Ćwiczenia 6
Analiza_sygnałów_-_ćwiczenia/Filtry
Spis treści
Wprowadzenie
- W analizie sygnałów filtowanie rozumiane jest najczęściej jako operacja mająca na celu usunięcie z sygnału pewnych składowych. Często operacja ta dotyczy składowych charakteryzowanych przez częstości np.:
- w sygnale EEG wiemy, że znaczącym artefaktem jest sygnał pochodzący od sieci energetycznej, zatem stosujemy filtr usuwający składową około 50Hz (w Europie).
- Inny przykład z tej samej dziedziny: interesuje nas czynność alfa (8 -12 Hz), chcemy zatem usunąć z sygnału składowe o niższych i o wyższych częstościach.
- w przestrzeni częstości filtrowanie odpowiada przemnożeniu każdej składowej częstościowej przez pewną liczbę (zespoloną)-> zatem zmienić się może amplituda i faza każdej częstości
- w dziedzinie czasu to mnożenie odpowiada splotowi sygnału z pewną funkcją tzw.funkcją odpowiedzi impulsowej
Filtrowanie a sploty
Poniższy przykład pokazuje działanie filtra zadanego przez funkcję odpowiedzi impulsowej. Filtr ten uśrednia 4 sąsiednie próbki.
- Pierwszy rysunek pokazuje działanie filtra na sygnał będący impulsem. Ma to nam uzmysłowić pojęcie funkcji odpowiedzi impulsowej.
- Drugi rysunek przedstawia działanie filtra na sygnał stały. Proszę zwrócić tu uwagę na efekty brzegowe, czyli zniekształcenia sygnału wyjściowego na początku i na końcu sekwencji wyjściowej. Porównajmy też działanie funkcji numpy.convolve z opcją 'full' i 'same'.
- Trzeci rysunek przedstawia działanie tego filtra na sekwencję losową.
import numpy as np
import pylab as py
# odpowiedz impulsowa filtru.Filtr ten uśrednia 4 sąsiednie elementy
h = np.array([1, 1, 1, 1])/4.0
# ilustracja odpowiedzi impulsowej
imp = np.array([0,0,0,0,1,0,0,0,0]) # sygnał impuls
# zaaplikowanie filtru h do sygnału imp
y_imp = np.convolve(h,imp)
py.figure(1)
py.subplot(3,1,1)
py.plot(imp,'o')
py.title('sygnał: imp')
py.subplot(3,1,2)
py.plot(h,'o')
py.title('odpowiedz impulsowa: h')
py.subplot(3,1,3)
py.plot(y_imp,'o')
py.title('wyjście: y_imp')
#ilustracja efektów brzegowych
x = np.array([2, 2, 2, 2, 2, 2, 2, 2, 2, 2]) # sygnał o długości 10 próbek
y = np.convolve(h,x,'full') # zaaplikowanie filtru h do sygnału x
#y = np.convolve(h,x,'same') # zaaplikowanie filtru h do sygnału x
py.figure(2)
py.subplot(2,2,1)
py.plot(x,'o')
py.title('sygnał: x')
py.subplot(2,2,3)
py.plot(h,'o')
py.title('odpowiedz impulsowa: h')
py.subplot(1,2,2)
py.plot(y,'o')
py.title('wyjście: y')
# ilustracja działąnia na sygnał stochastyczny
syg = np.random.randn(100)
wyj = np.convolve(syg,h,'same')
py.figure(3)
py.subplot(2,1,1)
py.plot(syg)
py.title('sygnał wejściowy')
py.subplot(2,1,2)
py.plot(wyj)
py.title('sygnał wyjściowy')
py.show()
Działanie filtru w dziedzinie czasu, typy filtrów
Operację splotu dla sygnałów dyskretnych wyraża następująca formuła: [math] (f * g)[n] = \sum_{m = -\infty}^{\infty} f[m] g[n - m] [/math]
Typ 1
Działanie filtru zadanego przez odpowiedź impulsową b o długości [math]n_b[/math] na sygnał x można zapisać:
- [math]y(n) = (b*x)[n] =b[0]*x[n] + b[1]*x[n-1] + \dots + b[n_b]*x[n-n_b][/math]
Taki filtr nazywamy filtrem o skończonej odpowiedzi impulsowej (SOI)(Finite Impulse Responce FIR) bo odpowiedź na impulsowe wzbudzenie kończy się po [math]n_b[/math] próbkach. Inne spotykane nazwy to: nie rekursywny, średnia biegnąca (Moving Average MA).
Dla filtrów FIR współczynniki filtru i odpowiedź impulsowa są takie same.
Typ 2
Kolejnym typem filtru jest typ przypominający proces autoregresyjny. Operacja splotu działa tu na sekwencji wyjściowej:
- [math] y[n] = x[n] - a[1]*y[n-1] - \dots - a[n_a]*y[n-n_a] [/math]
Filtr ten nazywany jest filtr rekursywny, autoregresyjny AR. W ogólniści jego odpowiedź impulsowa może być nieskończona.
Typ 3
Najbardziej ogólnym typem jest połączenie dwóch powyższych czyli:
- [math] \begin{array}{ll} y[n] = b[0]*x[n] &+ b[1]*x[n-1] + \dots + b[n_b]*x[n-n_b]\\ &- a[1]*y[n-1] - \dots - a[n_a]*y[n-n_a] \end{array} [/math]
Tą wersję filtru nazywamy filtrem o nieskończonej odpowiedzi impulsowej (Infinite Impulse Responce IIR) bo potencjalnie raz wzbudzony może dowolnie długo produkować niezerowe wyjście.
Rzędem filtru nazywamy maksymane opóźnienie w próbkach potrzebne do wytworzenia nowej próbki wyjściowej. Dla filtrów FIR jest on równy liczbie [math] n_b[/math]. Dla filtrów IIR jest to większa z liczb [math]n_a, n_b[/math].
Działanie filtru w dziedzinie częstości
Działanie filtrów FIR i IIR najłatwiej zrozumieć w dziedzinie cząstości. Stosując transformatę [math]Z[/math] (analogicznie jak dla procesu AR) możemy równanie z dziedziny czasu przenieść do dziedziny częstości. Filtrowanie odpowiada przemnożeniu transformaty sygnału przez transformatę funkcji przenoszenia filtru:
- [math]Y[z]=H[z]X[z]=\frac{b[0]+b[1]z^{-1}+\dots +b[n_b]z^{-n_b}}{a[0]+a[1]z^{-1}+\dots +a[n_a]z^{-n_a}}X[z][/math]
Występująca tu funkcja H nosi nazwę transmitancja lub funkcja przenoszenia. Znając funkcję [math]H[/math] łatwo możemy przewidzieć co się stanie z widmem sygnału po przefiltrowaniu. Weźmy [math] z = e^{i 2\pi f}[/math]. Wówczas transmitancja jest funkcją częstości f. Dla każdej konkretnej częstości [math]f_k[/math] przypisuje ona liczbę zespoloną, którą można wyrazić jako [math]A_k e^{i \phi_k}[/math]. W dziedzinie częstości sygnał wyrażony jest przez współczynniki Fourierowskie. Dla konkretnej częstości współczynnik taki [math]X_k = |X_k| e^{i \theta_k}[/math] (liczba zespolona) mówi z jaką amplitudą i jaką fazą exponens zespolony o danej częstości ([math]z_k = e^{i 2\pi f_k}[/math]) wchodzi w skład sygnału.
Zatem działanie filtra na sygnał w dziedzinie częstości polega na przemnożeniu składowej sygnału o częstości [math]f_k[/math] przez liczbę [math]A_k e^{i \phi_k}[/math]:
- [math]Y(f_k) = A_k e^{i \phi_k} |X_k| e^{i \theta_k} z_k = A_k |X_k| e^{i ( \phi_k +\theta_k)} e^{i 2\pi f_k} [/math]
Zatem w wyniku filtrowania składowa sygnału o danej częstości może zmienić amplitudę i fazę ale co warto zauważyć nie zmienia częstości.
Zera i bieguny filtra to odpowiednio miejsca zerowe licznika i mianownika funkcji przenoszenia.
Implementacja filtrowania: funkcja lfilter
Filtrowanie zgodne z powyższymi równaniami zaimplementowane jest w pythonie w module scipy.signal jako funkcja lfilter.
Podstawowe wywołanie tej funkcji dla sygnału we wygląda następująco: wy = scipy.signal.lfilter(b,a,we) gdzie b, a są to współczynniki z poprzedniego równania. np:
import numpy as np
import pylab as py
from scipy.signal import lfilter
b = np.array([0.7, 0.5]) # licznik
a = np.array([1.0, -0.9]) # mianownik
we = np.random.randn(100)
wy=lfilter(b,a,we);
py.subplot(2,1,1)
py.plot(we)
py.subplot(2,1,2)
py.plot(wy)
py.show()
Opóźnienie grupowe i fazowe filtru
Interpretacja własności fazowych filtru łatwiejsza jest jeśli zamiast fazy wykreślimy opóźnienie fazowe lub grupowe.
- Opóźnienie fazowe zdefiniowane jest jako:
- [math]\tau_p(\omega )=-\frac{\phi(\omega)}{\omega}[/math]
Sens tej definicji widać jeśli zastosujemy ją do sinusa o częstości [math]\omega_1[/math] i fazie [math]\phi_1[/math]. [math]\sin(\omega_1 t + \phi_1)= \sin(\omega_1 t - \omega_1 \tau_p(\omega_1)) = \sin(\omega_1 (t-\tau_p(\omega_1))) [/math]
- opóźnienie grupowe zdefiniowane jest jako:
- [math]\tau _g(\omega )=-\frac{d \phi (\omega )}{d \omega }[/math]
Sens tej definicji widać jeśli rozważymy co stanie się z sygnałem składającym się z dwóch cosinusiod o bliskich sobie częstościach [math]\omega_1[/math] i [math] \omega_2[/math]. Załóżmy, że filtr przenosi każdą z nich z niezmienioną amplitudą i jedynie faza ulega przesunięciu odpowiednio o [math]\phi_1[/math] i [math]\phi_2[/math]. Na wejściu nasz sygnał można przedstawić tak:
- [math]\cos(\omega_1 t) + \cos(\omega_2 t) = 2\cos\left(\frac{\omega_1-\omega_2}{2}t\right)\cos\left(\frac{\omega_1+\omega_2}{2}t\right)= 2\cos\left(\frac{\Delta\omega}{2}t\right)\cos\left(\frac{\omega_1+\omega_2}{2}t\right)[/math]
Widać, że takie dwa cosinusy powodują efekt dudnienia. Innymi słowy można je postrzegać jako oscylację z częstością średnią obu cosinusów modulowaną wolno zmienną ([math]\Delta \omega/2[/math]) obwiednią. Sygnał wyjściowy z naszego filtru modyfikującego tylko fazy można zapisać tak:
- [math]y = \cos(\omega_1 t +\phi_1) + \cos(\omega_2 t +\phi_2) = 2\cos\left(\frac{\omega_1-\omega_2}{2}t +\frac{\phi_1-\phi_2}{2}\right)\cos\left(\frac{\omega_1+\omega_2}{2}t+\frac{\phi_1+\phi_2}{2}\right)[/math]
Oznaczmy [math]\Delta \phi = \phi_1 - \phi_2[/math].
- [math] y = 2\cos\left(\frac{1}{2} \left(\Delta\omega t +\Delta\phi \right) \right)\cos\left(\frac{\omega_1+\omega_2}{2}t+\frac{\phi_1+\phi_2}{2}\right) [/math]
Wprowadzając [math] t_g = - \frac{ \Delta \phi}{\Delta \omega}[/math] mamy:
- [math] y = 2\cos\left(\frac{1}{2} \left(\Delta\omega t - \Delta\omega t_g \right) \right)\cos\left(\frac{\omega_1+\omega_2}{2}t+\frac{\phi_1+\phi_2}{2}\right) = [/math]
- [math] = 2\cos\left(\frac{1}{2} \Delta\omega \left(t - t_g \right) \right)\cos\left(\frac{\omega_1+\omega_2}{2}t+\frac{\phi_1+\phi_2}{2}\right) [/math]
Zatem widzimy, że obwiednia przesunięta jest w czasie o [math]t_g[/math]. W granicznym przypadku ciągłym [math]\lim_{\Delta \omega \to 0}t_g = \tau_g[/math]
Projektowanie filtru
Specyfikacja własności filtru
Filtr specyfikujemy opisując moduł jego pożądanej funkcji przenoszenia:
- ogólne określenie granic pasma przenoszenia np: dla sygnału próbkowanego 128 Hz zaprojektować filtr dolnoprzepustowy 30 Hz, oznacza, że w idealnej sytuacji filtr będzie przenosił bez zmian częstości od 0 do 30 Hz a od 30Hz do 64Hz będzie całkowicie tłumił.
- w bardziej rygorystycznym opisie możemy dodatkowo podać:
- dopuszczalną amplitudę oscylacji Rp w paśmie przenoszenia (pass band),
- minimalne tłumienie Rs pasma tłumienia (stop band),
- szerokość pasma przejściowego
Oznaczenia jak na poniższym rysunku.
W określaniu parametrów filtrów używa się często pojęcia decybel [dB]. Dwa poziomy sygnału [math]P[/math] oraz [math]P_0[/math] różnią się o [math]n[/math] decybeli, jeżeli
- [math]n = 10 \log _{10} \frac{P}{P_0} = 10 \log_{10}\left(\frac{A}{A_0}\right)^2 = 20\log_{10}\frac{A}{A_0} [/math]
- można też podać częstość odcięcia i zbocze filtru zgodnie z oznaczeniami na poniższym rysunku:
Funkcje do projektownaia filtrów FIR
W module scipy.signal mamy kilka funkcji do projektowania filtrów typu FIR.
firwin
Najprostszą koncepcyjnie metodą projektowania filtrów FIR jest metoda okienkowa. Metoda składa się z następujących kroków: w dziedzinie częstości projektowana jest idealna funkcja przenoszenia, obliczana jest od niej odwrotna transformata Fouriera, następnie otrzymana sekwencja czasowa (odpowiedź impulsowa) jest przemnażana przez wybrane okno.
Metoda ta zaimplementowana jest w funkcji scipy.signal.firwin(numtaps, cutoff, width=None, window='hamming', pass_zero=True, scale=True, nyq=1.0). Pozwala ona projektować filtry dolno- i górno- przepustowe oraz pasmowo przepustowe i pasmowo zaporowe metodą okienkową.
Najważniejsze parametry (kompletny opis w dokumentacji firwin):
- numtaps: int, ilość współczynników filtru (rząd filtru+1). Liczba ta musi być parzysta jeśli pasmo przenoszenia ma zawierać częstość Nyquista.
- cutoff: częstość odcięcia filtru. Może być jedną liczbą zmiennoprzecinkową dla filtru dolno- lub górno- przepustowego lub tablicą dla filtrów pasmowych. Wyrażamy ją w tych samych jednostkach co nyq i musi zawierać się pomiędzy 0 a nyq.
- window: napis lub krotka: określa jakiego okna użyć do projektu filtru. Może to być dowolne okno spośród opisanych w scipy.signal.get_window
- pass_zero: bool, Jeśli True to zero jest przenoszone, jeśli False to nie jest. Ten parametr decyduje jak jest interpretowane pierwsze pasmo od 0 do cutoff - czy ma to być pasmo przenoszone czy tłumione.
- nyq: float. Częstość Nyquista.
- Zwraca: współczynniki b
Przykładowe projekty
We wszystkich poniższych przykładach zakładamy, że częstość próbkowania wynosi 256Hz:
- filtr dolnoprzepustowy rzędu 20 z częstością odcięcia 40Hz:
firwin(21, 40/128.0, nyq= 1) firwin(21, 40, nyq= 128)
- filtr górnoprzepustowy rzędu 15 z częstością odcięcia 5 Hz:
firwin(16, 5, nyq= 128, pass_zero=False)
- pasmowo przepustowy 5 rzędu przenoszący częstości pomiędzy 8 a 14 Hz:
firwin(6, [8 14], nyq= 128, pass_zero=False)
- pasmowo zaporowy 5 rzędu tłumiący częstości pomiędzy 8 a 14 Hz:
firwin(6, [8 14], nyq= 128, pass_zero=True)
Demo własności "audio" filtrów tego typu: applet
firwin2
Funkcja scipy.signal.firwin2(numtaps, freq, gain, nfreqs=None, window='hamming', nyq=1.0) również implementuje okienkową metodę projektowania filtrów FIR. Daje ona nieco większą swobodę w kształtowaniu idealnej funkcji przenoszenia. Zadaje się ją przez podanie dwóch wektorów: freq i gain. Wektor freq definiuje punkty w częstości (jednostki takie same jak nyq, muszą zawierać 0 i nyq) dla których znana jest wartość pożądanego przenoszenia. Pożądane wartości przenoszenia odpowiadające kolejnym częstościom definiowane są w gain. Wartości freq muszą być ułożone w kolejności rosnącej, dopuszczalne jest powtórzenie tej samej wartości częstości i odpowiadających im różnych wartości gain aby zdefiniować nieciągłość funkcji przenoszenia. Znaczenie pozostałych parametrów jest takie samo jak dla firwin.
funkcja dostepna jest począwszy od wersji scipy 0.9.0
Przykład: filtr górno przepustowy. Liniowo narastające przenoszenie pomiędzy 20 a 40 Hz:
f = np.array([0, 20, 40, 128])
g = np.array([0, 0, 1, 1])
b = firwin2(50,f,g,nfreqs, nyq=128)# licznik
Badanie własności filtru w dziedzinie częstości
Podstawowe własności filtru możemy łatwo odczytać z wykresu przedstawiającego moduł funkcji przenoszenia i jej fazę w zależności od częstości. Moduł funkcji przenoszenia najczęściej wykreśla się w skali pół logarytmicznej.
W module scipy.signal zaimplementowana jest funkcja freqz, która wylicza wartości funkcję przenoszenia filtru zadanego współczynnikami b, a w zadanej ilości dyskretnych częstości. Jej użycie ilustruje poniższy przykład:
Przykład
Poniższy przykład przedstawia własności filtra dolnoprzepustowego rzędu 50 o częstości odcięcia równej połowie częstości Nyquista.
W dziedzinie częstości
import numpy as np
import pylab as py
from scipy.signal import freqz, firwin
b = firwin(50,0.5)# licznik
a = np.array([1.0]) # mianownik
n = 1000 # n ilość punktów na których będzie obliczona funkcja h
w, h = freqz(b,a,n)
m = np.abs(h) # moduł transmitancji
phi = np.unwrap(np.angle(h)) # faza
py.subplot(4,1,1)
py.plot(w,20*np.log10(m))
py.ylabel('[dB]')
py.title('moduł transmitancji')
py.subplot(4,1,2)
py.plot(w,phi)
py.title('faza transmitancji')
py.ylabel('rad')
py.xlabel('rad/próbki')
fazowe = - phi/w
py.subplot(4,1,3)
py.plot(w,fazowe)
py.ylim([20,30])
py.title('opóźnienie fazowe')
py.ylabel('próbki')
py.xlabel('rad')
grupowe = - np.diff(phi)/np.diff(w)
py.subplot(4,1,4)
py.plot(w[:-1],grupowe)
py.ylim([20,30])
py.title('opóźnienie grupowe')
py.ylabel('próbki')
py.xlabel('rad')
py.show()
W dziedzinie czasu
Porównajmy działanie tego filtra w czasie z funkcjami przesunięć fazowych i grupowych:
import numpy as np
import pylab as py
from scipy.signal import lfilter, firwin
b = firwin(50,0.5)# licznik
py.subplot(3,1,1)
py.plot(b,'o')
s1 = np.zeros(100)
t = np.arange(0,1,0.01)
s2 = np.sin(2*np.pi*10*t)
s = np.concatenate((s1,s2))
py.subplot(3,1,2)
py.plot(s)
py.subplot(3,1,3)
y = lfilter(b,1,s)
py.plot(y)
py.show()
Zadania
- Zaprojektuj i zbadaj własności filtru:
- FIR dolno z pasmem przenoszenia od 30 Hz dla sygnału próbkowanego 256 Hz
- Znajdź rząd filtru FIR:
- dolnoprzepustowego z pasmem przenoszenia do 40 Hz dla sygnału próbkowanego [math]256[/math] Hz, tak aby dla częstości powyżej 45 Hz jego tłumienie było nie mniejsze niż 20dB.
Analiza_sygnałów_-_ćwiczenia/Filtry