Przekształcenie Fouriera
Spis treści
AS/ Przekształcenie Fouriera
A jeśli sygnał nie jest ściśle okresowy? Jeśli pewne struktury powtarzają się, ale nie na tyle dokładnie by spełnić matematyczny wymóg okresowości [math]\forall t \, s(t + T) = s(t)[/math]?
Przejdźmy do nieskończoności z okresem sygnału: [math]T\rightarrow\infty[/math]. Wtedy odstęp [math]\left(\frac{2\pi}{T}\right)[/math] między częstościami kolejnych elementów sumy z wyprowadzonego w poprzednim rozdziale wzoru na szereg Fouriera
[math] s(t) =\sum_{n=-\infty}^{+\infty} c_n e^{-i\frac{2\pi t}{T} n}, [/math]
dąży do [math]0[/math] i suma przechodzi w całkę
funkcja [math]\hat{s}(f)[/math], zastępująca dyskretny ciąg współczynników szeregu Fouriera
[math] c_{n} = \frac{1}{T}\int_{0}^{T} s(t) e^\frac{2\pi i n t}{T} d t [/math]
to transformata Fouriera sygnału [math]s(t)[/math], czyli wynik działania przekształcenia (transformacji) Fouriera [math]\mathcal{F}[/math].
Jak widać, transformata Fouriera jest zespoloną funkcją częstości.
Jej moduł dla danej częstości [math]f[/math] opisuje jej "zawartość" w sygnale, a faza odpowiada za "składanie" poszczególnych częstości w sygnał (1).
Moduł transformaty Fouriera odpowiada[1] na postawione na początku tego rozdziału pytanie o opis częstości zawartych w sygnale niekoniecznie okresowym, jak miało to miejsce w przypadku szeregów Fouriera. Tak naprawdę, to dla sygnału okresowego, opisanego równaniem (1), nie da się policzyć transformaty Fouriera, bo całka (2) jest nieskończona. Ogólnie dla sygnałów okresowych nie jest spełniony warunek [math]\int_{-\infty}^{\infty} |s(t)| d t \lt \infty[/math]. Na szczęście sygnały występujące w przyrodzie, szczególnie po przekształceniu na formę dyskretną, zawsze spełniają warunki istnienia transformaty Fouriera [2].
Tożsamość Parsevala dla całek Fouriera
[math] \int_{-\infty}^{\infty} | s(t) |^2 d t = \int_{-\infty}^{\infty} | \hat{s}( f ) |^2 d f [/math]
Dowód:
[math] \int_{-\infty}^{\infty} | s(t) |^2 d t = \int_{-\infty}^{\infty} s(t) \overline{s(t)} dt = \int_{-\infty}^{\infty} s(t) \left( \int_{-\infty}^{\infty} \overline{ \hat{s}(f)} e^{i 2\pi t f} d f \right) dt = [/math]
[math] = \int_{-\infty}^{\infty} \overline{ \hat{s}(f)} \left( \int_{-\infty}^{\infty}s(t)e^{i 2\pi t f} d t \right) df = \int_{-\infty}^{\infty} \overline{ \hat{s}(f)} \hat{s}(f) d f = \int_{-\infty}^{\infty} | \hat{s}(f) |^2 d f [/math]
Przy przejściu do drugiej linii zamieniono kolejność całkowania według Twierdzenia Fubiniego:
- Niech [math]g:[a,b]\times [c,d]\longrightarrow {\mathbb R}[/math] — funkcja ciągła. Wówczas
- [math]\int\limits_a^b\left(\int\limits_c^d g(x,y)\,dy\right)\,dx=\int\limits_c^d\left(\int\limits_a^b g(x,y)\,dx\right)\,dy=\int\limits_{[a,b]\times [c,d]} g(x,y)\,d(x,y)[/math].
Konwencje zapisu przekształcenia Fouriera
Szczególna postać wzorów (1) i (2) wynika z przyjęcia konwencji wyrażania częstości jako odwrotności czasu: [math]f = \frac{1}{T}[/math] (w hercach). Dowolność pozostaje w umieszczeniu minusa w wykładniku - we wzorze na transformatę odwrotną (1) lub we wzorze (2). Z kolei przyjęcie częstości kołowej [math]\omega = \frac{2\pi}{T}[/math] (w radianach) przenosi czynnik [math]2\pi[/math] (konkretnie jego odwrotność) z wykładnika przed całkę. Stąd różnorodność możliwych par wzorów:
[math]
s(t)=\int_{-\infty}^{\infty}\hat{s}(f)e^{-i 2\pi t f} d f \rightarrow
\hat{s}(f)=\int_{-\infty}^{\infty}s(t)e^{i 2\pi f t} d t
[/math]
[math] s(t)=\int_{-\infty}^{\infty}\hat{s}(f)e^{i 2\pi t f} d f \rightarrow \hat{s}(f)=\int_{-\infty}^{\infty}s(t)e^{-i 2\pi f t} d t [/math]
[math] s(t)=\frac{1}{2\pi}\int_{-\infty}^{\infty}\hat{s}(\omega)e^{i \omega t} d \omega \rightarrow \hat{s}(\omega)=\int_{-\infty}^{\infty}s(t)e^{-i \omega t} d t [/math]
[math] s(t)=\frac{1}{2\pi}\int_{-\infty}^{\infty}\hat{s}(\omega)e^{-i \omega t} d \omega \rightarrow \hat{s}(\omega)=\int_{-\infty}^{\infty}s(t)e^{i \omega t} d t [/math]
[math] s(t)=\frac{1}{\sqrt{2\pi}}\int_{-\infty}^{\infty}\hat{s}(\omega)e^{-i \omega t} d \omega \rightarrow \hat{s}(\omega)={1\over{\sqrt{2\pi}}}\int_{-\infty}^{\infty}s(t)e^{i \omega t} d t [/math]
[math] s(t)=\frac{1}{\sqrt{2\pi}}\int_{-\infty}^{\infty}\hat{s}(\omega)e^{i \omega t} d \omega \rightarrow \hat{s}(\omega)={1\over{\sqrt{2\pi}}}\int_{-\infty}^{\infty}s(t)e^{-i \omega t} d t [/math]
Przyjmujemy wywodzącą się z matematyki konwencję dodatniego wykładnika we wzorze na transformację (2) i ujemnego we wzorze na transformację odwrotną (1); ewentualne stosowanie częstości kołowej można odróżnić po użyciu symbolu [math]\omega[/math] jako argumentu transformaty. W zastosowaniach inżynierskich przeważa konwencja ujemnego wykładnika we wzorze na transformację.
Symetrie i własności Transformaty Fouriera
jeśli sygnał [math]s(t)[/math] jest[math]\ldots[/math] | to [math]\mathcal{F} s(t) \equiv \hat{s}(\omega)\ \ldots[/math] |
---|---|
parzysty ([math]s(t)=s(-t)[/math]) | parzysta |
nieparzysty ([math]s(t)=-s(-t)[/math]) | nieparzysta |
rzeczywisty | [math] s(-\omega) = \overline{\hat{s}(\omega})[/math] |
urojony | [math]s(-\omega) = -\overline{\hat{s}(\omega})[/math] |
rzeczywisty i parzysty | rzeczywista i parzysta |
rzeczywisty i nieparzysty | urojona i nieparzysta |
urojony i parzysty | urojona i parzysta |
urojony i nieparzysty | rzeczywista i nieparzysta |
skalowanie w czasie: | [math]s(a t)[/math] & [math]\stackrel{\mathcal{F}}{\Longrightarrow}[/math] & [math]\frac{1}{|a|} \hat{s}(\frac{f}{a})[/math] |
skalowanie w częstości: | [math]\frac{1}{|a|} s(\frac{t}{a})[/math] & [math]\stackrel{\mathcal{F}}{\Longrightarrow}[/math] & [math]\hat{s}(a f)[/math] |
przesunięcie w czasie: | [math]s(t - t_0)[/math] & [math]\stackrel{\mathcal{F}}{\Longrightarrow}[/math] & [math]\hat{s}(f) \;e^{2 \pi i f t_0}[/math] |
przesunięcie w częstości: | [math]s(t) \;e^{- 2 \pi i f_0 t}[/math] & [math]\stackrel{\mathcal{F}}{\Longrightarrow}[/math] & [math]\hat{s}(f - f_0)[/math] |
Powyższe wzory wyprowadzić można bezpośrednio z definicji (1) i (2).
Częstość
Według Słownika języka polskiego
częstość[3] [math](\ldots)[/math] 2. fiz. <<liczba zdarzeń lub cyklów zjawiska okresowego w jednostce czasu>>
Szukamy narzędzia, które wskazałoby występujące w sygnale częstości i ich względny wkład. Konieczny jest do tego wybór "wzorca", czyli podstawowego kształtu (funkcji), którym będziemy mierzyć częstość. Standardem jest tu sinus (w parze z kosinusem) lub odpowiadające im oscylacje zespolone [math]e^{i\omega t}[/math]. Dzieje się tak głównie dlatego, że funkcje te są wektorami własnymi systemów liniowych niezmienniczych w czasie oraz zbiór [math]\left\{e^{ik\omega}\right\}_{k\in\mathbb{Z}}[/math] jest ortonormalną bazą [math]L^2([0,2\pi])[/math].
Praktyczna estymacja widma Fourierowskiego sygnałów
Dla sygnałów dyskretnych obliczamy Dyskretną Transformatę Fouriera (omawianą szerzej na ćwiczeniach). Kwadrat jej modułu to inaczej periodogram, czyli estymata geśtości widmowej mocy dla sygnałów dyskretnych.
Sygnały z którymi mamy do czynienia w praktyce są nie tylko dyskretne, ale też skończone. Obliczanie transformaty Fouriera dla skończonego odcinka niesie ze sobą dodatkowe komplikacje. Znamy wartości sygnału [math]x[n][/math] dla [math]i=1\ldots N[/math]. Odpowiada to iloczynowi sygnału [math]\left\{s[n]\right\}_{n\in\mathbb{Z}}[/math] z oknem prostokątnym [math]w_p[k][/math]:
[math] w_p[k]=\left\{\begin{array}{rl} 1 & \mathrm{dla} \;k=1 .. N\\ 0 & \mathrm{dla} \;k\lt 0 \vee k\gt N\\ \end{array} \right. [/math]
W efekcie (patrz twierdzenie o splocie) otrzymujemy splot transformaty Fouriera sygnału (nieskończonego) z transformatą Fouriera okna [math]\hat{w}_p[k][/math]. Na przykład dla okna prostokątnego będzie to funkcja postaci [math]sin(x)/x[/math], która może wprowadzić w widmie sztuczne oscylacje, które mylnie możemy zidentyfikować z pikami widma. Dlatego w praktyce stosujemy okna o łagodniejszym przebiegu transformaty Fouriera. Czyli:
- Obliczamy iloczyn sygnału [math]s[n][/math] z wybranym oknem [math]w[n][/math], dopasowanym do jego rozmiaru
- Obliczamy periodogram sygnału [math]s[n] w[n][/math]
Przy założeniu stacjonarności sygnału możemy obliczyć widmo omawianą na ćwiczeniach metodą Welcha, według której dzielimy sygnał na zachodzące na siebie odcinki, każdy odcinek mnożymy przez okno [math]w[n][/math] po czy otrzymane widma uśredniamy. W ten sposób dla każdej częstości mamy po kilka estymat mocy widmowej, wyliczonych z kolejnych odcinków, co pozwala na oszacowanie błędu estymaty.
- ↑ Jeśli znamy dokładnie wartości sygnału od [math]-\infty[/math] do [math]\infty[/math]; w praktyce tak się nie zdarza, stąd m. in. rozdział o reprezentacjach przybliżonych.
- ↑ poza rozbieżnością całki modułu, "popsuć" wzory (2) i (1) może wyjątkowo patologiczne zachowanie funkcji, jak nieskończona liczba ekstremów lub punktów nieciągłości w skończonym przedziale. Podobnie wygląda sytuacja dla szeregów Fouriera.
- ↑ W kręgach inżynierskich po wojnie wprowadzonono termin "częstotliwość", którego rozróżnienie od częstości nie jest powszechnie jednoznaczne; brak takich rozróżnień np. w innych językach europejskich, a w polskim wydaje się on równie potrzebny jak np. "gęstotliwość" \emph{(na podstawie informacji prof. A. K. Wróblewskiego)}.