Wstep: Różnice pomiędzy wersjami
Linia 1: | Linia 1: | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
==Sygnały ciągłe i dyskretne== | ==Sygnały ciągłe i dyskretne== | ||
Wersja z 16:51, 25 lip 2024
Sygnały ciągłe i dyskretne
Wartości akcji w chwilach zamknięcia kolejnych sesji giełdy tworzą sygnał z natury dyskretny. Jednak w przyrodzie większość stanowią sygnały ciągłe, jak dźwięk (zmiany ciśnienia powietrza w czasie) czy elektroencefalogram (EEG, potencjał elektryczny mózgu mierzony z powierzchni czaszki). Niezależnie od tego, współczesna analiza sygnałów odnosi się w praktyce głównie do sygnałów dyskretnych. "Winne" są oczywiście komputery, urządzenia z natury cyfrowe, czyli "rozumiejące" wyłącznie dyskretne wartości. Zastanówmy się nad wynikającymi stąd korzyściami i stratami.
Jeśli sygnał z natury ciągły (np. dźwięk) zdecydujemy się analizować lub przechowywać w formie cyfrowej, to ciągłą funkcję (np. ciśnienia powietrza) w czasie musimy zastąpić jej wartościami zmierzonymi w określonych (najlepiej jednakowych) odstępach czasu, jak na rys. %i 1.
Przy przejściu z reprezentacji ciągłej (rys. %i 1 a) do dyskretnej (b) tracimy informację o wartościach sygnału pomiędzy próbkami, a naiwne próby ich rekonstrukcji (c i d) znacznie odbiegają od oryginału (a).
Pomimo tego, cyfrowy zapis dźwięku (płyty CD)
zastąpił całkowicie
analogowe "czarne płyty" z winylu — dlaczego?
[1]
- Po pierwsze, przy pewnych dodatkowych założeniach o sygnale ciągłym [math]s(t)[/math], możliwe jest jego dokładne odtworzenie z dyskretnej sekwencji próbek, jeśli odstęp próbkowania [math]\Delta t[/math] dobrano odpowiednio dla danego sygnału. Mówi o tym twierdzenie Nyquista.
- Po drugie, zapis cyfrowy umożliwia korekcję błędów.
Zapis cyfrowy i korekcja błędów
Aby zrozumieć, dlaczego łatwość korekcji błędów związana jest z zapisem cyfrowym, przyjrzyjmy się bliżej analogowym i cyfrowym zapisom dźwięku. Na płycie analogowej dźwięk kodowany jest w zmiennym wyżłobieniu rowka, w którym przemieszcza się igła gramofonu. W przybliżeniu możemy wyobrazić sobie, że "podskok" igły w większym wgłębieniu rowka odwzorowywany jest jako większe wychylenie membrany głośnika (po zamianie w impuls elektryczny i przejściu przez wzmacniacz). Tak więc wyżłobienie rowka płyty oryginalnie odwzorowuje dokładnie zapisany dźwięk. Jego zarysowanie lub zabrudzenie wprowadzi przy odtwarzaniu zakłócenia (zwykle trzaski). Jednoznaczne rozróżnienie, które z wyżłobień rowka winylowej płyty odzwierciedlają oryginalny zapis muzyki, a które powstały skutkiem uszkodzeń, jest właściwie niemożliwe, dlatego też muzyka ze starych płyt kojarzy nam się z obecnością trzasków i szumu.[2]
W przypadku zapisu cyfrowego możemy w prosty sposób wykryć fakt wystąpienie zakłóceń. Wyobraźmy sobie, że zapisujemy muzykę jako szereg liczb, opisujących amplitudę fali dźwiękowej mierzoną w ustalonych odstępach czasu (rys. Figure 3; dla płyty kompaktowej [math]\Delta t = 1/44 100[/math] sekundy). Ponieważ urządzenie, które będzie zamieniać ten zapis z powrotem na muzykę, i tak musi być swego rodzaju specjalizowanym komputerem (odtwarzaczem CD), to do programu odtwarzającego możemy wprowadzić pewną modyfikację. Umówmy się dla przykładu, że z każdych dziesięciu kolejnych liczb, do zapisu muzyki będziemy wykorzystywać tylko dziewięć, a ostatnią będziemy dobierać tak, żeby suma kolejnych dziesięciu liczb zawsze wynosiła np. milion.
Taki sposób zapisu wprowadza redundancję, czyli nadmiar informacji w zapisie, ponieważ przy prawidłowym odczycie wystarczyłoby znać dziewięć kolejnych liczb, aby wyznaczyć dziesiątą (jako milion minus suma pozostałych dziewięciu). Jednak jeśli wczytamy z takiego zapisu wszystkie liczby, i suma którejś dziesiątki okaże się inna niz milion, to mamy pewność, że w tym miejscu wystąpił błąd.[3] Taka informacja jest bardzo cenna:
- Jeśli jesteśmy pewni , że nagły skok amplitudy w kilku kolejnych próbkach jest wynikiem błędu zapisu, a nie efektem zamierzonym przez muzyka, to możemy ten skok "przemilczeć", czyli np. zastąpić "popsute" próbki średnią wartością poprzednich.
- Możemy zwiększyć redundancję i zapisać dwie jednakowe kopie; jeśli uszkodzeniu ulegnie fragment pierwszej kopii, program może automatycznie sięgnąć do odpowiedniego fragmentu drugiej kopii[4].
- W przypadku transmisji przez modem, program może zażądać powtórnego przesłania uszkodzonego fragmentu.
Niezależnie od tych korzyści, jeśli chcemy analizować sygnały z pomocą komputera (maszyny cyfrowej), i tak jesteśmy "skazani" na pracę z ich dyskretną formą.
Mimo tego, większość ogólnych twierdzeń będziemy rozważać w przestrzeni funkcji ciągłych — o ile nie tyczą się explicite efektów próbkowania. Teoria funkcji ciągłych jest asymptotycznie zgodna z wynikami dla sekwencji dyskretnych — dla odstępu próbkowania dążącego do zera. Jej rezultaty, prostsze pojęciowo i łatwiejsze do wyprowadzenia, są wystarczająco dokładne by wyjaśnić ogólne własności dyskretnych obliczeń.
W uzasadnionych przypadkach będziemy oczywiście dyskutować efekty próbkowania; w takich sytuacjach będziemy rozróżniać sygnał ciągły [math]s(t)[/math] od dyskretnej sekwencji [math]s[n][/math].
Podobne tematy opisuje rozdział "Cyfrowy Świat" z podręcznika Technologii Informacyjnej.
- ↑ Odpowiedź nie kryje się (niestety) w niższej cenie nośnika. Pomimo, że technologia cyfrowa faktycznie pozwala na znacznie tańszą produkcję (tj. powielanie) przy zachowaniu wysokiej jakości — jak wyjaśnimy za chwilę — to jednak cena średnio dwukrotnie wyższa niż cena odp. płyty winylowej, która w pierwszym okresie była uzasadniona wysokimi kosztami wprowadzania nowej technologii, po jej rozpowszechnieniu pozostała na wywindowanym poziomie, podwajając zyski wytwórni fonograficznych
- ↑ Tak naprawdę sprawa nie
jest beznadziejna:
- część zakłócen pochodzi z zanieczyszczeń; w tym przypadku zwykle pomaga delikatne czyszczenie płyty.
- Do pozostałych zakłóceń, których nie da się usunąć mechanicznie, stosuje się potężną metodologię analizy sygnałów (będącą przedmiotem następnych rozdziałów), która pomaga zgadnąć, które dźwięki w zapisie mogą pochodzić z zakłóceń. Zwykle jednak nie da się usunąć dokładnie wszystkich zakłóceń bez naruszenia brzmienia oryginału.
- ↑ Ale poprawna suma nie daje gwarancji, że błędu nie ma. W jednej dziesiątce mogą wystąpić np. dwa jednakowe błędy o przeciwnych znakach i suma pozostanie niezmieniona. Dlatego sumy kontrolne liczy się w bardziej wyrafinowany sposób (np. CRC -- Cyclic Redundancy Check )
- ↑ Prawdopodobieństwo wystąpienia uszkodzeń w tych samych fragmentach dwóch zapisów jest już bez porównania mniejsze niż pojedynczego uszkodzenia. Sposobem wprowadzania nadmiarowości, który minimalizuje prawdopodobieństwo wystąpienia takich pechowych przypadków, rządzi dość złożona matematyka z pogranicza statystyki, której nie będziemy tu omawiać. W każdym razie, dwie jednakowe kopie umieszczone jedna za drugą zwykle nie okazują się rozwiązaniem otymalnym.