WnioskowanieStatystyczne/Bonferroni: Różnice pomiędzy wersjami

Z Brain-wiki
Linia 6: Linia 6:
 
Przyjęcie poziomu istotności (<math>\alpha</math>) na poziomie 5 procent oznacza, że średnio w jednym na dwadzieścia przypadków możemy odrzucić prawdziwą hipotezę, czyli popełnić '''błąd I rodzaju''' (false positive).  
 
Przyjęcie poziomu istotności (<math>\alpha</math>) na poziomie 5 procent oznacza, że średnio w jednym na dwadzieścia przypadków możemy odrzucić prawdziwą hipotezę, czyli popełnić '''błąd I rodzaju''' (false positive).  
  
Dla kompletności przypomnijmy, że błąd II rodzaju polega na przyjęciu hipotezy fałszywej (false negative) i jestzwiązany z poziomem istotności testu.
+
Dla kompletności przypomnijmy, że '''błąd II rodzaju''' polega na przyjęciu hipotezy fałszywej (false negative) i jest związany z poziomem istotności testu.
  
 +
 +
{| class="wikitable"
 +
|-
 +
! rowspan="2" colspan="2" |
 +
! colspan="2" | hipoteza ''H''<sub>0</sub>
 +
|-
 +
! Prawdziwa
 +
! Fałszywa
 +
|-
 +
! rowspan="2" | decyzja
 +
! Odrzuć
 +
| style="text-align:center;"| Błąd typu &nbsp;I (False Positive)
 +
| style="text-align:center;"| poprawna (True Positive)
 +
|-
 +
! Przyjmij
 +
| style="text-align:center;"| poprawna (True Negative)
 +
| style="text-align:center;"| Błąd typu&nbsp;II (False Negative)
 +
|}
  
  
 
[[Plik:wh_moc.png|thumb|center|600px|<figure id="fig:101"></figure>Linią przerywaną jest oznaczony rozkład jednej z możliwych hipotez
 
[[Plik:wh_moc.png|thumb|center|600px|<figure id="fig:101"></figure>Linią przerywaną jest oznaczony rozkład jednej z możliwych hipotez
 
alternatywnych.
 
alternatywnych.
Na górnym wykresie zacieniowany obszar (o polu <math>\beta</math> odpowiada prawdopodobieństwu błędnej akceptacji hipotezy alternatywnej (błąd II rodzaju, false nagative). Na dolnym zacieniowany obszar odpowiada prawdopodobieństwu odrzucenia hipotezy alternatywnej, czyli '''mocy testu''' (<math>1-\beta</math>) względem tej konkretnej hipotezy alternatywnej.]]
+
Na górnym wykresie zacieniowany obszar (o polu <math>\beta</math>) odpowiada prawdopodobieństwu błędnej akceptacji hipotezy alternatywnej (błąd II rodzaju, false nagative). Na dolnym zacieniowany obszar odpowiada prawdopodobieństwu odrzucenia hipotezy alternatywnej, czyli '''mocy testu''' (<math>1-\beta</math>) względem tej konkretnej hipotezy alternatywnej.]]
  
  
Linia 21: Linia 39:
  
 
por. http://en.wikipedia.org/wiki/Data_dredging zwane też <math>p</math>-hacking.
 
por. http://en.wikipedia.org/wiki/Data_dredging zwane też <math>p</math>-hacking.
 
  
 
===Evaluation of measurement data — Guide to the expression of uncertainty in measurement===
 
===Evaluation of measurement data — Guide to the expression of uncertainty in measurement===

Wersja z 17:29, 4 maj 2017

Wielokrotne porównania

[math]N[/math] obserwacji podzielonych na 7 grup. Testujemy hipotezę, że średnie tych grup są równe -- czyli niejako przyporządkowanie do grup jest przypadkowe. Możemy wykonać [math]\binom{7}{2}=21[/math] testów różnic między grupami. Jeśli przyjmiemy poziom istotności 0.05, mamy dużą szansę na dokonanie fałszywego odkrycia. Dlaczego?

Błędy I i II rodzaju

Przyjęcie poziomu istotności ([math]\alpha[/math]) na poziomie 5 procent oznacza, że średnio w jednym na dwadzieścia przypadków możemy odrzucić prawdziwą hipotezę, czyli popełnić błąd I rodzaju (false positive).

Dla kompletności przypomnijmy, że błąd II rodzaju polega na przyjęciu hipotezy fałszywej (false negative) i jest związany z poziomem istotności testu.


hipoteza H0
Prawdziwa Fałszywa
decyzja Odrzuć Błąd typu  I (False Positive) poprawna (True Positive)
Przyjmij poprawna (True Negative) Błąd typu II (False Negative)


Linią przerywaną jest oznaczony rozkład jednej z możliwych hipotez alternatywnych. Na górnym wykresie zacieniowany obszar (o polu [math]\beta[/math]) odpowiada prawdopodobieństwu błędnej akceptacji hipotezy alternatywnej (błąd II rodzaju, false nagative). Na dolnym zacieniowany obszar odpowiada prawdopodobieństwu odrzucenia hipotezy alternatywnej, czyli mocy testu ([math]1-\beta[/math]) względem tej konkretnej hipotezy alternatywnej.


Problem wielokrotnych porównań (ang. multiple comparisons) pojawia się w eksploracyjnej (w odróżnieniu od konfirmacyjnej) analizie danych, kiedy np. nie wiemy gdzie oczekiwać różnic.

Korekcja Bonferroniego polega na podzieleniu poziomu istotności przez liczbę porównań. Jest mocno konserwatywna.


por. http://en.wikipedia.org/wiki/Data_dredging zwane też [math]p[/math]-hacking.

Evaluation of measurement data — Guide to the expression of uncertainty in measurement

JCGM 100:2008 GUM 1995 with minor corrections http://www.iso.org/sites/JCGM/GUM-JCGM100.htm


3.4.8 Although this Guide provides a framework for assessing uncertainty, it cannot substitute for critical thinking, intellectual honesty and professional skill. The evaluation of uncertainty is neither a routine task nor a purely mathematical one; it depends on detailed knowledge of the nature of the measurand and of the measurement. The quality and utility of the uncertainty quoted for the result of a measurement therefore ultimately depend on the understanding, critical analysis, and integrity of those who contribute to the assignment of its value.