
Szereg Fouriera: Różnice pomiędzy wersjami
(Nie pokazano 5 pośrednich wersji utworzonych przez tego samego użytkownika) | |||
Linia 34: | Linia 34: | ||
| znikanie całki <math>\int_0^T e^{i{{2 \pi (k-n)}\over{T}} t}dt </math> | | znikanie całki <math>\int_0^T e^{i{{2 \pi (k-n)}\over{T}} t}dt </math> | ||
|- | |- | ||
− | | | + | |niech <math>m = k-n, m \ne 0, m \in \mathbb N</math> |
<math>\displaystyle \int_0^T e^{i{{2 \pi m t}\over{T}} t}dt = | <math>\displaystyle \int_0^T e^{i{{2 \pi m t}\over{T}} t}dt = | ||
\left[\frac{i T}{2 \pi m} e^{i \frac{2 \pi m t}{T} }\right]_0^T = | \left[\frac{i T}{2 \pi m} e^{i \frac{2 \pi m t}{T} }\right]_0^T = | ||
\frac{i T}{2 \pi m} \big( e^{i 2 \pi m} - 1 \big) = | \frac{i T}{2 \pi m} \big( e^{i 2 \pi m} - 1 \big) = | ||
− | \frac{i T}{2 \pi m} \big( \cos(2 m \pi) - i \sin(2 m \pi) \big) | + | \frac{i T}{2 \pi m} \big( \cos(2 m \pi) - i \sin(2 m \pi) - 1 \big) = \frac{i T}{2 \pi m} \big( 1 - i 0 - 1 \big) = 0 |
</math> | </math> | ||
|} | |} | ||
Linia 59: | Linia 59: | ||
'''Dowód''': | '''Dowód''': | ||
− | <math> | + | <math> \displaystyle |
\frac{1}{T} \int_0^T \left| s(t) \right|^2 d t = \frac{1}{T} \int_0^T s(t) \overline{s(t)} \,d t \; = </math> | \frac{1}{T} \int_0^T \left| s(t) \right|^2 d t = \frac{1}{T} \int_0^T s(t) \overline{s(t)} \,d t \; = </math> | ||
− | <math>\frac{1}{T} \int_0^T \left( \sum_{n=-\infty}^{+\infty} c_n e^{-i\frac{2\pi t}{T} n} \right) | + | <math> \displaystyle |
− | \left( \sum_{m=-\infty}^{+\infty} \overline{c_m} e^{i\frac{2\pi t}{T} m} \right) d t =</math> | + | \frac{1}{T} \int_0^T \left( \sum_{n=-\infty}^{+\infty} c_n e^{-i\frac{2\pi t}{T} n} \right) |
+ | \left( \sum_{m=-\infty}^{+\infty} \overline{c_m} e^{i\frac{2\pi t}{T} m} \right) d t = | ||
+ | </math> | ||
<math> | <math> | ||
− | \left\| \; \int_0^T e^{-i\frac{2\pi t}{T} n} e^{i\frac{2\pi t}{T} m} dt= \int_0^T e^{-i\frac{2\pi t}{T} m-n} dt = \delta_{(m-n)} T \;\right\| | + | \left\| \; \int_0^T e^{-i\frac{2\pi t}{T} n} e^{i\frac{2\pi t}{T} m} dt= \int_0^T e^{-i\frac{2\pi t}{T} m-n} dt = \delta_{(m-n)} T \;\right\|</math> |
− | <math>\sum_{n = -\infty}^{\infty} c_n \overline{c_n} \;\;= \sum_{n = -\infty}^{\infty} |c_n|^2 | + | <math> \displaystyle |
+ | = \sum_{n = -\infty}^{\infty} c_n \overline{c_n} \;\;= \sum_{n = -\infty}^{\infty} |c_n|^2 | ||
</math> | </math> | ||
Linia 112: | Linia 115: | ||
| <strong>Rozwinięcie prostokąta w szereg Fouriera</strong> | | <strong>Rozwinięcie prostokąta w szereg Fouriera</strong> | ||
|- | |- | ||
− | |Policzmy postać współczynników Fouriera dla funkcji <math>\Theta(t)</math> | + | |Policzmy postać współczynników Fouriera dla funkcji <math>\Theta(t)</math>, określonej na przedziale <math>[0,1]</math>: |
<equation id="eq:18"> | <equation id="eq:18"> | ||
Linia 145: | Linia 148: | ||
Tak więc z <xr id="eq:15">wzoru</xr> | Tak więc z <xr id="eq:15">wzoru</xr> | ||
− | <math>\displaystyle | + | <math>\displaystyle |
\Theta(t) = \sum_{-\infty}^{\infty} c_n e^{-i 2 \pi t n} = | \Theta(t) = \sum_{-\infty}^{\infty} c_n e^{-i 2 \pi t n} = | ||
− | \frac{1}{2}\; + \sum_{n=\pm1, \pm3, \ldots} \frac{i}{\pi n} e^{-i 2 \pi t n}= \\ | + | \frac{1}{2}\; + \sum_{n=\pm1, \pm3, \ldots} \frac{i}{\pi n} e^{-i 2 \pi t n}= \\ \displaystyle |
− | = \frac{1}{2}\; + \sum_{n=\pm1, \pm3, \ldots} \frac{i}{\pi n} \left( \cos(2\pi n t) - i \sin( 2\pi n t) \right)=\\ | + | = \frac{1}{2}\; + \sum_{n=\pm1, \pm3, \ldots} \frac{i}{\pi n} \left( \cos(2\pi n t) - i \sin( 2\pi n t) \right)=\\\displaystyle |
= \frac{1}{2}\; + \sum_{n=\pm1, \pm3, \ldots} \frac{i}{\pi n} \cos(2\pi n t)\;\; + \sum_{n=\pm1, \pm3, \ldots} \frac{1}{\pi n} \sin( 2\pi n t) | = \frac{1}{2}\; + \sum_{n=\pm1, \pm3, \ldots} \frac{i}{\pi n} \cos(2\pi n t)\;\; + \sum_{n=\pm1, \pm3, \ldots} \frac{1}{\pi n} \sin( 2\pi n t) | ||
− | + | </math> | |
<br/> | <br/> | ||
Linia 158: | Linia 161: | ||
<equation id="eq:19"> | <equation id="eq:19"> | ||
− | <math> | + | <math>\displaystyle |
\Theta(t) = \frac{1}{2} + \frac{2}{\pi}\sum_{n=1}^{\infty} \frac{\sin\left(2\pi (2n-1) t\right)}{(2n-1)} | \Theta(t) = \frac{1}{2} + \frac{2}{\pi}\sum_{n=1}^{\infty} \frac{\sin\left(2\pi (2n-1) t\right)}{(2n-1)} | ||
</math> | </math> |
Aktualna wersja na dzień 08:24, 11 paź 2024
AS/ Szereg Fouriera
Sygnał okresowy (o okresie [math]T[/math]) można przedstawić w postaci szeregu Fouriera:
gdzie
Dowód: mnożymy obie strony pierwszego równania przez [math]e^\frac{2\pi i k t}{T}[/math] i całkujemy po [math]dt[/math] od [math]0[/math] do [math]T[/math]:
[math] \displaystyle \int_0^T s(t) e^{{{2\pi i k t}\over{T}}} dt = \sum_{n=-\infty}^{+\infty} \int_0^T c_n e^{i{{2 \pi (k-n)}\over{T}} t}dt [/math]
Całki po prawej stronie znikają dla [math]k \ne n[/math].
Rozwińznikanie całki [math]\int_0^T e^{i{{2 \pi (k-n)}\over{T}} t}dt [/math] |
Jedyny niezerowy wyraz dla [math]k = n[/math] wynosi [math]\int_0^T c_n dt[/math], czyli [math]c_n T[/math] (bo [math]e^0=1[/math]), czyli
[math] \displaystyle \int_0^T s(t) e^{{{2\pi i k t}\over{T}}} dt = c_n T [/math]
Oznacza to, że każdą funkcję okresową możemy przedstawić w postaci sumy sinusów i kosinusów ([math]e^{i \phi} = \cos(\phi) + i \sin(\phi)[/math]) z odpowiednimi wagami. Wagi [math]c_n[/math] możemy traktować jako względny udział odpowiadających im częstości.
Tożsamość Parsevala dla szeregów Fouriera
[math] \displaystyle \frac{1}{T} \int_0^T \left| s(t) \right|^2 d t = \sum_{n=-\infty}^{\infty} \left| c_n \right|^2 [/math]
Dowód:
[math] \displaystyle \frac{1}{T} \int_0^T \left| s(t) \right|^2 d t = \frac{1}{T} \int_0^T s(t) \overline{s(t)} \,d t \; = [/math]
[math] \displaystyle \frac{1}{T} \int_0^T \left( \sum_{n=-\infty}^{+\infty} c_n e^{-i\frac{2\pi t}{T} n} \right) \left( \sum_{m=-\infty}^{+\infty} \overline{c_m} e^{i\frac{2\pi t}{T} m} \right) d t = [/math]
[math]
\left\| \; \int_0^T e^{-i\frac{2\pi t}{T} n} e^{i\frac{2\pi t}{T} m} dt= \int_0^T e^{-i\frac{2\pi t}{T} m-n} dt = \delta_{(m-n)} T \;\right\|[/math]
[math] \displaystyle
= \sum_{n = -\infty}^{\infty} c_n \overline{c_n} \;\;= \sum_{n = -\infty}^{\infty} |c_n|^2
[/math]
Energia, moc, widmo
Jeśli sygnałem będzie np. prąd elektryczny, płynący w obwodzie o jednostkowej oporności w czasie od [math]0[/math] do [math]T[/math], to wytracona przez niego energia wyniesie [math]\int_0^T s(t)^2 d t[/math]. Moc to oczywiście energia wytracana w jednostce czasu, czyli [math]\frac{1}{T}\int_{0}^{T} | s(t) |^2 d t[/math]. Jak widać z powyższego twierdzenia, dla sygnałów okresowych możemy ją również obliczać jako sumę kwadratów współczynników szeregu Fouriera [math]\sum c_n^2[/math]. Pozwala to interpretować [math]c_n^2[/math] jako moc, niesioną przez odpowiadającą mu częstość. Wykres tej wielkości w zależności od częstości nazywamy widmem mocy sygnału. Dla sygnału okresowego widmo mocy będzie dyskretne (patrz rysunek 1).
Wszystko to nie tyczy się li tylko sygnałów czysto okresowych; z sygnału nie-okresowego [math]s(t)[/math], określonego na skończonym przedziale [math][0, T][/math], możemy utworzyć sygnał okresowy [math]s_T(t)[/math]:
tożsamy z [math]s(t)[/math] w przedziale [math][0, T][/math], który można już przedstawić w postaci sumy 1.
RozwińRozwinięcie prostokąta w szereg Fouriera |
