Estymacja widma na podstawie FT: Różnice pomiędzy wersjami
Linia 60: | Linia 60: | ||
=Oszacowanie błędu transformaty Fouriera dla białego szumu= | =Oszacowanie błędu transformaty Fouriera dla białego szumu= | ||
− | Dla sygnału stochastycznego <math>x(t)</math>, którego kolejne próbki pochodzą z niezależnych rozkładów normalnych (biały szum), jego transformata Fouriera <math>X(f)</math> jest liczbą zespoloną, której część rzeczywista <math> | + | Dla sygnału stochastycznego <math>x(t)</math>, którego kolejne próbki pochodzą z niezależnych rozkładów normalnych (biały szum), jego transformata Fouriera <math>X(f)</math> jest liczbą zespoloną, której część rzeczywista <math>\hat{x}_R(f)</math> i urojona <math>\hat{x}_I(f)</math> mogą być uznane za nieskorelowane zmienne losowe o średniej zero i równych wariancjach. Ponieważ transformata Fouriera jest operacją liniową więc składowe <math>\hat{x}_R(f)</math> i <math>\hat{x}_I(f)</math> mają rozkłady normalne. Zatem wielkość: |
<math> | <math> | ||
− | P(f) = | | + | P(f) = |\hat{x}(f)|^2 = \hat{x}_R^2(f) + \hat{x}_I^2(f) |
</math> | </math> | ||
jest sumą kwadratów dwóch niezależnych zmiennych normalnych. Wielkość ta podlega zatem rozkładowi <math>\chi^2</math> o dwóch stopniach swobody. | jest sumą kwadratów dwóch niezależnych zmiennych normalnych. Wielkość ta podlega zatem rozkładowi <math>\chi^2</math> o dwóch stopniach swobody. |
Wersja z 12:35, 26 paź 2016
Dyskretna Transformata Fouriera (DFT)
W praktycznych zastosowaniach mamy do czynienia z sygnałami próbkowanymi o skończonej długości. Transformata Fouriera działąjąca na takich sygnałach nazywana jest Dyskretną Transformatą Fouriera, a algorytm najczęściej wykorzystywany do jej obliczania to szybka trasnsformata Fouriera (fast Fourier transform FFT). Formułę na współczynniki FFT można otrzymać z szeregu Fouriera. Załóżmy, że sygnał który chcemy przetransformować składa się z [math]N[/math] próbek.
[math] s =\{ s[0],\dots,s[n],\dots s[N-1]\}[/math]
i próbki pobierane były co [math]T_s[/math] sekund. Zakładamy, że analizowany sygnał [math]s[/math] to jeden okres nieskończonego sygnału o okresie [math]T=N\cdot T_s[/math]. Wprowadźmy oznaczenie:
[math]s[n]=s(nT_s)[/math].
Przepiszmy wzór na współczynniki szeregu Fouriera. Ponieważ sygnał jest teraz dyskretny, całka zamieni się na sumę pól prostokątów o bokach równych wartości funkcji podcałkowej w zadanych punktach [math]x(nT_s)e^{(2i{\pi}knT_s/T)}[/math] i odległości między punktami [math]T_s[/math]:
[math] \hat{s}[k] = \frac{1}{NT_s}\sum_{n=0}^{N-1}s(nT_s)e^{2i\pi\frac{knT_s}{NT_s}}T_s = \frac{1}{N}\sum_{n=0}^{N-1}s[n]e^{2i{\pi}\frac{kn}{N}} [/math]
Praktyczna estymacja widma Fourierowskiego sygnałów
Dla sygnałów dyskretnych obliczamy Dyskretną Transformatę Fouriera (omawianą też szerzej na ćwiczeniach). Kwadrat jej modułu to inaczej periodogram, czyli estymata gęstości widmowej mocy dla sygnałów dyskretnych.
Sygnały z którymi mamy do czynienia w praktyce są nie tylko dyskretne, ale też skończone. Obliczanie transformaty Fouriera dla skończonego odcinka niesie ze sobą dodatkowe komplikacje. Znamy wartości sygnału [math]x[n][/math] dla [math]i=1\ldots N[/math]. Odpowiada to iloczynowi sygnału [math]\left\{s[n]\right\}_{n\in\mathbb{Z}}[/math] z oknem prostokątnym [math]w_p[k][/math]:
[math] w_p[k]=\left\{\begin{array}{rl} 1 & \mathrm{dla} \;k=1 .. N\\ 0 & \mathrm{dla} \;k\lt 0 \vee k\gt N\\ \end{array} \right. [/math]
W efekcie (patrz twierdzenie o splocie) otrzymujemy splot transformaty Fouriera sygnału (nieskończonego) z transformatą Fouriera okna [math]\hat{w}_p[k][/math]. Na przykład dla okna prostokątnego będzie to funkcja postaci [math]sin(x)/x[/math], która może wprowadzić w widmie sztuczne oscylacje, które mylnie możemy zidentyfikować z pikami widma. Dlatego w praktyce stosujemy okna o łagodniejszym przebiegu transformaty Fouriera. Czyli:
- Obliczamy iloczyn sygnału [math]s[n][/math] z wybranym oknem [math]w[n][/math], dopasowanym do jego rozmiaru
- Obliczamy periodogram sygnału [math]s[n] w[n][/math]
W ogólnym rzypadku, biorąc pod uwagę normalizację okna
[math]w[n] = \frac{1}{\sqrt{\sum_{n=0}^{N-1} (w[n])^2}}w[n][/math]
dostajemy widmo mocy sygnału okienkowanego:
[math] P[k] = \frac{1}{\sum_{n=0}^{N-1} (w[n])^2} \left|\sum_{n=0}^{N-1} s[n]w[n] e^{i\frac{2 \pi }{N} k n}\right|^2 [/math]
Przy założeniu stacjonarności sygnału możemy obliczyć widmo testowaną na ćwiczeniach metodą Welcha, według której dzielimy sygnał na zachodzące na siebie odcinki, każdy odcinek mnożymy przez okno [math]w[n][/math] po czy otrzymane widma uśredniamy. W ten sposób dla każdej częstości mamy po kilka estymat mocy widmowej, wyliczonych z kolejnych odcinków, co pozwala na oszacowanie błędu estymaty.
Oszacowanie błędu transformaty Fouriera dla białego szumu
Dla sygnału stochastycznego [math]x(t)[/math], którego kolejne próbki pochodzą z niezależnych rozkładów normalnych (biały szum), jego transformata Fouriera [math]X(f)[/math] jest liczbą zespoloną, której część rzeczywista [math]\hat{x}_R(f)[/math] i urojona [math]\hat{x}_I(f)[/math] mogą być uznane za nieskorelowane zmienne losowe o średniej zero i równych wariancjach. Ponieważ transformata Fouriera jest operacją liniową więc składowe [math]\hat{x}_R(f)[/math] i [math]\hat{x}_I(f)[/math] mają rozkłady normalne. Zatem wielkość: [math] P(f) = |\hat{x}(f)|^2 = \hat{x}_R^2(f) + \hat{x}_I^2(f) [/math] jest sumą kwadratów dwóch niezależnych zmiennych normalnych. Wielkość ta podlega zatem rozkładowi [math]\chi^2[/math] o dwóch stopniach swobody. Możemy oszacować względny błąd [math]P(f_1) [/math] dla danej częstości [math]f_1[/math]:
- [math]\epsilon_r= \sigma_{P_{f_1}}/\mu_{P_{f_1}}[/math]
Dla rozkładu [math]\chi_2^2[/math]: [math]\sigma^2 = 2n[/math] i [math]\mu = n[/math], gdzie [math]n[/math] jest ilością stopni swobody. W naszym przypadku [math]n =2[/math] więc mamy [math]\epsilon_f = 1[/math], co oznacza, że dla pojedynczego binu częstości w widmie [math]P(f)[/math] względny błąd wynosi 100%.
Aby zmniejszyć ten błąd trzeba zwiększyć ilość stopni swobody. Są generalnie stosowane dwie techniki. Pierwsza to uśrednianie sąsiednich binów częstości. Otrzymujemy wówczas wygładzony estymator mocy [math]\hat{P}_k[/math]:
- [math]\hat{P}_k = \frac{1}{l}[P_k + P_{k+1} + \dots + P_{k+l-1}][/math]
Zakładając, że biny częstości [math]P_i[/math] są niezależne estymator [math]P_k[/math] ma rozkład [math]\chi^2[/math] o ilości stopni swobody równej [math]n= 2l[/math]. Względny błąd takiego estymatora to: [math]\epsilon_r= \sqrt{\frac{1}{l}}[/math].
Innym sposobem poprawy estymatora mocy jest podzielenie sygnału na fragmenty, obliczenie periodogramu dla każdego fragmentu, a następnie zsumowanie otrzymanych wartości:
- [math]\hat{P}_k=[P_{k,1}+P_{k,2}+\dots+P_{k,j}+\dots+P_{k,q}][/math]
gdzie [math]S_{k,j}[/math] jest estymatą składowej o częstości [math]k[/math] w oparciu o [math]j-ty[/math] fragment sygnału. Ilość stopni swobody wynosi w tym przypadku [math]q[/math] zatem względny błąd wynosi: [math]\epsilon_r = \sqrt{\frac{1}{q}}[/math].
Zauważmy, że w obu metodach zmniejszamy wariancję estymatora kosztem rozdzielczości w częstości.