Laboratorium EEG/AR 1: Różnice pomiędzy wersjami

Z Brain-wiki
Linia 328: Linia 328:
 
==Ćwiczenie 1==
 
==Ćwiczenie 1==
  
Z zestawu danych do obliczania ICA (poprzedni rozdział) wybierz jeden kanał EEG (po zastosowaniu montażu usznego), zawierający
+
Z zestawu danych do obliczania ICA (poprzedni rozdział) wybierz jeden kanał EEG, zawierający wyraźną czynność alfa. Przytnij wybrany odcinek do długości 2000 próbek.
 +
Wygeneruj dwa zestawy danych:
 +
* Zestaw 1
 +
** Kanał 1 to nasz wybrany kanał EEG
 +
** Kanał 2 = (kanał 1 opóźniony o 1 próbkę)*0,6 + szum
 +
 
 +
* Zestaw 2
 +
** Kanał 1 to nasz wybrany kanał EEG
 +
** Kanał 2 = szum
 +
 
 +
Dla obu zestawów danych sprawdź stosując metodę przyczynowości Grangera, który sygnał możemy uznać za przyczynowy dla drugiego sygnału. W tym celu w każdym zestawie dopasuj kolejno jednokanałowe modele AR oraz model dwukanałowy i porównaj otrzymane wariancje szumu.
  
 
==Ćwiczenie 2==
 
==Ćwiczenie 2==

Wersja z 09:49, 18 maj 2016

Funkcja kowariancji i korelacji

Wstęp

W celu scharakteryzowania zależności wzajemnej dwóch sygnałów losowych, stosuje się funkcję kowariancji, zdefiniowaną w następujący sposób:

[math] \gamma _{xy} (\tau ) = \mathrm{cov}(x(t),y(t-\tau ))=\mathrm{E}[(x(t)-\mu _x)(y(t-\tau )-\mu _y)] [/math]

gdzie:

[math] \begin{array}{l} \mu _x = \mathrm{E}[x(t)]\\ \mu _y = \mathrm{E}[y(t)]\\ \end{array} [/math]

W przypadku sygnałów ciągłych estymację tę można zapisać w poniższy sposób:

[math] \gamma _{xy} (\tau ) = \frac{1}{T}\int _0^{T}(x(t)-\mu_x)(y(t-\tau)-\mu_y)dt [/math]

natomiast dla sygnałów dyskretnych jako:

[math] \gamma _{xy}(k) = \frac{1}{N-1}\sum _{i=0}^{N-k}(x(i+k)-x_s)(y(i)-y_s) [/math]

W odróżnieniu od funkcji autokowariancji, funkcja kowariancji nie musi mieć maksimum dla przesunięcia [math]\tau =0[/math]. Ponadto posiada ona następującą cechę:

[math] \gamma _{xy}(-\tau ) = \gamma _{yx}(\tau ) [/math]

Funkcję kowariancji można znormalizować:

[math] \rho (k) = \frac{\mathrm{E}[(x(t)-\mu _x)(y(t-\tau )-\mu _y)]}{\sqrt{\mathrm{E}[(x(t)-\mu _x)^2]\mathrm{E}[(y(t)-\mu _y)^2]}} = \frac{\gamma _{xy}}{\sigma_x\sigma_y} [/math]

Otrzymaną funkcję nazywamy funkcją korelacji. Jednym z zastosowań funkcji korelacji jest wyznaczanie czasu przejścia sygnału przez dany układ liniowy. Funkcja korelacji pomiędzy sygnałem na wejściu układu i sygnałem na jego wyjściu osiągnie wartość maksymalną dla przesunięcia [math]\tau [/math] równego czasowi, jaki potrzebował sygnał na pokonanie danego układu. Niestety, taka metoda wyznaczania opóźnienia obarczona jest pewną wadą — w przypadku gdy prędkość sygnału bądź jego droga zależą od częstości, wtedy na wykresie funkcji korelacji nie uzyskamy wyraźnego maksimum.


Zadanie : Funkcja kowariancji i korelacji

Zaimplementuj funkcję obliczającą funkcję kowariancji dla różnych sygnałów x i y (równanie 13) skorzystaj przy tym z własności opisanej równaniem (14). Przykładowe wywołanie:

a = np.array([1,2,3])
b = np.array([-1,-2,-3])

print koreluj(a,b,2)

powinno dać w wyniku:

[ 0.5 0.  -1.   0.   0.5]

Z danych zarejestrowanych w trakcie czuwania z zamkniętymi oczami wybierz sygnały z następujących kanałów: Fp1, P3, Pz, P4, Fp2, O1, O2.

  1. Dla każdego kanału oblicz funkcję autokorelacji, zaś dla każdej pary kanałów oblicz funkcję korelacji wzajemnej. Wyniki zaprezentuj w formie kwadratowej macierzy wykresów (za pomocą funkcji subplot, tak jak na przykładowym rys. (rys. %i 1)). Na przekątnej macierzy narysuj funkcję autokorelacji odpowiednich kanałów, poza przekątną — funkcję korelacji wzajemnej. Wskaż kanały, które są najbardziej skorelowane ze sobą. Czy możliwe jest wyznaczenie opóźnienia sygnału pomiędzy tymi kanałami?
  2. Powtórz punkt 1, tym razem jednak funkcję autokorelacji i korelacji wzajemnej oblicz na sygnałach przefiltrowanych filtrem wąskopasmowym w paśmie alfa charakterystycznym dla badanej osoby. (przypomnienie konstrukcji filtrów)
  3. Oszacuj istotność statystyczną zależności między parami kanałów. Twoją hipotezą zerową jest brak istotnej korelacji pomiędzy sygnałami zarejestrowanymi przez dwie różne elektrody EEG. Hipoteza alternatywna to występowanie zależności pomiędzy tymi sygnałami. Podanie estymatorów wariancji funkcji korelacji jest bardzo trudne, dlatego jednym ze sposobów oszacowania progu powyżej którego wartość funkcji korelacji można byłoby uznać za istotną statystycznie, jest zastosowanie metody bootstrap. Teoretycznie, funkcja korelacji policzona dla dwóch rzeczywistych, nieskorelowanych sygnałów, powinna wynosić 0 dla każdego przesunięcia [math]\tau[/math]. Tak jest jednak w przypadku sygnałów nieskończonych; w analizie sygnałów takowych nie spotkamy. Dokonując losowej zamiany kolejności próbek, możemy doprowadzić do wytworzenia sygnałów zależnych losowo, które jednak ze względu na skończony czas trwania, dadzą niezerową funkcję korelacji. Poziom losowych fluktuacji tej funkcji oszacujemy wykonując następujące kroki:
    1. Losowa zamiana kolejności próbek w analizowanych sygnałach. Jeżeli pomiędzy dwoma sygnałami istnieją jakieś zależności, losowa zamiana próbek doprowadzi do zniszczenia tych związków. W ten sposób uzyskujemy sygnały, które teoretycznie są nieskorelowane.
    2. Obliczenie funkcji korelacji wzajemnej dla sygnałów policzonych w punkcie A.
    3. Powtórzenie kroków A i B wiele (np. 1000) razy.
    4. Oszacowanie 95 % przedziału ufności dla wartości średniej funkcji korelacji wzajemnej dla danego przesunięcia [math]\tau[/math] korzystając z otrzymanego w kroku C empirycznego rozkładu wartości tych funkcji dla sygnałów niezależnych.
    5. Powtórzenie kroków A-D dla kolejnych przesunięć [math]\tau[/math].
    6. Sprawdzenie, dla których przesunięć [math]\tau [/math] funkcje autokorelacji i korelacji obliczone dla oryginalnych sygnałów uzyskały wartości wyższe niż wartości progowe oszacowane dla sygnałów o losowych zależnościach.

    Procedura opisana powyżej ma jednak pewną wadę. Staramy się w niej oszacować poziom przypadkowych korelacji pomiędzy dwoma sygnałami dla kolejnych przesunięć [math]\tau [/math], co jest niczym innym jak wielokrotnym powtórzeniem pewnego testu. Obserwowanie korelacji dla wielu par kanałów równocześnie również prowadzi do zwiększenia szansy na zaobserwowanie ekstremalnie dużych fluktuacji. Występuje tu zatem problem wielokrotnych porównań. Przypominamy, iż może to doprowadzić do przypadkowego uznania wyników jako „istotnych” statystycznie. Np. jeśli pojedynczy test wykonujemy na poziomie istotności 5% to dopuszczamy odrzucenie w 1 przypadku na 20 hipotezy zerowej pomimo, iż jest ona prawdziwa. Z drugiej jednak strony, jeśli powtórzymy wykonywany test 20 razy, to oczekujemy uzyskania 1 przypadku, w którym poziom [math]p[/math] będzie mniejszy od 5% co jest przesłanką za odrzuceniem hipotezy zerowej.

    W przypadku wykonywania serii testów należałoby więc zastosować odpowiednie poprawki, np. korektę Bonferroniego czy false discovery rate (FDR). Innym rozwiązaniem w analizowanym przez nas problemie jest zastosowanie tzw. statystyk wartości ekstremalnych, które prowadzą do następujących zmian w procedurze (nie działa dla funkcji autokorelacji ze względu na jej normalizację do 1 dla zerowego przesunięcia):

    1. Losowa zmiana kolejności próbek w analizowanych sygnałach (we wszystkich analizowanych kanałach). Jeżeli pomiędzy dwoma sygnałami istnieją jakieś zależności, losowa zamiana próbek doprowadzi do zniszczenia tych związków. W ten sposób uzyskujemy sygnały, które teoretycznie są nieskorelowane.
    2. Obliczenie funkcji korelacji dla sygnałów otrzymanych w punkcie A.
    3. Zapamiętanie maksymalnej wartości bezwzględnej funkcji korelacji z punktu B (maksimum bierzemy po wszystkich przesunięciach i po wszystkich parach kanałów).
    4. Powtórzenie kroków A-C 1000 razy. Uzyskamy w ten sposób rozkład maksymalnych wartości funkcji korelacji możliwych do zaobserwowania dla sygnałów niezależnych.
    5. Wyznaczenie 95 centyla rozkładu wartości maksymalnych.
    6. Nałożenie na rysunki funkcji korelacji uzyskane w Zadaniu 2 poziomych linii symbolizujących poziom zależności dwóch sygnałów o losowych zależnościach i sprawdzenie, dla których przesunięć [math]\tau [/math] wartości funkcji korelacji przekraczają estymowane progi istotności statystycznej.
Przykład wyniku analizy korelacji wzajemnych dla sygnału niefiltrowanego z naniesionymi granicami możliwych fluktuacji.

Wzajemna gęstość widmowa sygnałów i koherencja

Wstęp

Podobnie jak w przypadku twierdzenia Chinczyna dla pojedynczego sygnału, możliwe jest policzenie transformaty Fouriera funkcji kowariancji. Uzyskana w ten sposób wielkość nazywa się funkcją wzajemnej gęstości mocy widmowej sygnału:

[math] S_{xy}(f) = \int _{-\infty }^{\infty }\gamma_{xy}(\tau )e^{-2\pi i f \tau}d\tau [/math]

W celu dalszego omówienia własności funkcji wzajemnej mocy widmowej sygnałów funkcję tę zapiszemy w postaci:

[math] \begin{array}{l} S_{xy}(f) = |S_{xy}(f)|e^{i\phi _{xy}(f)}\\ \\ \phi _{xy} = \arg(S_{xy}) \end{array} [/math]

Wartość bezwzględna funkcji wzajemnej gęstości mocy widmowej osiąga największą wartość dla częstości, w których sygnały [math]x(t)[/math] i [math]y(t)[/math] są ze sobą skorelowane. Funkcja wzajemnej mocy widmowej sygnałów pozbawiona jest zatem wady, która charakteryzowała funkcję korelacji, to jest problemu z wyznaczeniem czasu transmisji sygnału, w przypadku gdy czas ten zależał od częstości. Przy pomocy funkcji wzajemnej mocy widmowej, czas ten można oszacować przy pomocy fazy tej funkcji — [math]\phi _{xy}(f)[/math]. Jeśli funkcja wzajemnej mocy widmowej została wyznaczona pomiędzy sygnałami na wejściu i wyjściu układu liniowego, to faza ta reprezentuje przesunięcie fazowe sygnału przy przejściu przez układ. Czas tego przejścia można oszacować za pomocą następującej wyrażenia:

[math] \tau = \frac{\phi _{xy}(f)}{2\pi f} [/math]

Podobnie jak w przypadku funkcji autokorelacji i korelacji wzajemnej, funkcję wzajemnej gęstości mocy widmowej można znormalizować:

[math] C_{xy}(f) = \frac{S_{xy}(f)}{\sqrt{S_x(f)S_y(f)}} [/math]

Znormalizowaną postać funkcji wzajemnej gęstości mocy widmowej nazywamy funkcją koherencji. Koherencja jest wielkością zespoloną. Faza koherencji odzwierciedla różnicę faz pomiędzy dwoma sygnałami. Moduł koherencji reprezentuje stopień synchronizacji sygnałów i zawiera się w przedziale od 0.0 do 1.0. Moduł tej funkcji zawiera się w przedziale od 0 do 1. Wartości 0 odpowiada brak synchronizacji pomiędzy sygnałami, zaś wartości 1 pełna synchronizacja dwóch przebiegów czasowych. Należy również zwrócić uwagę na nazewnictwo - często sam moduł koherencji określany jest jako koherencja, w literaturze anglojęzycznej moduł koherencji posiada jednak odrębną nazwę: Magnitude Square Coherence (MSC). Istotny jest również sposób estymacji modułu koherencji, który wyprowadzono w następnym rozdziale, zaś sam estymator reprezentuje wzór (36).

Kilka słów o koherencji

Wzór (Equation 10), definiujący ilościową miarę koherencji, nie uwzględnia stochastycznego charakteru sygnałów. Łatwo zauważyć, że bezpośrednie zastosowanie tego wzoru do obliczenia koherencji dwóch sygnałów o tej samej częstości i różniących się jedynie amplitudą oraz fazą, zawsze da wynik równy 1. Prześledźmy to na następującym przykładzie.
Dane są dwa sygnały harmoniczne [math]x(t) = A\cos(\Omega t + \phi_x)[/math] oraz [math]y(t) = B\cos(\Omega t + \phi_y)[/math]. Widmo tych sygnałów, wyrażone za pomocą transformaty Fouriera, będzie miało następującą postać:

[math]X(f)=Ae^{-j\phi_x}[/math]

[math]Y(f)=Be^{-j\phi_y}[/math],

zaś ich widmo wzajemne:

[math]X(f)\cdot Y^*(f) = A\cdot Be^{-j(\phi_x - \phi_y)}[/math],

gdzie: [math]j=\sqrt{-1}[/math], a * oznacza sprzężenie liczby zespolonej.
Podstawienie wyrażeń na widmo sygnałów [math]x(t)[/math], [math]y(t)[/math] oraz ich widmo wzajemne do wzoru ??? da koherencję [math]K_{xy}(f) = 1[/math] niezależnie od amplitudy sygnałów [math]A[/math] i [math]B[/math] oraz ich faz [math]\phi_x[/math] i [math]\phi_y[/math].

W praktyce rzadko jednak mamy do czynienia z sygnałami harmonicznymi. Zwykle mierzone przez nas wielkości mają stochastyczny charakter bądź też ich pomiar jest zaburzany przez różne czynniki. Rozważmy teraz najprostszy model pomiaru sygnału, w którym uwzględniono wpływ zakłóceń w postaci białego szumu. Na wejście układu LTI o funkcji impulsowej opisanej wyrażeniem [math]h(t)[/math] podamy sygnał [math]x(t)[/math] i widmie danym funkcją [math]X(f)[/math]. Układ LTI przetworzy sygnał wejściowy na przebieg [math]y(t)[/math] o widmie [math]Y(f)[/math]. Z uwagi na zaburzenia [math]n(t)[/math] o widmie [math]N(f)[/math] towarzyszące pomiarowi aparatura nie zarejestruje sygnał [math]y(t)[/math] lecz [math]z(t) = y(t) + n(t)[/math]. Opisane zależności możemy opisać za pomocą poniższych wzorów:

[math]y(t) = h(t)*x(t)[/math]

[math]z(t) = y(t) + n(t)[/math]

gdzie: [math]*[/math] - operacja splotu.
Dokonując transformacji powyższych wzorów do dziedziny częstości dostajemy:
[math]Y(f) = H(f)X(f)[/math]

[math]Z(f) = Y(f) + N(f)[/math]

gdzie: [math]H(f) = \textrm{FFT}\left\{h(t)\right\}[/math].

Wzory te można zapisać w postaci jednej zależności:

[math]Z(f) = H(f)X(f) + N(f)[/math]

Załóżmy teraz, że w celu redukcji składowej losowej [math]n(t)[/math] wielokrotnie powtarzamy w tych samych warunkach pomiar sygnału [math]z(t)[/math]. Za każdym razem na wejściu układu LTI występuje ten sam sygnał [math]x(t)[/math]. Układ LTI również przetwarza sygnał wejściowy w ten sam sposób, jednak z uwagi na stochastyczny charakter zakłóceń, otrzymujemy kolejne różniące się do siebie przebiegi [math]z_i(t)[/math]. Niech liczbę powtórzeń pomiaru wynosi [math]K[/math]. Możemy napisać [math]K[/math] równań opisujących relację pomiędzy sygnałem wejściowym, wyjściowym i mierzonym:

[math] \begin{array}{l} Z_1(f) = H(f)X(f) + N_1(f) \\ \\ Z_2(f) = H(f)X(f) + N_2(f) \\ \\ \vdots \\ \\ Z_K(f) = H(f)X(f) + N_K(f) \\ \end{array} [/math]

Przemnóżmy teraz równania (Equation 12) obustronnie przez sprzężone widmo sygnału rejestrowanego [math]Z(f)[/math]. Dla uproszczenia zapisu operacji dokonamy na jednym, dowolnie wybranym [math]i[/math]-tym równaniu:

[math]Z_i(f)Z_i^*(f) = \left\{H(f)X(f) + N_i(f)\right\}\cdot Z_i^*(f)[/math]

Na równaniu (Equation 13) dokonamy kolejno następujących przekształceń:

[math]|Z_i(f)|^2 = \left\{H(f)X(f) + N_i(f)\right\}\cdot\left\{H^*(f)X^*(f) + N_i^*(f)\right\}[/math]


[math]|Z_i(f)|^2 = |H(f)|^2|X(f)|^2 + |N_i(f)|^2 + H(f)X(f)N_i^*(f) + N_i(f)H^*(f)X^*(f)[/math]

Dokonajmy teraz uśredniania (Equation 15) po kolejnych powtórzeniach pomiaru.

[math]\left\langle|Z_i(f)|^2\right\rangle= \left\langle|H(f)|^2|X(f)|^2\right\rangle + \left\langle|N_i(f)|^2\right\rangle + \left\langle H(f)X(f)N_i^*(f)\right\rangle + \left\langle N_i(f)H^*(f)X^*(f)\right\rangle[/math]

Zakładamy, że szum [math]N(f)[/math] jest nieskorelowany z sygnałem wejściowym, w związku z czym w wyniku uśredniania dwa ostatnie składniki równania (Equation 16) zostaną zredukowane: [math]\left\langle H(f)X(f)N_i^*(f)\right\rangle \approx 0 [/math], [math]\left\langle N_i(f)H^*(f)X^*(f)\right\rangle \approx 0 [/math]. Założyliśmy również za każdym razem na wejściu układu liniowego pojawia się ten sam sygnał [math]x(t)[/math], sam układ zaś nie zmienia swoich właściwości, w zwiazku z czym: [math]\left\langle|H(f)|^2|X(f)|^2\right\rangle = |H(f)|^2|X(f)|^2 [/math]. Ostatecznie uzyskaliśmy następującą zależność:

[math]\left\langle|Z_i(f)|^2\right\rangle= |H(f)|^2|X(f)|^2 + \left\langle|N_i(f)|^2\right\rangle[/math]

Dokonajmy kolejnego przekształcenia równania (Equation 12). tym razem przemnożymy obustronnie każde równanie przez sprzężone widmo sygnału wejściowego. W celu uproszczenia zapisu, operację tę wykonamy tylko na jednym dowolnie wybranym [math]i[/math]-tym równaniu:

[math]Z_i(f)X^*(f) = \left\{H(f)X(f) + N_i(f)\right\}\cdot X^*(f)[/math]

,

gdzie: [math]Z_i(f)X^*(f)[/math] - to widmo wzajemne sygnałów [math]x(t)[/math] i [math]y(t)[/math]. Proste przekształcenie równania (Equation 18) prowadzi do następującego wyrażenia:

[math]Z_i(f)X^*(f) = H(f)|X(f)|^2 + N_i(f)X^*(f)[/math]

Uśrednimy teraz równanie (Equation 19) po kolejnych realizacjach pomiaru oraz obliczmy moduł uzyskanego wyniku:

[math]|\left\langle Z_i(f)X^*(f)\right\rangle| = |H(f)||X(f)|^2 + |\left\langle N_i(f)X^*(f)\right\rangle|[/math]

Brak korelacji pomiędzy szumem [math]n(t)[/math] a sygnałem wejściowym [math]x(t)[/math] powoduje, że w wyniku uśredniania zostaje zredukowany drugi składnik równania (Equation 20): [math]\left\langle N_i(f)X^*(f)\right\rangle \approx 0[/math]. Ostatecznie uzyskujemy następującą zależność:

[math]|\left\langle Z_i(f)X^*(f)\right\rangle| = |H(f)||X(f)|^2[/math]

która wraz z równaniem (Equation 17) tworzy układ równań opisujących relacje pomiędzy widmami i widmami mocy sygnałów występujących w naszym modelu:

[math] \left\langle Z_i(f)X^*(f)\right\rangle = |H(f)| |X(f)|^2 [/math]
[math] \left\langle|Z_i(f)|^2\right\rangle= |H(f)|^2 |X(f)|^2 + \left\langle|N_i(f)|^2\right\rangle [/math]

Z pierwszej zależności równania (Equation 22) wyznaczmy funkcję przejścia [math]|H(f)|[/math]:

[math]|H(f)| = \frac{|\left\langle Z_i(f)X^*(f)\right\rangle|}{|X(f)|^2}[/math]

i podstawy do drugiego równania układu (Equation 22). Otrzymujemy:

[math] \left\langle|Z_i(f)|^2\right\rangle = \left[\frac{|\left\langle Z_i(f)X^*(f)\right\rangle|}{|X(f)|^2}\right]^2 |X(f)|^2 + \left\langle|N_i(f)|^2\right\rangle [/math]

Równanie (Equation 23) możemy przekształcić do postaci:

[math] \left\langle|N_i(f)|^2\right\rangle = \left\langle|Z_i(f)|^2\right\rangle - \frac{|\left\langle Z_i(f)X^*(f)\right\rangle|^2}{|X(f)|^2} [/math]

a następnie do zależności:

[math] \left\langle|N_i(f)|^2\right\rangle = \left\langle|Z_i(f)|^2\right\rangle\left[1 - \frac{|\left\langle Z_i(f)X^*(f)\right\rangle|^2}{|X(f)|^2\left\langle|Z_i(f)|^2\right\rangle}\right] [/math]

Wyrażenie:

[math] \mathrm{MSC}_{xz}(f) = \frac{|\left\langle Z_i(f)X^*(f)\right\rangle|^2}{|X(f)|^2\left\langle|Z_i(f)|^2\right\rangle} [/math]

nazywana jest Magnitude Square Coherence pomiędzy sygnałami [math]x(t)[/math] i [math]z(t)[/math]. W przypadku, gdy wielkość ta jest równa 1 sygnały [math]x(t)[/math] i [math]z(t)[/math] są w pełni zsynchronizowane. Wielkość tę uzyskaliśmy dla sygnału na wejściu układu LTI oraz sygnału mierzonego na wyjściu. Funkcję MSC można jednak stosować do dowolnych dwóch sygnałów stochastycznych [math]x(t)[/math] i [math]y(t)[/math] przy założeniu, że istnieją pomiędzy nimi liniowe zależności:

[math] \mathrm{MSC}_{xy}(f) = \frac{|\left\langle X_i(f)Y_i^*(f)\right\rangle|^2}{\left\langle|X_i(f)|^2\right\rangle\left\langle|Y_i(f)|^2\right\rangle} [/math]

gdzie: [math]\lt \gt [/math] - oznacza wartość średnia, [math]X_i(f), Y_i(f) [/math] to zespolone widma (policzone np. za pomocą Transformaty Fouriera), wyznaczone odpowiednio dla sygnałów X oraz Y w "i-tej" realizacji eksperymentu lub w "i-tym" oknie czasowym, na który te sygnały zostały podzielone. Wzór (36) reprezentuje estymator wartości bezwzględnej koherencji. Opierając się na podobnym co wyżej rozumowaniu, można wyprowadzić estymator funkcji koherencji, o następującej postaci:

[math] \mathrm{C}_{xy}(f) = \frac{\left\langle X_i(f)Y_i^*(f)\right\rangle}{(\left\langle|X_i(f)|^2\right\rangle\left\langle|Y_i(f)|^2\right\rangle)^\frac{1}{2}} [/math]

Faza koherencji umożliwia nam estymację przesunięcia fazowego pomiędzy sygnałami X i Y, zaś moduł podniesiony do kwadratu funkcji C to MSC.

Wstęp do ćwiczeń

Do ćwiczeń w tym rozdziale używać będziemy zestawu danych, które służyły w poprzednim rozdziale do wyznaczania komponentów ICA. Aby dostosować je do naszych celów dokonamy na nich następujących operacji:

  • zastosujemy montaż do połączonych uszu (kanały A1 i A2);
  • zmniejszymy częstość próbkowania z 512 do 128 Hz.

Ćwiczenie 1

Z zestawu danych do obliczania ICA (poprzedni rozdział) wybierz jeden kanał EEG, zawierający wyraźną czynność alfa. Przytnij wybrany odcinek do długości 2000 próbek. Wygeneruj dwa zestawy danych:

  • Zestaw 1
    • Kanał 1 to nasz wybrany kanał EEG
    • Kanał 2 = (kanał 1 opóźniony o 1 próbkę)*0,6 + szum
  • Zestaw 2
    • Kanał 1 to nasz wybrany kanał EEG
    • Kanał 2 = szum

Dla obu zestawów danych sprawdź stosując metodę przyczynowości Grangera, który sygnał możemy uznać za przyczynowy dla drugiego sygnału. W tym celu w każdym zestawie dopasuj kolejno jednokanałowe modele AR oraz model dwukanałowy i porównaj otrzymane wariancje szumu.

Ćwiczenie 2

  • Wygeneruj dwa sygnały sinusoidalne o długości 1000 próbek każdy, o tej samej częstości 32 Hz i częstości próbkowania 128 Hz, ale różnych fazach początkowych.
  • Pierwszy sygnał powinien mieć fazę początkową równą 0, drugi sygnał sinusoidalny powinien mieć fazę początkową równą π/4.
  • Do drugiego z sygnałów dodaj małą (o amplitudzie ok 0,2 amplitudy sinusoidy) składową losową (czyli dodatkowy niezależny szum biały).
  • Z tak otrzymanych sygnałów utwórz jeden sygnał dwukanałowy (macierz o rozmiarze (2,1000)).

Ustal optymalny rząd modelu AR (tym razem dwukanałowego) i oblicz macierz gęstości widmowej mocy oraz koherencji między tymi sygnałami. Narysuj moduł i fazę koherencji C12 i C21.

Dla tego zestawu kanałów oblicz i narysuj normalizowaną i nienormalizowaną fukcję DTF.

Zmień fazę początkową drugiego sygnału. Jak zmienia się funkcja koherencji? Co dzieje się z funkcją DTF?

Polecenie

Zaimplementuj funkcję obliczającą koherencję dla pary kanałów. Oblicz i narysuj funkcję koherencji dla kolejnych par kanałów (tych samych co w zadaniu 3). Wyniki zaprezentuj w postaci kwadratowej macierzy rysunków. Ponieważ koherencja jest funkcją zespoloną, dobrze jest zaprezentować osobno jej wartość i fazę. Uzyskane wartości bezwzględne koherencje narysuj nad przekątną tej macierzy, a fazę pod przekątną. W celu obliczenia modułu koherencji i jej fazy wykorzystaj wzór 36 (wygenerowane sygnały należy podzielić na pewną liczbę odcinków)