Analiza sygnałów - ćwiczenia: Różnice pomiędzy wersjami
m |
m |
||
(Nie pokazano 3 pośrednich wersji utworzonych przez tego samego użytkownika) | |||
Linia 1: | Linia 1: | ||
[[Category:Przedmioty specjalizacyjne]] | [[Category:Przedmioty specjalizacyjne]] | ||
− | + | ||
− | + | ||
− | + | ||
+ | Notatnik z kolokwium 25.11.2024: https://colab.research.google.com/drive/1y-eGVPmF8YegZhHZ7HEfahEs_11_IUj8?usp=sharing | ||
+ | |||
<!-- | <!-- | ||
Linia 15: | Linia 17: | ||
[[ZasadyZaliczenia|Zasady zaliczenia ćwiczeń]] | [[ZasadyZaliczenia|Zasady zaliczenia ćwiczeń]] | ||
− | # [https://drive.google.com/file/d/1Cr8CCPoh_G-iAq8x2Bm0YxwAcsrNwqir/view?usp=sharing Sygnały AS_1.ipynb] | + | Zbiór zadań z pythona, które mają na celu pomoc w opanowaniu podstaw Pythona, ze szczególnym naciskiem na rozwinięcie kompetencji potrzebnych w analizie sygnałów, takich jak: pogłębiona znajomość biblioteki numpy, praca z plikami multipleksowanymi, wykorzystanie Pythona jako narzędzia do analizy danych. https://gitlab.com/pbieganski/podstawy-pythona |
+ | |||
+ | |||
+ | [[File:Okladka.jpeg|thumb|upright=0.25| Dostępna w bibliotece]] W bibliotece Wydziału Fizyki dostępne są książki: Practical biomedical signal analysis using Matlab / K. J. Blinowska J. Żygierewicz. (katalog: https://chamo.buw.uw.edu.pl:8443/lib/item?id=chamo:895791&fromLocationLink=false&theme=system) | ||
+ | |||
+ | Dla grupy o 10:15 link do podłączania się: Analiza Sygnałów | ||
+ | https://meet.google.com/inx-rxqe-fku | ||
+ | |||
+ | # [https://drive.google.com/file/d/1Cr8CCPoh_G-iAq8x2Bm0YxwAcsrNwqir/view?usp=sharing Sygnały AS_1.ipynb] [https://drive.google.com/file/d/1J_7pyTO00r-OyhyrMd1v_dAoiIU0C-3k/view?usp=sharing notebook wypełniony] | ||
# [https://colab.research.google.com/drive/1y81wGZHwpUf4J6IIApPdqahgUN9Bad0p?usp=sharing Transformata Fouriera 1 (FFT) AS2_Transformata_fouriera.ipynb] | # [https://colab.research.google.com/drive/1y81wGZHwpUf4J6IIApPdqahgUN9Bad0p?usp=sharing Transformata Fouriera 1 (FFT) AS2_Transformata_fouriera.ipynb] | ||
#[https://colab.research.google.com/drive/18nU5rWKinO697M3Pgnp6luiC-NcBYD-9?usp=sharing Transformata Fouriera 2 AS3_Transformata_fouriera_2.ipynb] | #[https://colab.research.google.com/drive/18nU5rWKinO697M3Pgnp6luiC-NcBYD-9?usp=sharing Transformata Fouriera 2 AS3_Transformata_fouriera_2.ipynb] |
Aktualna wersja na dzień 07:42, 25 lis 2024
Notatnik z kolokwium 25.11.2024: https://colab.research.google.com/drive/1y-eGVPmF8YegZhHZ7HEfahEs_11_IUj8?usp=sharing
Zbiór zadań z pythona, które mają na celu pomoc w opanowaniu podstaw Pythona, ze szczególnym naciskiem na rozwinięcie kompetencji potrzebnych w analizie sygnałów, takich jak: pogłębiona znajomość biblioteki numpy, praca z plikami multipleksowanymi, wykorzystanie Pythona jako narzędzia do analizy danych. https://gitlab.com/pbieganski/podstawy-pythona
W bibliotece Wydziału Fizyki dostępne są książki: Practical biomedical signal analysis using Matlab / K. J. Blinowska J. Żygierewicz. (katalog: https://chamo.buw.uw.edu.pl:8443/lib/item?id=chamo:895791&fromLocationLink=false&theme=system)
Dla grupy o 10:15 link do podłączania się: Analiza Sygnałów https://meet.google.com/inx-rxqe-fku
- Sygnały AS_1.ipynb notebook wypełniony
- Transformata Fouriera 1 (FFT) AS2_Transformata_fouriera.ipynb
- Transformata Fouriera 2 AS3_Transformata_fouriera_2.ipynb
- Okienkowanie AS4_okienkowanie.ipynb
- Estymacja widma mocy AS5_Widmo_mocy.ipynb
- kontynuacja notebook AS5
- Model AR AS6_1_ProcesyAR.ipynb
- Estymacja parametryczna widma procesu AS6_2_Widmo_Procesu_AR.ipynb
- Filtry notebook7
- kontynuacja notebook7
- Metody czas-częstość STFT i falki: notebook8
notebook 10
lektura uzupełniająca: Estimating and Interpreting The Instantaneous Frequency of a Signal-Part 1: Fundamentals
Materiały dodatkowe:
playlista na YouTube z filmami nagranymi w czasie zdalnych ćwiczeń w roku 2020/21
Przed kolokwium 1
autorzy: Jarosław Żygierewicz, Maciej Kamiński, Magdalena Zieleniewska, wersja z notebookami Jan Mąka i Piotr Biegański