Laboratorium EEG/AR 1: Różnice pomiędzy wersjami
Linia 1: | Linia 1: | ||
− | = | + | =Wielokanałowe modele AR= |
− | |||
− | |||
− | |||
==Wstęp== | ==Wstęp== | ||
Wersja z 10:07, 18 maj 2016
Spis treści
Wielokanałowe modele AR
Wstęp
Funkcja DTF
Wersja znormalizowana
- [math]\mathrm{DTF}_{ij}(f)=\frac{\left| H_{ij}(f) \right|^2}{\sum_{m=1}^k{\left| H_{im}(f) \right|^2} }[/math]
Wersja nieznormalizowana
- [math]\mathrm{NDTF}_{ij}(f)=\left| H_{ij}(f) \right|^2[/math]
Wstęp do ćwiczeń
Do ćwiczeń w tym rozdziale używać będziemy zestawu danych, które służyły w poprzednim rozdziale do wyznaczania komponentów ICA. Aby dostosować je do naszych celów dokonamy na nich następujących operacji:
- zastosujemy montaż do połączonych uszu (kanały A1 i A2);
- zmniejszymy częstość próbkowania z 512 do 128 Hz;
- przefiltrujemy sygnał górnoprzepustowo z granicą odcięcia 1 Hz (stosując funkcję filtfilt).
Ćwiczenie 1
Z zestawu danych do obliczania ICA (poprzedni rozdział) wybierz jeden kanał EEG, zawierający wyraźną czynność alfa. Przytnij wybrany odcinek do długości 2000 próbek. Wygeneruj dwa zestawy danych:
- Zestaw 1
- Kanał 1 to nasz wybrany kanał EEG
- Kanał 2 = (kanał 1 opóźniony o 1 próbkę)*0,6 + szum
- Zestaw 2
- Kanał 1 to nasz wybrany kanał EEG
- Kanał 2 = szum
Dla obu zestawów danych sprawdź stosując metodę przyczynowości Grangera, który sygnał możemy uznać za przyczynowy dla drugiego sygnału. W tym celu w każdym zestawie dopasuj kolejno jednokanałowe modele AR oraz model dwukanałowy i porównaj otrzymane wariancje szumu.
Ćwiczenie 2
- Wygeneruj dwa sygnały sinusoidalne o długości 1000 próbek każdy, o tej samej częstości 32 Hz i częstości próbkowania 128 Hz, ale różnych fazach początkowych.
- Pierwszy sygnał powinien mieć fazę początkową równą 0, drugi sygnał sinusoidalny powinien mieć fazę początkową równą π/4.
- Do drugiego z sygnałów dodaj małą (o amplitudzie ok 0,2 amplitudy sinusoidy) składową losową (czyli dodatkowy niezależny szum biały).
- Z tak otrzymanych sygnałów utwórz jeden sygnał dwukanałowy (macierz o rozmiarze (2,1000)).
Ustal optymalny rząd modelu AR (tym razem dwukanałowego) i oblicz macierz gęstości widmowej mocy oraz koherencji między tymi sygnałami. Narysuj moduł i fazę koherencji C12 i C21.
Dla tego zestawu kanałów oblicz i narysuj normalizowaną i nienormalizowaną fukcję DTF.
Zmień fazę początkową drugiego sygnału. Jak zmienia się funkcja koherencji? Co dzieje się z funkcją DTF?
Ćwiczenie 3
Wygeneruj układ trzech sygnałów w następujący sposób:
jako pierwszego kanału użyj sygnału z ćwiczenia 1; sygnał_w_drugim_kanale(t) = 0,4 * sygnał_z_pierwszego_kanału(t−1) + szum1; sygnał_w_trzecim_kanale(t) = 0,3 * sygnał_z_pierwszego_kanału(t−2) + szum2.
Oblicz macierz koherencji zwyczajnych dla tego układu i na ich podstawie wyznacz zależności między kanałami. Powtórz to samo dla koherencji cząstkowych.
Oblicz dla tego zestawu danych funkcje DTF.
Wyniki wszystkich obliczeń przedstaw na rysunkach.
Ćwiczenie 4
Oblicz funkcje DTF dla wszystkich kanałów EEG z przygotowanego zestawu danych do ICA (dla pełnej długości w czasie każdego kanału).
Polecenie
Zaimplementuj funkcję obliczającą koherencję dla pary kanałów. Oblicz i narysuj funkcję koherencji dla kolejnych par kanałów (tych samych co w zadaniu 3). Wyniki zaprezentuj w postaci kwadratowej macierzy rysunków. Ponieważ koherencja jest funkcją zespoloną, dobrze jest zaprezentować osobno jej wartość i fazę. Uzyskane wartości bezwzględne koherencje narysuj nad przekątną tej macierzy, a fazę pod przekątną. W celu obliczenia modułu koherencji i jej fazy wykorzystaj wzór 36 (wygenerowane sygnały należy podzielić na pewną liczbę odcinków)