s_period)/100.0,0.01)
+
t_period = np.arange(0,n*T,1/Fs)
 +
py.plot(t_period,s_period)
 +
 
 +
py.subplot(2,2,4)
 +
S_period = rfft(s_period)/len(s)
 +
F_period = rfftfreq(len(s_period),1/Fs)
 +
py.stem(F_period,np.abs(S_period))
 +
py.stem(F,np.abs(S),linefmt='r-', markerfmt='ro')
 +
 
 +
py.show()
 +
 
 +
 
 +
py.figure()
 +
py.subplot(2,2,1)
 +
py.plot(t,s)
 +
py.subplot(2,2,2)
 +
S = rfft(s)/len(s)
 +
F = rfftfreq(len(s),1/Fs)
 +
py.stem(F,np.abs(S))
 +
 
 +
z= np.zeros(len(s))
 +
py.subplot(2,2,3)
 +
 
 +
s_period = np.hstack((s,s,s,s,s,s,s,s,s,s))# n razy powtarzamy s
 +
t_period = np.arange(0,T*n,1/Fs)
 
py.plot(t_period,s_period)
 
py.plot(t_period,s_period)
  
 
py.subplot(2,2,4)
 
py.subplot(2,2,4)
S_period = FFT.fft(s_period)
+
S_period = rfft(s_period)/len(s_period)
F_period = FFT.fftfreq(len(s_period),0.01)
+
F_period = rfftfreq(len(s_period),1/Fs)
py.stem(F_period,np.abs(S_period)/len(S))
+
py.stem(F_period,np.abs(S_period))
py.stem(F,np.abs(S)/len(S),linefmt='r-', markerfmt='ro')
+
py.stem(F,np.abs(S),linefmt='r-', markerfmt='ro')
py.xlim((-50,50))
+
 
py.ylim((0,0.7))
 
 
py.show()
 
py.show()
 
</source>
 
</source>
 +
-->
 +
 +
=Co musimy z tego zapamiętać?=
 +
* Sygnał może być reprezentowany w dziedzine czasu lub w dziedzinie częstości
 +
* Jak wyglada widmo delty?
 +
* Jak wygląda widmo sinusa, którego całkowita ilość okresów mieści się w badanym fragmencie, a jak jeśli niecałkowita?
 +
* Jak długość sygnału wpływa na rozdzielczość widma?
 +
* Jakie częstości występują w widmie sygnału periodyzowanego cyklicznie?
 +
* Jaki efekt daje przedłużanie zerami?
  
 
[[Analiza_sygnałów_-_ćwiczenia]]/Fourier_2
 
[[Analiza_sygnałów_-_ćwiczenia]]/Fourier_2

Aktualna wersja na dzień 15:18, 10 lis 2016

Analiza_sygnałów_-_ćwiczenia/Fourier_2


Odwracalność transformaty

Reprezentacja sygnałów w dziedzinie częstości jest dualna do reprezentacji w dziedzinie czasu. To znaczy, że jedną reprezentację można przekształcić w drugą. Do przejścia z dziedziny czasu do częstości używaliśmy transformaty Fouriera (zaimplemantowanej w fft). Przejścia z dziedziny częstości do czasu dokonujemy przy pomocy odwrotnej transformaty Fouriera (zaimplementowanej jako ifft. Mając (zespolone) współczynniki w dziedzinie częstości dla pewnego sygnału, możemy odzyskać jego przebieg czasowy.

Zadanie 1

  • Proszę wygenerować sygnał [math]s(t) = \sin(2\pi t \cdot 1)+\sin\left(2 \pi t \cdot 3+\frac{\pi}{5}\right) [/math] o długości 2,5 s próbkowany 100 Hz, obliczyć jego transformatę Fouriera za pomocą fft, a następnie zrekonstruować przebieg czasowy za pomocą ifft. Sygnał oryginalny i zrekonstruowany wykreślić na jednym rysunku. Uwaga: funkcja ifft zwraca wektor liczb zespolonych. Sprawdź jaka jest jegeo część urojona. Na wykresie rekonstrukcji przedstaw jego część rzeczywistą.



Badanie rozdzielczości sygnałami testowymi

  • Poniżej będziemy zajmować się sygnałami rzeczywistymi, więc stosujemy funkcje z rodziny Real FFT:

https://docs.scipy.org/doc/numpy/reference/routines.fft.html

  • W poniższych przykładach jako widmo będziemy rozumieli widmo amplitudowe, tzn wartość bezwzględną ze współczynników szeregu Fouriera.

Widmo sinusoidy i delty

Najprostsza sytuacja: Badamy współczynniki zwracane przez fft dla sinusoid o różnych częstościach.

Zadanie 2

  • Proszę kolejno wygenerować sinusoidy o długości 1s próbkowaną 32Hz i częstościach 1,10, 16 i 0 Hz. Dla tych sinusoid proszę policzyć transformaty Fouriera i wykreślić zarówno sygnały jak i wartość bezwzględne otrzymanych współczynników.
    • Jak wyglądają otrzymane wykresy?
    • Czy coś szczególnego dzieje się dla częstości 0 i 16Hz? Czy w tych skrajnych przypadkach faza sygnału ma wpływ na wynik transformaty?

Zadanie 3

  • Proszę wygenerować sygnał delta położony w sekundzie 0,5 na odcinku czasu o długości 1s próbkowany 128Hz. Dla takiego sygnału proszę policzyć transformatę Fouriera i wykreślić zarówno sygnały jak i wartość bezwzględne otrzymanych współczynników.
    • Jak wygląda transformata funkcji delta?
    • Jakie częstości w sobie zawiera?


Efekt nieciągłości funkcji

Zadanie 4

  • Wygenerować sinusoidę o następujących własnościach: f=10 Hz, T=1, Fs=100 Hz, i fazie = 1;
  • Przy pomocy subplotów proszę sporządzić rysunek zgodnie z ponższym opisem:
    • subplot(2,2,1): przebieg sygnału w czasie
    • subplot(2,2,2): moduł jego transformaty Fouriera (narysować za pomocą funkcji py.stem wraz zprawidłową osią częstości,
    • subplot(2,2,3): Proszę wykreślić trzykrotnie periodycznie powielony oryginalny sygnał. Można go skonstruować wywołując funkcję: s_period = np.concatenate((s,s,s)).
    • subplot(2,2,4): moduł transformaty Fouriera s_period (narysować za pomocą funkcji py.stem wraz zprawidłową osią częstości
  • Powtórz te same kroki dla sinusa o częstości 10.3 Hz.

Pytania:

  1. Czym różnią się przedłużenia sinusoidy 10 Hz od sinusoidy 10.3 Hz? Proszę zwrócić uwagę na miejsca sklejania sygnałów.
  2. Skąd bierze się widoczna różnica w widmie sinusoidy 10 Hz i 10.3 Hz?


Długość sygnału a rozdzielczość widma FFT

Z dotychczasowych rozważań o transformacie Fouriera ograniczonych w czasie sygnałów dyskretnych wynika, że w widmie reprezentowane są częstości od [math]-F_N[/math] do [math]F_N[/math] gdzie [math]F_N[/math] to częstości Nyquista. Dostępnych binów częstości jest N - tyle samo ile obserwowanych punktów sygnału.

  • jaki dostęp między binami częstotliwości mamy dla 1 s sygnału próbkowanego 10Hz?
  • jaki dostęp między binami częstotliwości mamy dla 1 s sygnału próbkowanego 100Hz?
  • jaki dostęp między binami częstotliwości mamy dla 1 s sygnału próbkowanego 1000Hz?
  • jaki dostęp między binami częstotliwości mamy dla 10 s sygnału próbkowanego 10Hz?
  • jaki dostęp między binami częstotliwości mamy dla 100 s sygnału próbkowanego 10Hz?

Zatem zwiększenie długości sygnału w czasie poprawia "rozdzielczość" reprezentacji częstotliwościowej sygnału.

Załóżmy, że dysponujemy jedynie sekwencją N próbek pewnego sygnału. Rozważymy teraz jakie można przyjąć strategie przedłużania tego sygnału w celu zwiększenia gęstości binów częstotliwościowych i jakie te strategie mają konsekwencje.

Przedłużanie sygnału

Przedłużanie przez cykliczne powielenie

Zobaczmy co się stanie jesli przedłużymy sygnał prze jego periodyczne przedłużenie. Efekty takiego przedłużania proszę zbadać przy użyciu poniższego kodu:

# -*- coding: utf-8 -*-
import pylab as py
import numpy as np
from numpy.fft import rfft, rfftfreq

def sin(f = 1, T = 1, Fs = 128, phi =0 ):
	'''sin o zadanej częstości (w Hz), długości, fazie i częstości próbkowania
	Domyślnie wytwarzany jest sygnał reprezentujący 
	1 sekundę sinusa o częstości 1Hz i zerowej fazie próbkowanego 128 Hz
	'''
 
	dt = 1.0/Fs
	t = np.arange(0,T,dt)
	s = np.sin(2*np.pi*f*t + phi)
	return (s,t)	

Fs =100	
T =0.1

(s,t) = sin(f = 10.0, T=T, Fs=Fs)


py.figure()
py.subplot(2,2,1)
py.plot(t,s)
py.subplot(2,2,2)
S = rfft(s)/len(s)
F = rfftfreq(len(s),1/Fs)
py.stem(F,np.abs(S))

z= np.zeros(len(s))
py.subplot(2,2,3)
n = 10
s_period = np.hstack(n*(s,))# n razy powtarzamy s
t_period = np.arange(0,T*n,1/Fs)
py.plot(t_period,s_period)

py.subplot(2,2,4)
S_period = rfft(s_period)/len(s)
F_period = rfftfreq(len(s_period),1/Fs)
py.stem(F_period,np.abs(S_period)/(len(s_period)))
py.stem(F,np.abs(S),linefmt='r-', markerfmt='ro')

py.show()
Przedłużanie zerami

Metodą na zwiększanie ilości binów w transformacie Fouriera jest przedłużanie sygnału zerami (zero-padding). Jest to szczególny przypadek następującego podejścia: Nasz "prawdziwy" sygnał jest długi. Oglądamy go przez prostokątne okno, które ma wartość 1 na odcinku czasu, dla którego próbki mamy dostępne i 0 dla pozostałego czasu (więcej o różnych oknach będzie na kolejnych zajęciach). W efekcie możemy myśleć, że oglądany przez nas sygnał to efekt przemnożenia "prawdziwego" sygnału przez okno. Efekty takiego przedłużania proszę zbadać:

  • dla sygnału sinusoidalnego o dł. 0.1s i częstości 10Hz próbkowanego 100 Hz
  • dla sygnału sinusoidalnego o dł. 0.1s i częstości 22Hz próbkowanego 100 Hz
  • dla sygnału będącego suma dwóch powyższych
  • Jak można zinterpretować wyniki tego eksperymentu w świetle twierdzenia o splocie?

Co musimy z tego zapamiętać?

  • Sygnał może być reprezentowany w dziedzine czasu lub w dziedzinie częstości
  • Jak wyglada widmo delty?
  • Jak wygląda widmo sinusa, którego całkowita ilość okresów mieści się w badanym fragmencie, a jak jeśli niecałkowita?
  • Jak długość sygnału wpływa na rozdzielczość widma?
  • Jakie częstości występują w widmie sygnału periodyzowanego cyklicznie?
  • Jaki efekt daje przedłużanie zerami?

Analiza_sygnałów_-_ćwiczenia/Fourier_2