Filtry: Różnice pomiędzy wersjami

Z Brain-wiki
Linia 169: Linia 169:
  
  
Taki filtr nazywamy filtrem o skończonej odpowiedzi impulsowej (Finite Impulse Response, FIR), bo odpowiedź na impulsowe wzbudzenie kończy się po <math>n_b</math> próbkach. Inna nazwa to średnia biegnąca (Moving Average, MA).
+
Taki filtr nazywamy filtrem o skończonej odpowiedzi impulsowej (Finite Impulse Response, FIR), bo odpowiedź na impulsowe wzbudzenie kończy się po <math>L</math> próbkach. Inna nazwa to średnia biegnąca (Moving Average, MA).
  
 
<!--
 
<!--

Wersja z 17:45, 10 lut 2024

AS/ Funkcja przejścia i filtry

Cyfrowe filtry liniowe niezmiennicze w czasie [math]x[n] \longrightarrow \boxed{LTI} \longrightarrow y[n][/math] opisuje liniowe równanie różnicowe o stałych współczynnikach


[math] \displaystyle y[n] = \sum_{k=1}^K a_k y[n-k] + \sum_{l=0}^L b_l x[n-l] [/math]


gdzie [math]a_i[/math] i [math]b_i[/math] to współczynniki, [math]x[n][/math] to sygnał wejściowy, a [math]y[n][/math] — wyjście; w ogólniejszej postaci można je zapisać jako


[math] \displaystyle \sum_{k=0}^K a_k y[n-k] = \sum_{l=0}^L b_l x[n-l] [/math]


Funkcja przejścia (transfer function)

Zastosujmy do obu stron powyższego równania transformatę [math]\mathcal{Z}[/math]:


[math] \displaystyle \mathcal{Z}\left\{\sum_{k=0}^K a_k y[n-k] \right\} = \mathcal{Z}\left\{ \sum_{l=0}^L b_l x[n-l] \right\} [/math]


[math] \displaystyle \sum_{k=0}^K a_k \mathcal{Z}\left\{ y[n-k]\right\} = \sum_{l=0}^L b_l \mathcal{Z} \left\{x[n-l]\right\} [/math]


[math] \displaystyle \sum_{k=0}^K a_k z^{-k} Y(z) = \sum_{l=0}^L b_l z^{-l} X(z) [/math]


[math] \displaystyle Y(z) \sum_{k=0}^K a_k z^{-k} = X(z) \sum_{l=0}^L b_l z^{-l} [/math]


Dla systemu przyczynowego dostajemy:


[math] \displaystyle \frac{Y(z)}{X(z)} \equiv H(z) = \frac{\sum_{l=0}^L b_l z^{-l}}{\sum_{k=0}^K a_k z^{-k}} [/math]


[math]H(z)[/math] — funkcja systemu (system function) pozwala spójnie przedstawić działanie filtra LTI na sygnał [math]x[/math] w przestrzeni transformaty [math]\mathcal{Z}[/math]:


[math] \displaystyle Y[z]=H[z]X[z]=\frac{b_0 + b_1 z^{-1}+\dots +b_{L} z^{-L}}{a_0+a_1 z^{-1}+\dots +a_{K} z^{-K}}X[z] [/math]


W dziedzienie czasu mamy


[math] \displaystyle \begin{array}{rl} y[n] = &b_0 x[n]+ b_1 x[n-1] + \dots + b_L x[n-L]\\ &- a_1 y[n-1] - \dots - a_K y[n-K] \end{array} [/math]


Finite Impulse Response (FIR) — filtr o skończonej odpowiedzi impulsowej

Jeśli w równaniu

[math] \displaystyle \sum_{k=0}^K a_k y[n-k] = \sum_{l=0}^L b_l x[n-l] [/math]

położymy [math]a_i = 0[/math] poza [math]a_0=1[/math], dostaniemy

[math] \displaystyle y[n] = \sum_{l=0}^L b_l x[n-l] [/math]

W funkcji przejścia mianownik będzie stały i dostaniemy

[math] \displaystyle Y[z]=H[z]X[z]=\left(b_0+b_1 z^{-1}+\dots +b_L z^{-L}\right) X[z] [/math]


a w dziedzienie czasu


[math] \displaystyle y(n) = b_0 *x[n] + b_1 *x[n-1] + \dots + b_L *x[n-L] [/math]


jeśli współczynniki [math]b_i[/math] zapiszemy jako [math]b[i][/math], dostaniemy splot


[math] \displaystyle y(n) = b[0]*x[n] + b[1]*x[n-1] + \dots + b[L]*x[n-L] = b[n]*x[n] [/math]


Taki filtr nazywamy filtrem o skończonej odpowiedzi impulsowej (Finite Impulse Response, FIR), bo odpowiedź na impulsowe wzbudzenie kończy się po [math]L[/math] próbkach. Inna nazwa to średnia biegnąca (Moving Average, MA).


Infinite Impulse Response (IIR) — filtr o nieskończonej odpowiedzi impulsowej

Jeśli w równaniu

[math] \displaystyle \sum_{k=0}^K a_k y[n-k] = \sum_{l=0}^L b_l x[n-l] [/math]

położymy [math]b_i = 0[/math] poza [math]b_0=1[/math], dostaniemy

[math] \displaystyle \sum_{k=0}^K a_k y[n-k] = x[n] [/math]

w funkcji przejścia licznik będzie stały

[math] \displaystyle Y[z]=H[z]X[z]=\frac{1}{a_0+a_1 z^{-1}+\dots +a_{K} z^{-K}}X[z] [/math]


Operacja splotu działa tu na sekwencji wyjściowej:

[math] y[n] = x[n] - a[1]*y[n-1] - \dots - a[n_a]*y[n-n_a] [/math]


Taki filtr ten nazwać można filtrem rekursywnym lub autoregresyjnym (AR).

W praktyce filtry IIR są zwykle implementowane jako połączenie członów AR i MA, czyli:

[math] \begin{array}{ll} y[n] = b[0]*x[n] &+ b[1]*x[n-1] + \dots + b[n_b]*x[n-n_b]\\ &- a[1]*y[n-1] - \dots - a[n_a]*y[n-n_a] \end{array} [/math]

Tę wersję filtru nazywamy filtrem o nieskończonej odpowiedzi impulsowej (Infinite Impulse Response IIR) bo potencjalnie raz wzbudzony może dowolnie długo produkować niezerowe wyjście. Faza filtrowanego sygnału zaburzana jest nieliniowo (nonlinear phase filter)


Liniowe i nieliniowe przesunięcie fazy

Jeśli współczynniki filtra FIR tworzą sekwencję symetryczną bądź antysymetryczną, oparty na nich filtr o skończonej odpowiedzi impulsowej będzie liniowo przesuwał fazę filtrowanego sygnału (linear phase filter) — cały sygnał skutkiem filtrowania jest przesunięty w czasie o ok. połowę długości filtra FIR.

Rzędem filtru nazywamy maksymane opóźnienie w próbkach potrzebne do wytworzenia nowej próbki wyjściowej. Dla filtrów FIR jest on równy liczbie [math]n_b[/math]. Dla filtrów IIR jest to większa z liczb [math]n_a, n_b[/math].


Phase1.png Phase2.png Phase3.png



Stosując transformatę [math]Z[/math] możemy równanie z dziedziny czasu przenieść do dziedziny częstości. Filtrowanie odpowiada przemnożeniu transformaty sygnału przez transformatę funkcji przenoszenia filtru:


[math] \displaystyle Y[z]=H[z]X[z]=\frac{b[0]+b[1]z^{-1}+\dots +b[n_b]z^{-n_b}}{a[0]+a[1]z^{-1}+\dots +a[n_a]z^{-n_a}}X[z][/math]


Występująca tu funkcja [math]H(z)[/math] nosi nazwę transmitancji lub funkcja przenoszenia. Znając funkcję [math]H[/math] łatwo możemy przewidzieć co się stanie z widmem sygnału po przefiltrowaniu. Weźmy [math] z = e^{i\omega}[/math]. Wówczas transmitancja jest funkcją częstości [math]\omega[/math]. Konkretnej częstości [math]\omega_k[/math] przypisuje ona liczbę zespoloną, którą można wyrazić jako [math]A_k e^{i \phi_k}[/math].

[math] \displaystyle Y[e^{i\omega}]=H[e^{i\omega}]X[e^{i\omega}]=\frac{b[0]+b[1]e^{-i\omega}+\dots +b[n_b]e^{-i\omega n_b}}{a[0]+a[1]e^{-i\omega}+\dots +a[n_a]e^{-i\omega n_a}}X[e^{i\omega}] [/math]

W dziedzinie częstości sygnał wyrażony jest przez współczynniki Fourierowskie. Dla konkretnej częstości współczynnik taki [math]X_k = |X_k| e^{i \theta_k}[/math] (liczba zespolona) mówi z jaką amplitudą i jaką fazą exponens zespolony o danej częstości ([math]z_k = e^{i\omega_k}[/math]) wchodzi w skład sygnału.

Działanie filtru na sygnał w dziedzinie częstości polega na przemnożeniu składowej sygnału o częstości [math]f_k[/math] przez liczbę [math]A_k e^{i \phi_k}[/math]:

[math]Y(f_k) = A_k e^{i \phi_k} |X_k| e^{i \theta_k} = A_k |X_k| e^{i ( \phi_k +\theta_k)} e^{i 2\pi f_k} [/math]

W wyniku filtrowania sinusoidalna składowa sygnału o danej częstości może zmienić amplitudę i fazę ale co warto zauważyć nie zmienia częstości. Zera i bieguny filtra to odpowiednio miejsca zerowe licznika i mianownika funkcji przenoszenia.