WnioskowanieStatystyczne/Twierdzenie Bayesa: Różnice pomiędzy wersjami
Linia 138: | Linia 138: | ||
Ponieważ <math>P(HIV|+) + P(\overline{HIV}|+) = 1</math>, dostajemy <math>P(\overline{HIV}|+) | Ponieważ <math>P(HIV|+) + P(\overline{HIV}|+) = 1</math>, dostajemy <math>P(\overline{HIV}|+) | ||
\approx 0.455</math>, czyli ok. 45% | \approx 0.455</math>, czyli ok. 45% | ||
+ | |||
+ | |||
+ | ===Referencja=== | ||
+ | Polecam doskonały tekst Giuglio D'Agostini z 1995 roku pt. "Probability and Measurement Uncertainty in Physics - a Bayesian Primer", dostępny z | ||
+ | https://arxiv.org/abs/hep-ph/9512295 |
Wersja z 15:11, 2 cze 2016
Wnioskowanie_Statystyczne_-_wykład
Twierdzenie Bayesa
Twierdzenie Bayesa można wyprowadzić z elementarnych reguł prawdopodobieństwa, wychodząc z definicji prawdopodobieństwa warunkowego. Ponieważ interesuje nas głównie weryfikacja hipotez statystycznych, przekształćmy ten wzór, wstawiając od razu zamiast zdarzeń [math]A[/math] i [math]B[/math] hipotezę [math]H[/math] i dane [math]D[/math]. Wtedy [math]P(D\mid H)[/math] będzie prawdopodobieństwem "wylosowania danych [math]D[/math] pod warunkiem, że prawdziwa jest hipoteza [math]H[/math]":
Analogicznie
[math] P(H\mid D) = \frac{P(H\cap D)}{P(D)} \Longrightarrow P(H\cap D)=P(H\mid D) P(D). [/math]
Tak naprawdę interesuje nas prawdopodobieństwo prawdziwości hipotezy [math]H[/math] w świetle zdarzenia opisanego obserwowanymi danymi [math]D[/math]. Ponieważ [math]P(D\cap H)=P(H\cap D)[/math], czyli [math]P(D\mid H) P(H) = P(H\mid D) P(D)[/math], dostajemy
Prawdopodobieństwo [math]P(D)[/math] uzyskania w doświadczeniu danych [math]D[/math] trudno ocenić bezpośrednio, jeśli nie wiemy, czy prawdziwa jest odnosząca się do nich hipoteza [math]H[/math]. W tej sytuacji należy wziąć pod uwagę wszystkie możliwe hipotezy [math]H_i[/math], tworzące kompletny, czyli pokrywający całą przestrzeń [math]\Omega[/math]: [math]\sum_i H_i=\Omega[/math] zbiór hipotez [math]H_i[/math] wykluczających się wzajemnie [math]\left( P(H_i\cap H_j\right)=0[/math]. Wtedy
[math] P(D)=P(D\cap\Omega)=\sum_i P(D\cap H_i). [/math]
Korzystając z (1) dostajemy
[math] P(D)=\sum_i P(D\mid H_i) P(H_i). [/math]
Wstawiając tę zależność do (2), i podstawiając za [math]H[/math] jedną z możliwych [math]H_i[/math], dostajemy wzór wyrażający twierdzenie Bayesa:
[math] P(H_i\mid D)=\frac{P(D\mid H_i)P(H_i)}{\sum_j P(D\mid H_j)P(H_j)}. [/math]
Prawdopodobieństwo hipotezy [math]H_i[/math] wyrażone jest przez:
- prawdopodobieństwo uzyskania w jej świetle danych [math]D[/math], czyli [math]P(D\mid H_i)[/math]
- stopień naszego zaufania do hipotezy [math]H_i[/math] (niezależny od eksperymentu, w którym uzyskaliśmy dane [math]D[/math]), czyli [math]P(H_i)[/math]
- całkowite prawdopodobieństwo uzyskania danych [math]D[/math] w świetle wszystkich możliwych hipotez [math]H_j[/math], czyli [math]\sum_j P(D\mid H_j)P(H_j)[/math]
Najbardziej bulwersujące jest tu [math]P(H_i)[/math], wyrażające naszą wiarę w hipotezę [math]H_i[/math] niezależną od danych [math]D[/math]. Wielkość tę określa się mianem prawdopodobieństwa "a priori" , lub jak proponuje R. Nowak, "prawdopodobieństwem zaczątkowym" lub "zaczątkiem" . Dla odróżnienia od (szukanego) prawdopodobieństwa [math]P(H)[/math] oznaczmy zaczątek jako [math]P_0[/math]; wzór Bayesa przyjmie wtedy postać
Jeśli nie dysponujemy informacją o kompletnym zbiorze hipotez [math]H_i[/math], możemy badać stosunek prawdopodobieństw dwóch hipotez [math]H_1[/math] i [math]H_2[/math]:
Poniższy przykład (zaczerpnięty z raportu D'Agostiniego Bayesian Reasoning in High Energy Physics - Principles and Applications) ilustruje wykorzystanie twierdzenia Bayesa.
Przykład
Przypadkowo wybrany z populacji (w której na 60 milionów jest około stu tysięcy nosicieli wirusa) obywatel poddany jest testowi na obecność wirusa HIV. Użyty test wykrywa niemal 100% przypadków zakażenia, i daje około 0,2% „fałszywych alarmów”. Jakie jest prawdopodobieństwo, że badany obywatel jest nosicielem wirusa, jeśli test dał wynik pozytywny?
Na pierwszy rzut oka wydaje się, że skoro test wykrywa wirusa fałszywie tylko w dwu
przypadkach na tysiąc, to szukane prawdopodobieństwo wynosi 1-0,2%[math]\approx[/math] 99.8%. Jednakże, jeśli wziąć pod uwagę prawdopodobieństwo a priori (zaczątek) wynoszące 100 000/60 000 000 [math]\approx[/math] 2% otrzymamy wartość bliską 50%!
Na początek wyobraźmy sobie wynik tego testu na całej populacji: będzie on pozytywny dla stu tysięcy zarażonych i dla 0,2% pozostałych, czyli w sumie 220 tysięcy. Wśród nich faktycznych nosicieli będzie tylko sto tysięcy, pozostali będą ofiarami błędu testu. Prawdopodobieństwo, że jesteśmy nosicielem, jeśli znaleźliśmy się w tej grupie, jest równe [math]\frac{100 000}{220000}\approx[/math] 45% (a nie 99,8%!).
Formalnie możemy dowieść tego wyniku korzystając z (2) i (4). Oznaczmy:
- [math]P(+)[/math] --- prawdopodobieństwo pozytywnego wyniku testu,
- [math]P(HIV)[/math] --- prawdopodobieństwo, że badany jest nosicielem (zaczątek),
- [math]P(\overline{HIV})[/math] --- prawdopodobieństwo, że badany nie jest nosicielem (również zaczątek).
Z opisu przykładu dostaniemy:
[math]P(+|HIV)\approx 1[/math],
[math]P(+|\overline{HIV})=0,002[/math],
[math]P(HIV)= \frac{100 000}{60 000 000} = \frac{1}{600}[/math]
[math]P(\overline{HIV}) \approx 1[/math].
Szukamy [math]P(HIV|+)[/math]:
[math]\begin{matrix} P(HIV|+)& =& \frac{P(+|HIV)P(HIV)}{P(+)}\\ P(\overline{HIV}|+)& = &\frac{P(+|\overline{HIV})P(\overline{HIV})}{P(+)}\\ \frac{P(HIV|+)}{P(\overline{HIV}|+)}&=&\frac{P(+|HIV)P(HIV)}{P(+|\overline{HIV})P(\overline{HIV})} = \frac{1 \cdot \frac{1}{600}}{0,002 \cdot 1} = \frac{1}{1,2}. \end{matrix}[/math]
Ponieważ [math]P(HIV|+) + P(\overline{HIV}|+) = 1[/math], dostajemy [math]P(\overline{HIV}|+) \approx 0.455[/math], czyli ok. 45%
Referencja
Polecam doskonały tekst Giuglio D'Agostini z 1995 roku pt. "Probability and Measurement Uncertainty in Physics - a Bayesian Primer", dostępny z https://arxiv.org/abs/hep-ph/9512295