Funkcja systemu: Różnice pomiędzy wersjami

Z Brain-wiki
Linia 152: Linia 152:
  
 
gdzie <math>\sigma^2</math> to wariancja nieskorelowanego szumu <math>\epsilon</math>, którego widmo jest płaskie (nie zależy od częstości)
 
gdzie <math>\sigma^2</math> to wariancja nieskorelowanego szumu <math>\epsilon</math>, którego widmo jest płaskie (nie zależy od częstości)
 
==Funkcja systemu==
 
 
Zastosujmy do obu stron powyższego równania transformatę <math>\mathcal{Z}</math>:
 
 
 
:<math>
 
\mathcal{Z}\left\{\sum_{k=0}^K a_k y[n-k] \right\}  = \mathcal{Z}\left\{ \sum_{l=0}^L b_l x[n-l] \right\}
 
</math>
 
 
 
:<math>
 
\sum_{k=0}^K a_k \mathcal{Z}\left\{ y[n-k]\right\} = \sum_{l=0}^L b_l \mathcal{Z} \left\{x[n-l]\right\}
 
</math>
 
 
 
:<math>
 
\sum_{k=0}^K a_k z^{-k} Y(z) = \sum_{l=0}^L b_l z^{-l} X(z)
 
</math>
 
 
 
:<math>
 
Y(z) \sum_{k=0}^K a_k z^{-k} = X(z) \sum_{l=0}^L b_l z^{-l}
 
</math>
 
 
 
Dla systemu przyczynowego dostajemy:
 
 
 
:<math>
 
\frac{Y(z)}{X(z)} \equiv H(z) = \frac{\sum_{l=0}^L b_l z^{-l}}{\sum_{k=0}^K a_k z^{-k}}
 
</math>
 
 
<!--
 
lub
 
 
:<math>
 
H(z) = \mathrm{const} \frac  {\prod_{l=0}^L \left(1-\frac{d_l}{z}\right) }      {\prod_{k=0}^K \left(1-\frac{c_k}{z}\right) } .
 
</math>
 
 
-->
 
 
<math>H(z)</math> &mdash; funkcja systemu ''(system function)'' pozwala spójnie przedstawić działanie filtra  LTI na sygnał <math>x</math> w przestrzeni transformaty <math>\mathcal{Z}</math>:
 
 
 
:<math>Y(z)=H(z) X(z)</math>
 
  
 
==Wielozmienny model AR==
 
==Wielozmienny model AR==

Wersja z 12:08, 2 lis 2023

AS/ Transformata Z, funkcja systemu i widmo AR

Transformata Z

Jednostronna transformata [math]\mathcal{Z}[/math] ciągu liczb [math]x[n][/math] definiowana jest jako funkcja zmiennej [math]z[/math] będąca sumą szeregu

[math] \displaystyle \mathcal{Z}\{x[n]\} = X(z)= \sum_{n=0}^{\infty} x[n] z^{-n} [/math]

czyli np. [math] \mathcal{Z}\{(2, 7, 3)\} = 2 z + 7 z^{-1} + 3 z^{-2} [/math]


Dla [math]z=e^{i \omega}[/math] dostajemy Dyskretną Transformatę Fouriera.

[math] \displaystyle X(z=e^{i \omega})= \sum_{n=0}^{\infty} x[n] e^{- i \omega n} [/math]


Transformata [math]\mathcal{Z}[/math] jest liniowa

[math] \displaystyle \mathcal{Z}\lbrace a x[n] + b y[n]\rbrace =a X[z] + b Y[z] [/math]


a dla przesunięcia w czasie

[math] \displaystyle \mathcal{Z}\lbrace x[n-k]\rbrace = z^{-k}X(z) [/math]


Dowód:

[math] \displaystyle \mathcal{Z}\lbrace x[n-k]\rbrace = \sum_{n=0}^{\infty} x[n-k] z^{-n} \;\; \stackrel{ j \rightarrow n-k }{=} \;\; \sum_{j=-k}^{\infty} x[j] z^{-(j+k)} = [/math]
[math] \displaystyle = \sum_{j=-k}^{\infty} x[j] z^{-j} z^{-k} = z^{-k} \sum_{j=-k}^{\infty} x[j] z^{-j} [/math]


dla systemów przyczynowych [math]x[j][/math] są niezerowe dla [math]j\gt 0[/math] (por. LTI/Splot i przyczynowość) więc

[math]\mathcal{Z}\lbrace x[n-k]\rbrace = z^{-k} \sum_{j=0}^{\infty} x[j] z^{-j}[/math]


Niech [math]x[n]=x_1[n]*x_2[n][/math]; wtedy transformata [math]\mathcal{Z}[/math] splotu to iloczyn transformat [math]\mathcal{Z}[/math]:

[math] \mathcal{Z}\{x[n]\} = X(z) = \mathcal{Z}\{x_1[n]\} \mathcal{Z}\{x_2[n]\} = X_1(z) X_2(z) [/math]

Dowód:

[math] \displaystyle \mathcal{Z}\{x_1(n)*x_2(n)\} = X(z) = [/math]
[math] \displaystyle \sum_{n=-\infty}^\infty\left[\sum_{k = -\infty}^\infty x_1(k)x_2(n-k)\right]z^{-n}[/math]
[math]= \displaystyle \sum_{k = -\infty}^\infty x_1(k)\left[\sum_{n=-\infty}^\infty x_2(n-k)z^{-n}\right][/math]
[math]= \displaystyle \sum_{k = -\infty}^\infty x_1(k)\left[\sum_{n = -\infty}^\infty x_2(n-k)z^{-(n-k)}z^{-k}\right] [/math]


niech [math]n-k = l[/math]
[math] \displaystyle X(z) = \sum_{k = -\infty}^\infty x_1(k)\left[z^{-k}\sum_{l=-\infty}^\infty x_2(l)z^{-l}\right][/math]
[math]= \displaystyle \sum_{k = -\infty}^\infty x_1(k) z^{-k} X_2(z)[/math]
[math]= \displaystyle X_1(z) X_2(z) [/math]

Widmo procesu AR

Proces AR o znanych współczynnikach [math]a_i[/math]

[math] \displaystyle x[n] = \sum_{i=1}^M a_i x[n-i] + \epsilon[n] [/math]

kładąc [math] a_0 = 1[/math] możemy zapisać jako

[math] \displaystyle \sum_{i=0}^M a_i x[n-i] = \epsilon[n] [/math]

biorąc transformatę Z obu stron

[math] \displaystyle \mathcal{Z}\left\{\sum_{i=0}^M a_i x[n-i] \right\} = \mathcal{Z}\left\{ \epsilon[n] \right\} [/math]


dostajemy

[math] A(z) X(z) = E(z) [/math]

[math] X(z) = \dfrac{E(z)}{A(z)} [/math]


oznaczając

[math]\displaystyle H(z) \stackrel{def}{=} A^{-1}(z) = \dfrac{1}{\sum a_i z^{-i}}[/math]

dostajemy

[math] X(z) = H(z) E(z) = \dfrac{E(z)}{a_0 + a_1 z^{-1} + a_2 z^{-2} + \ldots} [/math]


podstawiając [math]z=e^{i\omega t}[/math] przechodzimy z transformaty [math]\mathcal{Z}[/math] do transformaty Fouriera [math]\mathcal{F}(x) = \hat{x}(\omega)[/math]


[math] \hat{x}(\omega) = H(\omega) E(\omega) [/math]


widmo to kwadrat modułu transformaty Fouriera

[math] \displaystyle \left| \hat{x}(\omega) \right| ^2 = \left| H(\omega) E(\omega) \right|^2 = \left| H(\omega) \right|^2 \sigma^2 = \dfrac{\sigma^2}{\left| {A(e^{-i\omega n})} \right|^2} = \dfrac{\sigma^2}{\left|a_0 + a_1 e^{-i\omega} + a_2 e^{- 2 i\omega}\right|^2} [/math]

gdzie [math]\sigma^2[/math] to wariancja nieskorelowanego szumu [math]\epsilon[/math], którego widmo jest płaskie (nie zależy od częstości)

Wielozmienny model AR

Model AR opisuje wartość sygnału w chwili [math]t[/math] jako kombinację liniową jego wartości w chwilach poprzednich (oraz szumu). W przypadku wielowymiarowym możemy włączyć do tego opisu wartości wszystkich sygnałów [math]s_i[/math], czyli wektora [math]\vec{s}(t)[/math]. Wielozmienny model AR (MVAR, multivariate autoregressive) można wówczas opisać wzorem:

[math] \vec{s}(t)=\sum_{i=1}^p A(i) \vec{s}(t-i) + \vec{\epsilon}(t) , [/math]

gdzie [math]\vec{\epsilon}(t)[/math] będzie wektorem szumów, zaś [math]A(i)[/math] będą macierzami współczynników modelu. Przechodząc do przestrzeni częstości otrzymamy:

[math] \vec{s}(\omega)=A^{-1}(\omega)\vec{\epsilon}(\omega)=H(\omega)\vec{\epsilon}(\omega), [/math]

gdzie [math]H(\omega)[/math] jest macierzą przejścia. MVAR jest modelem typu "czarna skrzynka", gdzie na wejściu występują szumy, na wyjściu sygnały, a system jest opisany przez macierz przejścia. Zawiera on informacje o własnościach widmowych sygnałów i związkach między nimi.

Na podstawie macierzy [math]H(\omega)[/math] można obliczyć macierz gęstości widmowej zawierającą widma mocy dla pojedynczych kanałów jak również funkcje wzajemnej gęstości mocy pomiędzy kanałami. Stosując tego typu podejście, w którym wszystkie sygnały generowane przez pewien proces są rozpatrywane jednocześnie, można policzyć z macierzy spektralnej nie tylko koherencje zwykłe pomiędzy dwoma kanałami, ale również koherencje wielorakie opisujące związek danego kanału z pozostałymi i koherencje cząstkowe opisujące bezpośrednie związki między dwoma kanałami po usunięciu wpływu pozostałych kanałów. W przypadku gdy pewien kanał 1 będzie wpływał na kanały 2 i 3, obliczając koherencję zwykłą znajdziemy związek między 2 oraz 3, chociaż nie są one ze sobą bezpośrednio powiązane, natomiast koherencja cząstkowa nie wykaże związku między nimi.

Macierz [math]H(\omega)[/math] jest niesymetryczna, a jej wyrazy pozadiagonalne mają sens przyczynowości Grangera, co oznacza, że uwzględnienie wcześniejszej informacji zawartej w jednym z sygnałów zmniejsza błąd predykcji drugiego sygnału. Opierając się na tej własności zdefiniowano Kierunkową Funkcję Przejścia (DTF, directed transfer function) jako znormalizowany element pozadiagonalny [math]H(\omega)[/math]. DTF opisuje kierunek propagacji i skład widmowy rozchodzących się sygnałów.

Otrzymamy w ten sposób całościowy opis zmian wszystkich sygnałów jednocześnie. Co ciekawe, obliczona na tej podstawie funkcja charakteryzująca zależności między sygnałami [math]s_i[/math] (funkcja przejścia) nie jest symetryczna, w przeciwieństwie do np. korelacji. Dzięki temu może służyć wnioskowaniu nie tylko o sile zależności między poszczególnymi sygnałami składowymi, ale też o kierunku przepływu informacji między nimi. W przybliżeniu odpowiada to informacji, w którym z sygnałów struktury odpowiadające danej częstości pojawiają się wcześniej.