Ćwiczenia 4: Różnice pomiędzy wersjami

Z Brain-wiki
Linia 41: Linia 41:
 
-->
 
-->
  
Dla sygnałów <math>x(t)</math> i <math>y(t)</math> sensowne jest rozszerzenie tych pojęć na wzajemne przesunięcia czasowe <math>\tau </math>:
+
Dla sygnału  <math>x(t)</math> możemy badać jak jest on do siebie podobny dla przesunięciaczasowego <math>\tau </math>:
  
::<math>\sigma _{xy}(\tau ) = \int {x(t) y(t+\tau ) dt} </math>
+
::<math>\sigma _{xx}(\tau ) = \int {x(t) x(t+\tau ) dt} </math>
a szczególnym przypadkiem jest funkcja autokorelacji.
 
Zwróćmy uwagę na związek funkcji korelacji ze splotem.
 
 
 
Implementacja w Pythonie: [http://docs.scipy.org/doc/numpy/reference/generated/numpy.correlate.html numpy.correlate]
 
  
 +
Zwróćmy uwagę na związek funkcji korelacji:
 +
* z iloczynem skalarnym wektorów <math>x(t)</math> i jego przesuniętej wersji <math>x(t +\tau)</math>
 +
* ze splotem.
  
 
Dla skończonych dyskretnych sygnałów mamy estymatory korelacji:
 
Dla skończonych dyskretnych sygnałów mamy estymatory korelacji:
 +
::<math>R_{xx}(m) = E\lbrace x_{n+m}x^*_n \rbrace  = E\lbrace x_{n}x^*_{n-m} \rbrace </math>
  
::<math>R_{xy}(m) = E\lbrace x_{n+m}y^*_n \rbrace  = E\lbrace x_{n}y^*_{n-m} \rbrace </math>
+
oraz kowariancji:
 
+
::<math>C_{xx}(m) = E\lbrace (x_{n+m}-\bar{x}) (x_n-\bar{y})^*\rbrace  = R_{xx}(m) - \bar{x} \bar{x}^*</math>
kowariancji:
 
 
 
::<math>C_{xy}(m) = E\lbrace (x_{n+m}-\bar{x}) (y_n-\bar{y})^*\rbrace  = R_{xy}(m) - \bar{x} \bar{y}^*</math>
 
  
 
Funkcję <math>R</math> można estymować z jednej realizacji procesu (zakładamy jego ergodyczność):
 
Funkcję <math>R</math> można estymować z jednej realizacji procesu (zakładamy jego ergodyczność):
::<math> \widehat{R}_{xy}(m) = \left\lbrace  
+
::<math> \widehat{R}_{xx}(m) = \left\lbrace  
 
\begin{array}{ll}
 
\begin{array}{ll}
\sum _{n=0}^{N-m-1}{x_{n+m} y_n^*} & m \ge 0 \\
+
\sum _{n=0}^{N-m-1}{x_{n+m} x_n^*} & m \ge 0 \\
\widehat{R}_{yx}^*(-m) & m < 0
+
\widehat{R}_{xx}^*(-m) & m < 0
 
\end{array} \right.</math>
 
\end{array} \right.</math>
 +
 +
===Zadanie: Jak obliczyć funkcję autokorelacji?===
 +
W pythonie mamy wydajną implementację funkcji autokorelacji (tak naprawdę to funkcji korelacji wzajemnej, której szczególnym przypadkiem jest autokorelacja)
 +
w: [http://docs.scipy.org/doc/numpy/reference/generated/numpy.correlate.html numpy.correlate]
  
 
===Badanie zależności między sygnałami przy pomocy funkcji korelacji===  
 
===Badanie zależności między sygnałami przy pomocy funkcji korelacji===  

Wersja z 14:02, 21 lis 2016

Analiza_sygnałów_-_ćwiczenia/AR_1


Funkcja autokorelacji

Dla sygnału [math]x(t)[/math] możemy badać jak jest on do siebie podobny dla przesunięciaczasowego [math]\tau [/math]:

[math]\sigma _{xx}(\tau ) = \int {x(t) x(t+\tau ) dt} [/math]

Zwróćmy uwagę na związek funkcji korelacji:

  • z iloczynem skalarnym wektorów [math]x(t)[/math] i jego przesuniętej wersji [math]x(t +\tau)[/math]
  • ze splotem.

Dla skończonych dyskretnych sygnałów mamy estymatory korelacji:

[math]R_{xx}(m) = E\lbrace x_{n+m}x^*_n \rbrace = E\lbrace x_{n}x^*_{n-m} \rbrace [/math]

oraz kowariancji:

[math]C_{xx}(m) = E\lbrace (x_{n+m}-\bar{x}) (x_n-\bar{y})^*\rbrace = R_{xx}(m) - \bar{x} \bar{x}^*[/math]

Funkcję [math]R[/math] można estymować z jednej realizacji procesu (zakładamy jego ergodyczność):

[math] \widehat{R}_{xx}(m) = \left\lbrace \begin{array}{ll} \sum _{n=0}^{N-m-1}{x_{n+m} x_n^*} & m \ge 0 \\ \widehat{R}_{xx}^*(-m) & m \lt 0 \end{array} \right.[/math]

Zadanie: Jak obliczyć funkcję autokorelacji?

W pythonie mamy wydajną implementację funkcji autokorelacji (tak naprawdę to funkcji korelacji wzajemnej, której szczególnym przypadkiem jest autokorelacja) w: numpy.correlate

Badanie zależności między sygnałami przy pomocy funkcji korelacji

def gabor(t0=0.5, sigma = 0.1, f = 10, T = 1, Fs = 128, phi =0 ): 
	dt = 1.0/Fs
	t = np.arange(0,T,dt)
	s = np.exp( -0.5*((t-t0)/sigma)**2 )*np.cos(2*np.pi*f*t + phi)
	return (s,t)
  1. wygeneruj dwa sygnały długości [math]T=2s[/math] próbkowane z częstością [math]f_s=128[/math] Hz przy uzyciu funkcji gabor. Oba gabory mają częstość [math]f=10[/math] Hz i [math]\sigma =0.1[/math] s. Oba sygnały s1 i s2 są centrowane na [math]t_0=0.5[/math] s
  2. oblicz funkcję korelacji wzajemnej z = np.correlate(s1,s2,mode='full')
  3. Jaka jest długość sygnału z?
  4. Wykreśl w funkcji odpowiednich skal czasu na dwóch subplotach: na górnym sygnały s1 i s2 a na dolnym z.
  5. Zaobserwuj położenie maksimum funkcji korelacji wzajemnej. Jaki jest związek oscylacji w funkcji korelacji wzajemnej z oscylacjami funkcji s1 i s2

Wskazówka: Związek między czasem t dla sygnałów s1 i s2 a skalą czasu dla korelacji f_corr_t można zapisać w Pythonie:

f_corr_t = np.zeros(2*len(t)-1)
f_corr_t[0:len(t)]= -t[len(t)::-1]
f_corr_t[len(t):]=t[1:]


  • Powtórz punkty 1-5 zmieniając położenie sygnału s1 od 0.5 do 0.1 z krokiem 0.1, oraz sygnału s2 od 0.5 do 0.9 z krokiem 0.1. Zaobserwuj związek między położeniem maksimum funkcji korelacji wzajemnej a odległością między centrami gaborów.


  • Wykonaj analogiczne iteracje zachowując stałe położenie gaborów (dla obu t0 = 0.5 zmieniaj natomiast częstość s2 [math]f[/math] od 10 Hz do 16 Hz co 2 Hz. Wymuś stały zakres osi y na -100:100(funkcja pylab.ylim((-100,100)))
*

Analiza_sygnałów_-_ćwiczenia/AR_1