Ćwiczenia 5

Z Brain-wiki

Analiza_sygnałów_-_ćwiczenia/AR_2 <!DOCTYPE html> <html> <head><meta charset="utf-8" /> <title>ProcesyAR</title>

<script src="https://cdnjs.cloudflare.com/ajax/libs/require.js/2.1.10/require.min.js"></script> <script src="https://cdnjs.cloudflare.com/ajax/libs/jquery/2.0.3/jquery.min.js"></script>

<style type="text/css">

   /*!
  • Twitter Bootstrap
  • /

/*!

* Bootstrap v3.3.6 (http://getbootstrap.com)
* Copyright 2011-2015 Twitter, Inc.
* Licensed under MIT (https://github.com/twbs/bootstrap/blob/master/LICENSE)
*/

/*! normalize.css v3.0.3 | MIT License | github.com/necolas/normalize.css */ html {

 font-family: sans-serif;
 -ms-text-size-adjust: 100%;
 -webkit-text-size-adjust: 100%;

} body {

 margin: 0;

} article, aside, details, figcaption, figure, footer, header, hgroup, main, menu, nav, section, summary {

 display: block;

} audio, canvas, progress, video {

 display: inline-block;
 vertical-align: baseline;

} audio:not([controls]) {

 display: none;
 height: 0;

} [hidden], template {

 display: none;

} a {

 background-color: transparent;

} a:active, a:hover {

 outline: 0;

} abbr[title] {

 border-bottom: 1px dotted;

} b, strong {

 font-weight: bold;

} dfn {

 font-style: italic;

} h1 {

 font-size: 2em;
 margin: 0.67em 0;

} mark {

 background: #ff0;
 color: #000;

} small {

 font-size: 80%;

} sub, sup {

 font-size: 75%;
 line-height: 0;
 position: relative;
 vertical-align: baseline;

} sup {

 top: -0.5em;

} sub {

 bottom: -0.25em;

} img {

 border: 0;

} svg:not(:root) {

 overflow: hidden;

} figure {

 margin: 1em 40px;

} hr {

 box-sizing: content-box;
 height: 0;

} pre {

 overflow: auto;

} code, kbd, pre, samp {

 font-family: monospace, monospace;
 font-size: 1em;

} button, input, optgroup, select, textarea {

 color: inherit;
 font: inherit;
 margin: 0;

} button {

 overflow: visible;

} button, select {

 text-transform: none;

} button, html input[type="button"], input[type="reset"], input[type="submit"] {

 -webkit-appearance: button;
 cursor: pointer;

} button[disabled], html input[disabled] {

 cursor: default;

} button::-moz-focus-inner, input::-moz-focus-inner {

 border: 0;
 padding: 0;

} input {

 line-height: normal;

} input[type="checkbox"], input[type="radio"] {

 box-sizing: border-box;
 padding: 0;

} input[type="number"]::-webkit-inner-spin-button, input[type="number"]::-webkit-outer-spin-button {

 height: auto;

} input[type="search"] {

 -webkit-appearance: textfield;
 box-sizing: content-box;

} input[type="search"]::-webkit-search-cancel-button, input[type="search"]::-webkit-search-decoration {

 -webkit-appearance: none;

} fieldset {

 border: 1px solid #c0c0c0;
 margin: 0 2px;
 padding: 0.35em 0.625em 0.75em;

} legend {

 border: 0;
 padding: 0;

} textarea {

 overflow: auto;

} optgroup {

 font-weight: bold;

} table {

 border-collapse: collapse;
 border-spacing: 0;

} td, th {

 padding: 0;

} /*! Source: https://github.com/h5bp/html5-boilerplate/blob/master/src/css/main.css */ @media print {

 *,
 *:before,
 *:after {
   background: transparent !important;
   color: #000 !important;
   box-shadow: none !important;
   text-shadow: none !important;
 }
 a,
 a:visited {
   text-decoration: underline;
 }
 a[href]:after {
   content: " (" attr(href) ")";
 }
 abbr[title]:after {
   content: " (" attr(title) ")";
 }
 a[href^="#"]:after,
 a[href^="javascript:"]:after {
   content: "";
 }
 pre,
 blockquote {
   border: 1px solid #999;
   page-break-inside: avoid;
 }
 thead {
   display: table-header-group;
 }
 tr,
 img {
   page-break-inside: avoid;
 }
 img {
   max-width: 100% !important;
 }
 p,
 h2,
 h3 {
   orphans: 3;
   widows: 3;
 }
 h2,
 h3 {
   page-break-after: avoid;
 }
 .navbar {
   display: none;
 }
 .btn > .caret,
 .dropup > .btn > .caret {
   border-top-color: #000 !important;
 }
 .label {
   border: 1px solid #000;
 }
 .table {
   border-collapse: collapse !important;
 }
 .table td,
 .table th {
   background-color: #fff !important;
 }
 .table-bordered th,
 .table-bordered td {
   border: 1px solid #ddd !important;
 }

} @font-face {

 font-family: 'Glyphicons Halflings';
 src: url('../components/bootstrap/fonts/glyphicons-halflings-regular.eot');
 src: url('../components/bootstrap/fonts/glyphicons-halflings-regular.eot?#iefix') format('embedded-opentype'), url('../components/bootstrap/fonts/glyphicons-halflings-regular.woff2') format('woff2'), url('../components/bootstrap/fonts/glyphicons-halflings-regular.woff') format('woff'), url('../components/bootstrap/fonts/glyphicons-halflings-regular.ttf') format('truetype'), url('../components/bootstrap/fonts/glyphicons-halflings-regular.svg#glyphicons_halflingsregular') format('svg');

} .glyphicon {

 position: relative;
 top: 1px;
 display: inline-block;
 font-family: 'Glyphicons Halflings';
 font-style: normal;
 font-weight: normal;
 line-height: 1;
 -webkit-font-smoothing: antialiased;
 -moz-osx-font-smoothing: grayscale;

} .glyphicon-asterisk:before {

 content: "\002a";

} .glyphicon-plus:before {

 content: "\002b";

} .glyphicon-euro:before, .glyphicon-eur:before {

 content: "\20ac";

} .glyphicon-minus:before {

 content: "\2212";

} .glyphicon-cloud:before {

 content: "\2601";

} .glyphicon-envelope:before {

 content: "\2709";

} .glyphicon-pencil:before {

 content: "\270f";

} .glyphicon-glass:before {

 content: "\e001";

} .glyphicon-music:before {

 content: "\e002";

} .glyphicon-search:before {

 content: "\e003";

} .glyphicon-heart:before {

 content: "\e005";

} .glyphicon-star:before {

 content: "\e006";

} .glyphicon-star-empty:before {

 content: "\e007";

} .glyphicon-user:before {

 content: "\e008";

} .glyphicon-film:before {

 content: "\e009";

} .glyphicon-th-large:before {

 content: "\e010";

} .glyphicon-th:before {

 content: "\e011";

} .glyphicon-th-list:before {

 content: "\e012";

} .glyphicon-ok:before {

 content: "\e013";

} .glyphicon-remove:before {

 content: "\e014";

} .glyphicon-zoom-in:before {

 content: "\e015";

} .glyphicon-zoom-out:before {

 content: "\e016";

} .glyphicon-off:before {

 content: "\e017";

} .glyphicon-signal:before {

 content: "\e018";

} .glyphicon-cog:before {

 content: "\e019";

} .glyphicon-trash:before {

 content: "\e020";

} .glyphicon-home:before {

 content: "\e021";

} .glyphicon-file:before {

 content: "\e022";

} .glyphicon-time:before {

 content: "\e023";

} .glyphicon-road:before {

 content: "\e024";

} .glyphicon-download-alt:before {

 content: "\e025";

} .glyphicon-download:before {

 content: "\e026";

} .glyphicon-upload:before {

 content: "\e027";

} .glyphicon-inbox:before {

 content: "\e028";

} .glyphicon-play-circle:before {

 content: "\e029";

} .glyphicon-repeat:before {

 content: "\e030";

} .glyphicon-refresh:before {

 content: "\e031";

} .glyphicon-list-alt:before {

 content: "\e032";

} .glyphicon-lock:before {

 content: "\e033";

} .glyphicon-flag:before {

 content: "\e034";

} .glyphicon-headphones:before {

 content: "\e035";

} .glyphicon-volume-off:before {

 content: "\e036";

} .glyphicon-volume-down:before {

 content: "\e037";

} .glyphicon-volume-up:before {

 content: "\e038";

} .glyphicon-qrcode:before {

 content: "\e039";

} .glyphicon-barcode:before {

 content: "\e040";

} .glyphicon-tag:before {

 content: "\e041";

} .glyphicon-tags:before {

 content: "\e042";

} .glyphicon-book:before {

 content: "\e043";

} .glyphicon-bookmark:before {

 content: "\e044";

} .glyphicon-print:before {

 content: "\e045";

} .glyphicon-camera:before {

 content: "\e046";

} .glyphicon-font:before {

 content: "\e047";

} .glyphicon-bold:before {

 content: "\e048";

} .glyphicon-italic:before {

 content: "\e049";

} .glyphicon-text-height:before {

 content: "\e050";

} .glyphicon-text-width:before {

 content: "\e051";

} .glyphicon-align-left:before {

 content: "\e052";

} .glyphicon-align-center:before {

 content: "\e053";

} .glyphicon-align-right:before {

 content: "\e054";

} .glyphicon-align-justify:before {

 content: "\e055";

} .glyphicon-list:before {

 content: "\e056";

} .glyphicon-indent-left:before {

 content: "\e057";

} .glyphicon-indent-right:before {

 content: "\e058";

} .glyphicon-facetime-video:before {

 content: "\e059";

} .glyphicon-picture:before {

 content: "\e060";

} .glyphicon-map-marker:before {

 content: "\e062";

} .glyphicon-adjust:before {

 content: "\e063";

} .glyphicon-tint:before {

 content: "\e064";

} .glyphicon-edit:before {

 content: "\e065";

} .glyphicon-share:before {

 content: "\e066";

} .glyphicon-check:before {

 content: "\e067";

} .glyphicon-move:before {

 content: "\e068";

} .glyphicon-step-backward:before {

 content: "\e069";

} .glyphicon-fast-backward:before {

 content: "\e070";

} .glyphicon-backward:before {

 content: "\e071";

} .glyphicon-play:before {

 content: "\e072";

} .glyphicon-pause:before {

 content: "\e073";

} .glyphicon-stop:before {

 content: "\e074";

} .glyphicon-forward:before {

 content: "\e075";

} .glyphicon-fast-forward:before {

 content: "\e076";

} .glyphicon-step-forward:before {

 content: "\e077";

} .glyphicon-eject:before {

 content: "\e078";

} .glyphicon-chevron-left:before {

 content: "\e079";

} .glyphicon-chevron-right:before {

 content: "\e080";

} .glyphicon-plus-sign:before {

 content: "\e081";

} .glyphicon-minus-sign:before {

 content: "\e082";

} .glyphicon-remove-sign:before {

 content: "\e083";

} .glyphicon-ok-sign:before {

 content: "\e084";

} .glyphicon-question-sign:before {

 content: "\e085";

} .glyphicon-info-sign:before {

 content: "\e086";

} .glyphicon-screenshot:before {

 content: "\e087";

} .glyphicon-remove-circle:before {

 content: "\e088";

} .glyphicon-ok-circle:before {

 content: "\e089";

} .glyphicon-ban-circle:before {

 content: "\e090";

} .glyphicon-arrow-left:before {

 content: "\e091";

} .glyphicon-arrow-right:before {

 content: "\e092";

} .glyphicon-arrow-up:before {

 content: "\e093";

} .glyphicon-arrow-down:before {

 content: "\e094";

} .glyphicon-share-alt:before {

 content: "\e095";

} .glyphicon-resize-full:before {

 content: "\e096";

} .glyphicon-resize-small:before {

 content: "\e097";

} .glyphicon-exclamation-sign:before {

 content: "\e101";

} .glyphicon-gift:before {

 content: "\e102";

} .glyphicon-leaf:before {

 content: "\e103";

} .glyphicon-fire:before {

 content: "\e104";

} .glyphicon-eye-open:before {

 content: "\e105";

} .glyphicon-eye-close:before {

 content: "\e106";

} .glyphicon-warning-sign:before {

 content: "\e107";

} .glyphicon-plane:before {

 content: "\e108";

} .glyphicon-calendar:before {

 content: "\e109";

} .glyphicon-random:before {

 content: "\e110";

} .glyphicon-comment:before {

 content: "\e111";

} .glyphicon-magnet:before {

 content: "\e112";

} .glyphicon-chevron-up:before {

 content: "\e113";

} .glyphicon-chevron-down:before {

 content: "\e114";

} .glyphicon-retweet:before {

 content: "\e115";

} .glyphicon-shopping-cart:before {

 content: "\e116";

} .glyphicon-folder-close:before {

 content: "\e117";

} .glyphicon-folder-open:before {

 content: "\e118";

} .glyphicon-resize-vertical:before {

 content: "\e119";

} .glyphicon-resize-horizontal:before {

 content: "\e120";

} .glyphicon-hdd:before {

 content: "\e121";

} .glyphicon-bullhorn:before {

 content: "\e122";

} .glyphicon-bell:before {

 content: "\e123";

} .glyphicon-certificate:before {

 content: "\e124";

} .glyphicon-thumbs-up:before {

 content: "\e125";

} .glyphicon-thumbs-down:before {

 content: "\e126";

} .glyphicon-hand-right:before {

 content: "\e127";

} .glyphicon-hand-left:before {

 content: "\e128";

} .glyphicon-hand-up:before {

 content: "\e129";

} .glyphicon-hand-down:before {

 content: "\e130";

} .glyphicon-circle-arrow-right:before {

 content: "\e131";

} .glyphicon-circle-arrow-left:before {

 content: "\e132";

} .glyphicon-circle-arrow-up:before {

 content: "\e133";

} .glyphicon-circle-arrow-down:before {

 content: "\e134";

} .glyphicon-globe:before {

 content: "\e135";

} .glyphicon-wrench:before {

 content: "\e136";

} .glyphicon-tasks:before {

 content: "\e137";

} .glyphicon-filter:before {

 content: "\e138";

} .glyphicon-briefcase:before {

 content: "\e139";

} .glyphicon-fullscreen:before {

 content: "\e140";

} .glyphicon-dashboard:before {

 content: "\e141";

} .glyphicon-paperclip:before {

 content: "\e142";

} .glyphicon-heart-empty:before {

 content: "\e143";

} .glyphicon-link:before {

 content: "\e144";

} .glyphicon-phone:before {

 content: "\e145";

} .glyphicon-pushpin:before {

 content: "\e146";

} .glyphicon-usd:before {

 content: "\e148";

} .glyphicon-gbp:before {

 content: "\e149";

} .glyphicon-sort:before {

 content: "\e150";

} .glyphicon-sort-by-alphabet:before {

 content: "\e151";

} .glyphicon-sort-by-alphabet-alt:before {

 content: "\e152";

} .glyphicon-sort-by-order:before {

 content: "\e153";

} .glyphicon-sort-by-order-alt:before {

 content: "\e154";

} .glyphicon-sort-by-attributes:before {

 content: "\e155";

} .glyphicon-sort-by-attributes-alt:before {

 content: "\e156";

} .glyphicon-unchecked:before {

 content: "\e157";

} .glyphicon-expand:before {

 content: "\e158";

} .glyphicon-collapse-down:before {

 content: "\e159";

} .glyphicon-collapse-up:before {

 content: "\e160";

} .glyphicon-log-in:before {

 content: "\e161";

} .glyphicon-flash:before {

 content: "\e162";

} .glyphicon-log-out:before {

 content: "\e163";

} .glyphicon-new-window:before {

 content: "\e164";

} .glyphicon-record:before {

 content: "\e165";

} .glyphicon-save:before {

 content: "\e166";

} .glyphicon-open:before {

 content: "\e167";

} .glyphicon-saved:before {

 content: "\e168";

} .glyphicon-import:before {

 content: "\e169";

} .glyphicon-export:before {

 content: "\e170";

} .glyphicon-send:before {

 content: "\e171";

} .glyphicon-floppy-disk:before {

 content: "\e172";

} .glyphicon-floppy-saved:before {

 content: "\e173";

} .glyphicon-floppy-remove:before {

 content: "\e174";

} .glyphicon-floppy-save:before {

 content: "\e175";

} .glyphicon-floppy-open:before {

 content: "\e176";

} .glyphicon-credit-card:before {

 content: "\e177";

} .glyphicon-transfer:before {

 content: "\e178";

} .glyphicon-cutlery:before {

 content: "\e179";

} .glyphicon-header:before {

 content: "\e180";

} .glyphicon-compressed:before {

 content: "\e181";

} .glyphicon-earphone:before {

 content: "\e182";

} .glyphicon-phone-alt:before {

 content: "\e183";

} .glyphicon-tower:before {

 content: "\e184";

} .glyphicon-stats:before {

 content: "\e185";

} .glyphicon-sd-video:before {

 content: "\e186";

} .glyphicon-hd-video:before {

 content: "\e187";

} .glyphicon-subtitles:before {

 content: "\e188";

} .glyphicon-sound-stereo:before {

 content: "\e189";

} .glyphicon-sound-dolby:before {

 content: "\e190";

} .glyphicon-sound-5-1:before {

 content: "\e191";

} .glyphicon-sound-6-1:before {

 content: "\e192";

} .glyphicon-sound-7-1:before {

 content: "\e193";

} .glyphicon-copyright-mark:before {

 content: "\e194";

} .glyphicon-registration-mark:before {

 content: "\e195";

} .glyphicon-cloud-download:before {

 content: "\e197";

} .glyphicon-cloud-upload:before {

 content: "\e198";

} .glyphicon-tree-conifer:before {

 content: "\e199";

} .glyphicon-tree-deciduous:before {

 content: "\e200";

} .glyphicon-cd:before {

 content: "\e201";

} .glyphicon-save-file:before {

 content: "\e202";

} .glyphicon-open-file:before {

 content: "\e203";

} .glyphicon-level-up:before {

 content: "\e204";

} .glyphicon-copy:before {

 content: "\e205";

} .glyphicon-paste:before {

 content: "\e206";

} .glyphicon-alert:before {

 content: "\e209";

} .glyphicon-equalizer:before {

 content: "\e210";

} .glyphicon-king:before {

 content: "\e211";

} .glyphicon-queen:before {

 content: "\e212";

} .glyphicon-pawn:before {

 content: "\e213";

} .glyphicon-bishop:before {

 content: "\e214";

} .glyphicon-knight:before {

 content: "\e215";

} .glyphicon-baby-formula:before {

 content: "\e216";

} .glyphicon-tent:before {

 content: "\26fa";

} .glyphicon-blackboard:before {

 content: "\e218";

} .glyphicon-bed:before {

 content: "\e219";

} .glyphicon-apple:before {

 content: "\f8ff";

} .glyphicon-erase:before {

 content: "\e221";

} .glyphicon-hourglass:before {

 content: "\231b";

} .glyphicon-lamp:before {

 content: "\e223";

} .glyphicon-duplicate:before {

 content: "\e224";

} .glyphicon-piggy-bank:before {

 content: "\e225";

} .glyphicon-scissors:before {

 content: "\e226";

} .glyphicon-bitcoin:before {

 content: "\e227";

} .glyphicon-btc:before {

 content: "\e227";

} .glyphicon-xbt:before {

 content: "\e227";

} .glyphicon-yen:before {

 content: "\00a5";

} .glyphicon-jpy:before {

 content: "\00a5";

} .glyphicon-ruble:before {

 content: "\20bd";

} .glyphicon-rub:before {

 content: "\20bd";

} .glyphicon-scale:before {

 content: "\e230";

} .glyphicon-ice-lolly:before {

 content: "\e231";

} .glyphicon-ice-lolly-tasted:before {

 content: "\e232";

} .glyphicon-education:before {

 content: "\e233";

} .glyphicon-option-horizontal:before {

 content: "\e234";

} .glyphicon-option-vertical:before {

 content: "\e235";

} .glyphicon-menu-hamburger:before {

 content: "\e236";

} .glyphicon-modal-window:before {

 content: "\e237";

} .glyphicon-oil:before {

 content: "\e238";

} .glyphicon-grain:before {

 content: "\e239";

} .glyphicon-sunglasses:before {

 content: "\e240";

} .glyphicon-text-size:before {

 content: "\e241";

} .glyphicon-text-color:before {

 content: "\e242";

} .glyphicon-text-background:before {

 content: "\e243";

} .glyphicon-object-align-top:before {

 content: "\e244";

} .glyphicon-object-align-bottom:before {

 content: "\e245";

} .glyphicon-object-align-horizontal:before {

 content: "\e246";

} .glyphicon-object-align-left:before {

 content: "\e247";

} .glyphicon-object-align-vertical:before {

 content: "\e248";

} .glyphicon-object-align-right:before {

 content: "\e249";

} .glyphicon-triangle-right:before {

 content: "\e250";

} .glyphicon-triangle-left:before {

 content: "\e251";

} .glyphicon-triangle-bottom:before {

 content: "\e252";

} .glyphicon-triangle-top:before {

 content: "\e253";

} .glyphicon-console:before {

 content: "\e254";

} .glyphicon-superscript:before {

 content: "\e255";

} .glyphicon-subscript:before {

 content: "\e256";

} .glyphicon-menu-left:before {

 content: "\e257";

} .glyphicon-menu-right:before {

 content: "\e258";

} .glyphicon-menu-down:before {

 content: "\e259";

} .glyphicon-menu-up:before {

 content: "\e260";

}

  • {
 -webkit-box-sizing: border-box;
 -moz-box-sizing: border-box;
 box-sizing: border-box;

}

  • before,
    after {
 -webkit-box-sizing: border-box;
 -moz-box-sizing: border-box;
 box-sizing: border-box;

} html {

 font-size: 10px;
 -webkit-tap-highlight-color: rgba(0, 0, 0, 0);

} body {

 font-family: "Helvetica Neue", Helvetica, Arial, sans-serif;
 font-size: 13px;
 line-height: 1.42857143;
 color: #000;
 background-color: #fff;

} input, button, select, textarea {

 font-family: inherit;
 font-size: inherit;
 line-height: inherit;

} a {

 color: #337ab7;
 text-decoration: none;

} a:hover, a:focus {

 color: #23527c;
 text-decoration: underline;

} a:focus {

 outline: thin dotted;
 outline: 5px auto -webkit-focus-ring-color;
 outline-offset: -2px;

} figure {

 margin: 0;

} img {

 vertical-align: middle;

} .img-responsive, .thumbnail > img, .thumbnail a > img, .carousel-inner > .item > img, .carousel-inner > .item > a > img {

 display: block;
 max-width: 100%;
 height: auto;

} .img-rounded {

 border-radius: 3px;

} .img-thumbnail {

 padding: 4px;
 line-height: 1.42857143;
 background-color: #fff;
 border: 1px solid #ddd;
 border-radius: 2px;
 -webkit-transition: all 0.2s ease-in-out;
 -o-transition: all 0.2s ease-in-out;
 transition: all 0.2s ease-in-out;
 display: inline-block;
 max-width: 100%;
 height: auto;

} .img-circle {

 border-radius: 50%;

} hr {

 margin-top: 18px;
 margin-bottom: 18px;
 border: 0;
 border-top: 1px solid #eeeeee;

} .sr-only {

 position: absolute;
 width: 1px;
 height: 1px;
 margin: -1px;
 padding: 0;
 overflow: hidden;
 clip: rect(0, 0, 0, 0);
 border: 0;

} .sr-only-focusable:active, .sr-only-focusable:focus {

 position: static;
 width: auto;
 height: auto;
 margin: 0;
 overflow: visible;
 clip: auto;

} [role="button"] {

 cursor: pointer;

} h1, h2, h3, h4, h5, h6, .h1, .h2, .h3, .h4, .h5, .h6 {

 font-family: inherit;
 font-weight: 500;
 line-height: 1.1;
 color: inherit;

} h1 small, h2 small, h3 small, h4 small, h5 small, h6 small, .h1 small, .h2 small, .h3 small, .h4 small, .h5 small, .h6 small, h1 .small, h2 .small, h3 .small, h4 .small, h5 .small, h6 .small, .h1 .small, .h2 .small, .h3 .small, .h4 .small, .h5 .small, .h6 .small {

 font-weight: normal;
 line-height: 1;
 color: #777777;

} h1, .h1, h2, .h2, h3, .h3 {

 margin-top: 18px;
 margin-bottom: 9px;

} h1 small, .h1 small, h2 small, .h2 small, h3 small, .h3 small, h1 .small, .h1 .small, h2 .small, .h2 .small, h3 .small, .h3 .small {

 font-size: 65%;

} h4, .h4, h5, .h5, h6, .h6 {

 margin-top: 9px;
 margin-bottom: 9px;

} h4 small, .h4 small, h5 small, .h5 small, h6 small, .h6 small, h4 .small, .h4 .small, h5 .small, .h5 .small, h6 .small, .h6 .small {

 font-size: 75%;

} h1, .h1 {

 font-size: 33px;

} h2, .h2 {

 font-size: 27px;

} h3, .h3 {

 font-size: 23px;

} h4, .h4 {

 font-size: 17px;

} h5, .h5 {

 font-size: 13px;

} h6, .h6 {

 font-size: 12px;

} p {

 margin: 0 0 9px;

} .lead {

 margin-bottom: 18px;
 font-size: 14px;
 font-weight: 300;
 line-height: 1.4;

} @media (min-width: 768px) {

 .lead {
   font-size: 19.5px;
 }

} small, .small {

 font-size: 92%;

} mark, .mark {

 background-color: #fcf8e3;
 padding: .2em;

} .text-left {

 text-align: left;

} .text-right {

 text-align: right;

} .text-center {

 text-align: center;

} .text-justify {

 text-align: justify;

} .text-nowrap {

 white-space: nowrap;

} .text-lowercase {

 text-transform: lowercase;

} .text-uppercase {

 text-transform: uppercase;

} .text-capitalize {

 text-transform: capitalize;

} .text-muted {

 color: #777777;

} .text-primary {

 color: #337ab7;

} a.text-primary:hover, a.text-primary:focus {

 color: #286090;

} .text-success {

 color: #3c763d;

} a.text-success:hover, a.text-success:focus {

 color: #2b542c;

} .text-info {

 color: #31708f;

} a.text-info:hover, a.text-info:focus {

 color: #245269;

} .text-warning {

 color: #8a6d3b;

} a.text-warning:hover, a.text-warning:focus {

 color: #66512c;

} .text-danger {

 color: #a94442;

} a.text-danger:hover, a.text-danger:focus {

 color: #843534;

} .bg-primary {

 color: #fff;
 background-color: #337ab7;

} a.bg-primary:hover, a.bg-primary:focus {

 background-color: #286090;

} .bg-success {

 background-color: #dff0d8;

} a.bg-success:hover, a.bg-success:focus {

 background-color: #c1e2b3;

} .bg-info {

 background-color: #d9edf7;

} a.bg-info:hover, a.bg-info:focus {

 background-color: #afd9ee;

} .bg-warning {

 background-color: #fcf8e3;

} a.bg-warning:hover, a.bg-warning:focus {

 background-color: #f7ecb5;

} .bg-danger {

 background-color: #f2dede;

} a.bg-danger:hover, a.bg-danger:focus {

 background-color: #e4b9b9;

} .page-header {

 padding-bottom: 8px;
 margin: 36px 0 18px;
 border-bottom: 1px solid #eeeeee;

} ul, ol {

 margin-top: 0;
 margin-bottom: 9px;

} ul ul, ol ul, ul ol, ol ol {

 margin-bottom: 0;

} .list-unstyled {

 padding-left: 0;
 list-style: none;

} .list-inline {

 padding-left: 0;
 list-style: none;
 margin-left: -5px;

} .list-inline > li {

 display: inline-block;
 padding-left: 5px;
 padding-right: 5px;

} dl {

 margin-top: 0;
 margin-bottom: 18px;

} dt, dd {

 line-height: 1.42857143;

} dt {

 font-weight: bold;

} dd {

 margin-left: 0;

} @media (min-width: 541px) {

 .dl-horizontal dt {
   float: left;
   width: 160px;
   clear: left;
   text-align: right;
   overflow: hidden;
   text-overflow: ellipsis;
   white-space: nowrap;
 }
 .dl-horizontal dd {
   margin-left: 180px;
 }

} abbr[title], abbr[data-original-title] {

 cursor: help;
 border-bottom: 1px dotted #777777;

} .initialism {

 font-size: 90%;
 text-transform: uppercase;

} blockquote {

 padding: 9px 18px;
 margin: 0 0 18px;
 font-size: inherit;
 border-left: 5px solid #eeeeee;

} blockquote p:last-child, blockquote ul:last-child, blockquote ol:last-child {

 margin-bottom: 0;

} blockquote footer, blockquote small, blockquote .small {

 display: block;
 font-size: 80%;
 line-height: 1.42857143;
 color: #777777;

} blockquote footer:before, blockquote small:before, blockquote .small:before {

 content: '\2014 \00A0';

} .blockquote-reverse, blockquote.pull-right {

 padding-right: 15px;
 padding-left: 0;
 border-right: 5px solid #eeeeee;
 border-left: 0;
 text-align: right;

} .blockquote-reverse footer:before, blockquote.pull-right footer:before, .blockquote-reverse small:before, blockquote.pull-right small:before, .blockquote-reverse .small:before, blockquote.pull-right .small:before {

 content: ;

} .blockquote-reverse footer:after, blockquote.pull-right footer:after, .blockquote-reverse small:after, blockquote.pull-right small:after, .blockquote-reverse .small:after, blockquote.pull-right .small:after {

 content: '\00A0 \2014';

} address {

 margin-bottom: 18px;
 font-style: normal;
 line-height: 1.42857143;

} code, kbd, pre, samp {

 font-family: monospace;

} code {

 padding: 2px 4px;
 font-size: 90%;
 color: #c7254e;
 background-color: #f9f2f4;
 border-radius: 2px;

} kbd {

 padding: 2px 4px;
 font-size: 90%;
 color: #888;
 background-color: transparent;
 border-radius: 1px;
 box-shadow: inset 0 -1px 0 rgba(0, 0, 0, 0.25);

} kbd kbd {

 padding: 0;
 font-size: 100%;
 font-weight: bold;
 box-shadow: none;

} pre {

 display: block;
 padding: 8.5px;
 margin: 0 0 9px;
 font-size: 12px;
 line-height: 1.42857143;
 word-break: break-all;
 word-wrap: break-word;
 color: #333333;
 background-color: #f5f5f5;
 border: 1px solid #ccc;
 border-radius: 2px;

} pre code {

 padding: 0;
 font-size: inherit;
 color: inherit;
 white-space: pre-wrap;
 background-color: transparent;
 border-radius: 0;

} .pre-scrollable {

 max-height: 340px;
 overflow-y: scroll;

} .container {

 margin-right: auto;
 margin-left: auto;
 padding-left: 0px;
 padding-right: 0px;

} @media (min-width: 768px) {

 .container {
   width: 768px;
 }

} @media (min-width: 992px) {

 .container {
   width: 940px;
 }

} @media (min-width: 1200px) {

 .container {
   width: 1140px;
 }

} .container-fluid {

 margin-right: auto;
 margin-left: auto;
 padding-left: 0px;
 padding-right: 0px;

} .row {

 margin-left: 0px;
 margin-right: 0px;

} .col-xs-1, .col-sm-1, .col-md-1, .col-lg-1, .col-xs-2, .col-sm-2, .col-md-2, .col-lg-2, .col-xs-3, .col-sm-3, .col-md-3, .col-lg-3, .col-xs-4, .col-sm-4, .col-md-4, .col-lg-4, .col-xs-5, .col-sm-5, .col-md-5, .col-lg-5, .col-xs-6, .col-sm-6, .col-md-6, .col-lg-6, .col-xs-7, .col-sm-7, .col-md-7, .col-lg-7, .col-xs-8, .col-sm-8, .col-md-8, .col-lg-8, .col-xs-9, .col-sm-9, .col-md-9, .col-lg-9, .col-xs-10, .col-sm-10, .col-md-10, .col-lg-10, .col-xs-11, .col-sm-11, .col-md-11, .col-lg-11, .col-xs-12, .col-sm-12, .col-md-12, .col-lg-12 {

 position: relative;
 min-height: 1px;
 padding-left: 0px;
 padding-right: 0px;

} .col-xs-1, .col-xs-2, .col-xs-3, .col-xs-4, .col-xs-5, .col-xs-6, .col-xs-7, .col-xs-8, .col-xs-9, .col-xs-10, .col-xs-11, .col-xs-12 {

 float: left;

} .col-xs-12 {

 width: 100%;

} .col-xs-11 {

 width: 91.66666667%;

} .col-xs-10 {

 width: 83.33333333%;

} .col-xs-9 {

 width: 75%;

} .col-xs-8 {

 width: 66.66666667%;

} .col-xs-7 {

 width: 58.33333333%;

} .col-xs-6 {

 width: 50%;

} .col-xs-5 {

 width: 41.66666667%;

} .col-xs-4 {

 width: 33.33333333%;

} .col-xs-3 {

 width: 25%;

} .col-xs-2 {

 width: 16.66666667%;

} .col-xs-1 {

 width: 8.33333333%;

} .col-xs-pull-12 {

 right: 100%;

} .col-xs-pull-11 {

 right: 91.66666667%;

} .col-xs-pull-10 {

 right: 83.33333333%;

} .col-xs-pull-9 {

 right: 75%;

} .col-xs-pull-8 {

 right: 66.66666667%;

} .col-xs-pull-7 {

 right: 58.33333333%;

} .col-xs-pull-6 {

 right: 50%;

} .col-xs-pull-5 {

 right: 41.66666667%;

} .col-xs-pull-4 {

 right: 33.33333333%;

} .col-xs-pull-3 {

 right: 25%;

} .col-xs-pull-2 {

 right: 16.66666667%;

} .col-xs-pull-1 {

 right: 8.33333333%;

} .col-xs-pull-0 {

 right: auto;

} .col-xs-push-12 {

 left: 100%;

} .col-xs-push-11 {

 left: 91.66666667%;

} .col-xs-push-10 {

 left: 83.33333333%;

} .col-xs-push-9 {

 left: 75%;

} .col-xs-push-8 {

 left: 66.66666667%;

} .col-xs-push-7 {

 left: 58.33333333%;

} .col-xs-push-6 {

 left: 50%;

} .col-xs-push-5 {

 left: 41.66666667%;

} .col-xs-push-4 {

 left: 33.33333333%;

} .col-xs-push-3 {

 left: 25%;

} .col-xs-push-2 {

 left: 16.66666667%;

} .col-xs-push-1 {

 left: 8.33333333%;

} .col-xs-push-0 {

 left: auto;

} .col-xs-offset-12 {

 margin-left: 100%;

} .col-xs-offset-11 {

 margin-left: 91.66666667%;

} .col-xs-offset-10 {

 margin-left: 83.33333333%;

} .col-xs-offset-9 {

 margin-left: 75%;

} .col-xs-offset-8 {

 margin-left: 66.66666667%;

} .col-xs-offset-7 {

 margin-left: 58.33333333%;

} .col-xs-offset-6 {

 margin-left: 50%;

} .col-xs-offset-5 {

 margin-left: 41.66666667%;

} .col-xs-offset-4 {

 margin-left: 33.33333333%;

} .col-xs-offset-3 {

 margin-left: 25%;

} .col-xs-offset-2 {

 margin-left: 16.66666667%;

} .col-xs-offset-1 {

 margin-left: 8.33333333%;

} .col-xs-offset-0 {

 margin-left: 0%;

} @media (min-width: 768px) {

 .col-sm-1, .col-sm-2, .col-sm-3, .col-sm-4, .col-sm-5, .col-sm-6, .col-sm-7, .col-sm-8, .col-sm-9, .col-sm-10, .col-sm-11, .col-sm-12 {
   float: left;
 }
 .col-sm-12 {
   width: 100%;
 }
 .col-sm-11 {
   width: 91.66666667%;
 }
 .col-sm-10 {
   width: 83.33333333%;
 }
 .col-sm-9 {
   width: 75%;
 }
 .col-sm-8 {
   width: 66.66666667%;
 }
 .col-sm-7 {
   width: 58.33333333%;
 }
 .col-sm-6 {
   width: 50%;
 }
 .col-sm-5 {
   width: 41.66666667%;
 }
 .col-sm-4 {
   width: 33.33333333%;
 }
 .col-sm-3 {
   width: 25%;
 }
 .col-sm-2 {
   width: 16.66666667%;
 }
 .col-sm-1 {
   width: 8.33333333%;
 }
 .col-sm-pull-12 {
   right: 100%;
 }
 .col-sm-pull-11 {
   right: 91.66666667%;
 }
 .col-sm-pull-10 {
   right: 83.33333333%;
 }
 .col-sm-pull-9 {
   right: 75%;
 }
 .col-sm-pull-8 {
   right: 66.66666667%;
 }
 .col-sm-pull-7 {
   right: 58.33333333%;
 }
 .col-sm-pull-6 {
   right: 50%;
 }
 .col-sm-pull-5 {
   right: 41.66666667%;
 }
 .col-sm-pull-4 {
   right: 33.33333333%;
 }
 .col-sm-pull-3 {
   right: 25%;
 }
 .col-sm-pull-2 {
   right: 16.66666667%;
 }
 .col-sm-pull-1 {
   right: 8.33333333%;
 }
 .col-sm-pull-0 {
   right: auto;
 }
 .col-sm-push-12 {
   left: 100%;
 }
 .col-sm-push-11 {
   left: 91.66666667%;
 }
 .col-sm-push-10 {
   left: 83.33333333%;
 }
 .col-sm-push-9 {
   left: 75%;
 }
 .col-sm-push-8 {
   left: 66.66666667%;
 }
 .col-sm-push-7 {
   left: 58.33333333%;
 }
 .col-sm-push-6 {
   left: 50%;
 }
 .col-sm-push-5 {
   left: 41.66666667%;
 }
 .col-sm-push-4 {
   left: 33.33333333%;
 }
 .col-sm-push-3 {
   left: 25%;
 }
 .col-sm-push-2 {
   left: 16.66666667%;
 }
 .col-sm-push-1 {
   left: 8.33333333%;
 }
 .col-sm-push-0 {
   left: auto;
 }
 .col-sm-offset-12 {
   margin-left: 100%;
 }
 .col-sm-offset-11 {
   margin-left: 91.66666667%;
 }
 .col-sm-offset-10 {
   margin-left: 83.33333333%;
 }
 .col-sm-offset-9 {
   margin-left: 75%;
 }
 .col-sm-offset-8 {
   margin-left: 66.66666667%;
 }
 .col-sm-offset-7 {
   margin-left: 58.33333333%;
 }
 .col-sm-offset-6 {
   margin-left: 50%;
 }
 .col-sm-offset-5 {
   margin-left: 41.66666667%;
 }
 .col-sm-offset-4 {
   margin-left: 33.33333333%;
 }
 .col-sm-offset-3 {
   margin-left: 25%;
 }
 .col-sm-offset-2 {
   margin-left: 16.66666667%;
 }
 .col-sm-offset-1 {
   margin-left: 8.33333333%;
 }
 .col-sm-offset-0 {
   margin-left: 0%;
 }

} @media (min-width: 992px) {

 .col-md-1, .col-md-2, .col-md-3, .col-md-4, .col-md-5, .col-md-6, .col-md-7, .col-md-8, .col-md-9, .col-md-10, .col-md-11, .col-md-12 {
   float: left;
 }
 .col-md-12 {
   width: 100%;
 }
 .col-md-11 {
   width: 91.66666667%;
 }
 .col-md-10 {
   width: 83.33333333%;
 }
 .col-md-9 {
   width: 75%;
 }
 .col-md-8 {
   width: 66.66666667%;
 }
 .col-md-7 {
   width: 58.33333333%;
 }
 .col-md-6 {
   width: 50%;
 }
 .col-md-5 {
   width: 41.66666667%;
 }
 .col-md-4 {
   width: 33.33333333%;
 }
 .col-md-3 {
   width: 25%;
 }
 .col-md-2 {
   width: 16.66666667%;
 }
 .col-md-1 {
   width: 8.33333333%;
 }
 .col-md-pull-12 {
   right: 100%;
 }
 .col-md-pull-11 {
   right: 91.66666667%;
 }
 .col-md-pull-10 {
   right: 83.33333333%;
 }
 .col-md-pull-9 {
   right: 75%;
 }
 .col-md-pull-8 {
   right: 66.66666667%;
 }
 .col-md-pull-7 {
   right: 58.33333333%;
 }
 .col-md-pull-6 {
   right: 50%;
 }
 .col-md-pull-5 {
   right: 41.66666667%;
 }
 .col-md-pull-4 {
   right: 33.33333333%;
 }
 .col-md-pull-3 {
   right: 25%;
 }
 .col-md-pull-2 {
   right: 16.66666667%;
 }
 .col-md-pull-1 {
   right: 8.33333333%;
 }
 .col-md-pull-0 {
   right: auto;
 }
 .col-md-push-12 {
   left: 100%;
 }
 .col-md-push-11 {
   left: 91.66666667%;
 }
 .col-md-push-10 {
   left: 83.33333333%;
 }
 .col-md-push-9 {
   left: 75%;
 }
 .col-md-push-8 {
   left: 66.66666667%;
 }
 .col-md-push-7 {
   left: 58.33333333%;
 }
 .col-md-push-6 {
   left: 50%;
 }
 .col-md-push-5 {
   left: 41.66666667%;
 }
 .col-md-push-4 {
   left: 33.33333333%;
 }
 .col-md-push-3 {
   left: 25%;
 }
 .col-md-push-2 {
   left: 16.66666667%;
 }
 .col-md-push-1 {
   left: 8.33333333%;
 }
 .col-md-push-0 {
   left: auto;
 }
 .col-md-offset-12 {
   margin-left: 100%;
 }
 .col-md-offset-11 {
   margin-left: 91.66666667%;
 }
 .col-md-offset-10 {
   margin-left: 83.33333333%;
 }
 .col-md-offset-9 {
   margin-left: 75%;
 }
 .col-md-offset-8 {
   margin-left: 66.66666667%;
 }
 .col-md-offset-7 {
   margin-left: 58.33333333%;
 }
 .col-md-offset-6 {
   margin-left: 50%;
 }
 .col-md-offset-5 {
   margin-left: 41.66666667%;
 }
 .col-md-offset-4 {
   margin-left: 33.33333333%;
 }
 .col-md-offset-3 {
   margin-left: 25%;
 }
 .col-md-offset-2 {
   margin-left: 16.66666667%;
 }
 .col-md-offset-1 {
   margin-left: 8.33333333%;
 }
 .col-md-offset-0 {
   margin-left: 0%;
 }

} @media (min-width: 1200px) {

 .col-lg-1, .col-lg-2, .col-lg-3, .col-lg-4, .col-lg-5, .col-lg-6, .col-lg-7, .col-lg-8, .col-lg-9, .col-lg-10, .col-lg-11, .col-lg-12 {
   float: left;
 }
 .col-lg-12 {
   width: 100%;
 }
 .col-lg-11 {
   width: 91.66666667%;
 }
 .col-lg-10 {
   width: 83.33333333%;
 }
 .col-lg-9 {
   width: 75%;
 }
 .col-lg-8 {
   width: 66.66666667%;
 }
 .col-lg-7 {
   width: 58.33333333%;
 }
 .col-lg-6 {
   width: 50%;
 }
 .col-lg-5 {
   width: 41.66666667%;
 }
 .col-lg-4 {
   width: 33.33333333%;
 }
 .col-lg-3 {
   width: 25%;
 }
 .col-lg-2 {
   width: 16.66666667%;
 }
 .col-lg-1 {
   width: 8.33333333%;
 }
 .col-lg-pull-12 {
   right: 100%;
 }
 .col-lg-pull-11 {
   right: 91.66666667%;
 }
 .col-lg-pull-10 {
   right: 83.33333333%;
 }
 .col-lg-pull-9 {
   right: 75%;
 }
 .col-lg-pull-8 {
   right: 66.66666667%;
 }
 .col-lg-pull-7 {
   right: 58.33333333%;
 }
 .col-lg-pull-6 {
   right: 50%;
 }
 .col-lg-pull-5 {
   right: 41.66666667%;
 }
 .col-lg-pull-4 {
   right: 33.33333333%;
 }
 .col-lg-pull-3 {
   right: 25%;
 }
 .col-lg-pull-2 {
   right: 16.66666667%;
 }
 .col-lg-pull-1 {
   right: 8.33333333%;
 }
 .col-lg-pull-0 {
   right: auto;
 }
 .col-lg-push-12 {
   left: 100%;
 }
 .col-lg-push-11 {
   left: 91.66666667%;
 }
 .col-lg-push-10 {
   left: 83.33333333%;
 }
 .col-lg-push-9 {
   left: 75%;
 }
 .col-lg-push-8 {
   left: 66.66666667%;
 }
 .col-lg-push-7 {
   left: 58.33333333%;
 }
 .col-lg-push-6 {
   left: 50%;
 }
 .col-lg-push-5 {
   left: 41.66666667%;
 }
 .col-lg-push-4 {
   left: 33.33333333%;
 }
 .col-lg-push-3 {
   left: 25%;
 }
 .col-lg-push-2 {
   left: 16.66666667%;
 }
 .col-lg-push-1 {
   left: 8.33333333%;
 }
 .col-lg-push-0 {
   left: auto;
 }
 .col-lg-offset-12 {
   margin-left: 100%;
 }
 .col-lg-offset-11 {
   margin-left: 91.66666667%;
 }
 .col-lg-offset-10 {
   margin-left: 83.33333333%;
 }
 .col-lg-offset-9 {
   margin-left: 75%;
 }
 .col-lg-offset-8 {
   margin-left: 66.66666667%;
 }
 .col-lg-offset-7 {
   margin-left: 58.33333333%;
 }
 .col-lg-offset-6 {
   margin-left: 50%;
 }
 .col-lg-offset-5 {
   margin-left: 41.66666667%;
 }
 .col-lg-offset-4 {
   margin-left: 33.33333333%;
 }
 .col-lg-offset-3 {
   margin-left: 25%;
 }
 .col-lg-offset-2 {
   margin-left: 16.66666667%;
 }
 .col-lg-offset-1 {
   margin-left: 8.33333333%;
 }
 .col-lg-offset-0 {
   margin-left: 0%;
 }

} table {

 background-color: transparent;

} caption {

 padding-top: 8px;
 padding-bottom: 8px;
 color: #777777;
 text-align: left;

} th {

 text-align: left;

} .table {

 width: 100%;
 max-width: 100%;
 margin-bottom: 18px;

} .table > thead > tr > th, .table > tbody > tr > th, .table > tfoot > tr > th, .table > thead > tr > td, .table > tbody > tr > td, .table > tfoot > tr > td {

 padding: 8px;
 line-height: 1.42857143;
 vertical-align: top;
 border-top: 1px solid #ddd;

} .table > thead > tr > th {

 vertical-align: bottom;
 border-bottom: 2px solid #ddd;

} .table > caption + thead > tr:first-child > th, .table > colgroup + thead > tr:first-child > th, .table > thead:first-child > tr:first-child > th, .table > caption + thead > tr:first-child > td, .table > colgroup + thead > tr:first-child > td, .table > thead:first-child > tr:first-child > td {

 border-top: 0;

} .table > tbody + tbody {

 border-top: 2px solid #ddd;

} .table .table {

 background-color: #fff;

} .table-condensed > thead > tr > th, .table-condensed > tbody > tr > th, .table-condensed > tfoot > tr > th, .table-condensed > thead > tr > td, .table-condensed > tbody > tr > td, .table-condensed > tfoot > tr > td {

 padding: 5px;

} .table-bordered {

 border: 1px solid #ddd;

} .table-bordered > thead > tr > th, .table-bordered > tbody > tr > th, .table-bordered > tfoot > tr > th, .table-bordered > thead > tr > td, .table-bordered > tbody > tr > td, .table-bordered > tfoot > tr > td {

 border: 1px solid #ddd;

} .table-bordered > thead > tr > th, .table-bordered > thead > tr > td {

 border-bottom-width: 2px;

} .table-striped > tbody > tr:nth-of-type(odd) {

 background-color: #f9f9f9;

} .table-hover > tbody > tr:hover {

 background-color: #f5f5f5;

} table col[class*="col-"] {

 position: static;
 float: none;
 display: table-column;

} table td[class*="col-"], table th[class*="col-"] {

 position: static;
 float: none;
 display: table-cell;

} .table > thead > tr > td.active, .table > tbody > tr > td.active, .table > tfoot > tr > td.active, .table > thead > tr > th.active, .table > tbody > tr > th.active, .table > tfoot > tr > th.active, .table > thead > tr.active > td, .table > tbody > tr.active > td, .table > tfoot > tr.active > td, .table > thead > tr.active > th, .table > tbody > tr.active > th, .table > tfoot > tr.active > th {

 background-color: #f5f5f5;

} .table-hover > tbody > tr > td.active:hover, .table-hover > tbody > tr > th.active:hover, .table-hover > tbody > tr.active:hover > td, .table-hover > tbody > tr:hover > .active, .table-hover > tbody > tr.active:hover > th {

 background-color: #e8e8e8;

} .table > thead > tr > td.success, .table > tbody > tr > td.success, .table > tfoot > tr > td.success, .table > thead > tr > th.success, .table > tbody > tr > th.success, .table > tfoot > tr > th.success, .table > thead > tr.success > td, .table > tbody > tr.success > td, .table > tfoot > tr.success > td, .table > thead > tr.success > th, .table > tbody > tr.success > th, .table > tfoot > tr.success > th {

 background-color: #dff0d8;

} .table-hover > tbody > tr > td.success:hover, .table-hover > tbody > tr > th.success:hover, .table-hover > tbody > tr.success:hover > td, .table-hover > tbody > tr:hover > .success, .table-hover > tbody > tr.success:hover > th {

 background-color: #d0e9c6;

} .table > thead > tr > td.info, .table > tbody > tr > td.info, .table > tfoot > tr > td.info, .table > thead > tr > th.info, .table > tbody > tr > th.info, .table > tfoot > tr > th.info, .table > thead > tr.info > td, .table > tbody > tr.info > td, .table > tfoot > tr.info > td, .table > thead > tr.info > th, .table > tbody > tr.info > th, .table > tfoot > tr.info > th {

 background-color: #d9edf7;

} .table-hover > tbody > tr > td.info:hover, .table-hover > tbody > tr > th.info:hover, .table-hover > tbody > tr.info:hover > td, .table-hover > tbody > tr:hover > .info, .table-hover > tbody > tr.info:hover > th {

 background-color: #c4e3f3;

} .table > thead > tr > td.warning, .table > tbody > tr > td.warning, .table > tfoot > tr > td.warning, .table > thead > tr > th.warning, .table > tbody > tr > th.warning, .table > tfoot > tr > th.warning, .table > thead > tr.warning > td, .table > tbody > tr.warning > td, .table > tfoot > tr.warning > td, .table > thead > tr.warning > th, .table > tbody > tr.warning > th, .table > tfoot > tr.warning > th {

 background-color: #fcf8e3;

} .table-hover > tbody > tr > td.warning:hover, .table-hover > tbody > tr > th.warning:hover, .table-hover > tbody > tr.warning:hover > td, .table-hover > tbody > tr:hover > .warning, .table-hover > tbody > tr.warning:hover > th {

 background-color: #faf2cc;

} .table > thead > tr > td.danger, .table > tbody > tr > td.danger, .table > tfoot > tr > td.danger, .table > thead > tr > th.danger, .table > tbody > tr > th.danger, .table > tfoot > tr > th.danger, .table > thead > tr.danger > td, .table > tbody > tr.danger > td, .table > tfoot > tr.danger > td, .table > thead > tr.danger > th, .table > tbody > tr.danger > th, .table > tfoot > tr.danger > th {

 background-color: #f2dede;

} .table-hover > tbody > tr > td.danger:hover, .table-hover > tbody > tr > th.danger:hover, .table-hover > tbody > tr.danger:hover > td, .table-hover > tbody > tr:hover > .danger, .table-hover > tbody > tr.danger:hover > th {

 background-color: #ebcccc;

} .table-responsive {

 overflow-x: auto;
 min-height: 0.01%;

} @media screen and (max-width: 767px) {

 .table-responsive {
   width: 100%;
   margin-bottom: 13.5px;
   overflow-y: hidden;
   -ms-overflow-style: -ms-autohiding-scrollbar;
   border: 1px solid #ddd;
 }
 .table-responsive > .table {
   margin-bottom: 0;
 }
 .table-responsive > .table > thead > tr > th,
 .table-responsive > .table > tbody > tr > th,
 .table-responsive > .table > tfoot > tr > th,
 .table-responsive > .table > thead > tr > td,
 .table-responsive > .table > tbody > tr > td,
 .table-responsive > .table > tfoot > tr > td {
   white-space: nowrap;
 }
 .table-responsive > .table-bordered {
   border: 0;
 }
 .table-responsive > .table-bordered > thead > tr > th:first-child,
 .table-responsive > .table-bordered > tbody > tr > th:first-child,
 .table-responsive > .table-bordered > tfoot > tr > th:first-child,
 .table-responsive > .table-bordered > thead > tr > td:first-child,
 .table-responsive > .table-bordered > tbody > tr > td:first-child,
 .table-responsive > .table-bordered > tfoot > tr > td:first-child {
   border-left: 0;
 }
 .table-responsive > .table-bordered > thead > tr > th:last-child,
 .table-responsive > .table-bordered > tbody > tr > th:last-child,
 .table-responsive > .table-bordered > tfoot > tr > th:last-child,
 .table-responsive > .table-bordered > thead > tr > td:last-child,
 .table-responsive > .table-bordered > tbody > tr > td:last-child,
 .table-responsive > .table-bordered > tfoot > tr > td:last-child {
   border-right: 0;
 }
 .table-responsive > .table-bordered > tbody > tr:last-child > th,
 .table-responsive > .table-bordered > tfoot > tr:last-child > th,
 .table-responsive > .table-bordered > tbody > tr:last-child > td,
 .table-responsive > .table-bordered > tfoot > tr:last-child > td {
   border-bottom: 0;
 }

} fieldset {

 padding: 0;
 margin: 0;
 border: 0;
 min-width: 0;

} legend {

 display: block;
 width: 100%;
 padding: 0;
 margin-bottom: 18px;
 font-size: 19.5px;
 line-height: inherit;
 color: #333333;
 border: 0;
 border-bottom: 1px solid #e5e5e5;

} label {

 display: inline-block;
 max-width: 100%;
 margin-bottom: 5px;
 font-weight: bold;

} input[type="search"] {

 -webkit-box-sizing: border-box;
 -moz-box-sizing: border-box;
 box-sizing: border-box;

} input[type="radio"], input[type="checkbox"] {

 margin: 4px 0 0;
 margin-top: 1px \9;
 line-height: normal;

} input[type="file"] {

 display: block;

} input[type="range"] {

 display: block;
 width: 100%;

} select[multiple], select[size] {

 height: auto;

} input[type="file"]:focus, input[type="radio"]:focus, input[type="checkbox"]:focus {

 outline: thin dotted;
 outline: 5px auto -webkit-focus-ring-color;
 outline-offset: -2px;

} output {

 display: block;
 padding-top: 7px;
 font-size: 13px;
 line-height: 1.42857143;
 color: #555555;

} .form-control {

 display: block;
 width: 100%;
 height: 32px;
 padding: 6px 12px;
 font-size: 13px;
 line-height: 1.42857143;
 color: #555555;
 background-color: #fff;
 background-image: none;
 border: 1px solid #ccc;
 border-radius: 2px;
 -webkit-box-shadow: inset 0 1px 1px rgba(0, 0, 0, 0.075);
 box-shadow: inset 0 1px 1px rgba(0, 0, 0, 0.075);
 -webkit-transition: border-color ease-in-out .15s, box-shadow ease-in-out .15s;
 -o-transition: border-color ease-in-out .15s, box-shadow ease-in-out .15s;
 transition: border-color ease-in-out .15s, box-shadow ease-in-out .15s;

} .form-control:focus {

 border-color: #66afe9;
 outline: 0;
 -webkit-box-shadow: inset 0 1px 1px rgba(0,0,0,.075), 0 0 8px rgba(102, 175, 233, 0.6);
 box-shadow: inset 0 1px 1px rgba(0,0,0,.075), 0 0 8px rgba(102, 175, 233, 0.6);

} .form-control::-moz-placeholder {

 color: #999;
 opacity: 1;

} .form-control:-ms-input-placeholder {

 color: #999;

} .form-control::-webkit-input-placeholder {

 color: #999;

} .form-control::-ms-expand {

 border: 0;
 background-color: transparent;

} .form-control[disabled], .form-control[readonly], fieldset[disabled] .form-control {

 background-color: #eeeeee;
 opacity: 1;

} .form-control[disabled], fieldset[disabled] .form-control {

 cursor: not-allowed;

} textarea.form-control {

 height: auto;

} input[type="search"] {

 -webkit-appearance: none;

} @media screen and (-webkit-min-device-pixel-ratio: 0) {

 input[type="date"].form-control,
 input[type="time"].form-control,
 input[type="datetime-local"].form-control,
 input[type="month"].form-control {
   line-height: 32px;
 }
 input[type="date"].input-sm,
 input[type="time"].input-sm,
 input[type="datetime-local"].input-sm,
 input[type="month"].input-sm,
 .input-group-sm input[type="date"],
 .input-group-sm input[type="time"],
 .input-group-sm input[type="datetime-local"],
 .input-group-sm input[type="month"] {
   line-height: 30px;
 }
 input[type="date"].input-lg,
 input[type="time"].input-lg,
 input[type="datetime-local"].input-lg,
 input[type="month"].input-lg,
 .input-group-lg input[type="date"],
 .input-group-lg input[type="time"],
 .input-group-lg input[type="datetime-local"],
 .input-group-lg input[type="month"] {
   line-height: 45px;
 }

} .form-group {

 margin-bottom: 15px;

} .radio, .checkbox {

 position: relative;
 display: block;
 margin-top: 10px;
 margin-bottom: 10px;

} .radio label, .checkbox label {

 min-height: 18px;
 padding-left: 20px;
 margin-bottom: 0;
 font-weight: normal;
 cursor: pointer;

} .radio input[type="radio"], .radio-inline input[type="radio"], .checkbox input[type="checkbox"], .checkbox-inline input[type="checkbox"] {

 position: absolute;
 margin-left: -20px;
 margin-top: 4px \9;

} .radio + .radio, .checkbox + .checkbox {

 margin-top: -5px;

} .radio-inline, .checkbox-inline {

 position: relative;
 display: inline-block;
 padding-left: 20px;
 margin-bottom: 0;
 vertical-align: middle;
 font-weight: normal;
 cursor: pointer;

} .radio-inline + .radio-inline, .checkbox-inline + .checkbox-inline {

 margin-top: 0;
 margin-left: 10px;

} input[type="radio"][disabled], input[type="checkbox"][disabled], input[type="radio"].disabled, input[type="checkbox"].disabled, fieldset[disabled] input[type="radio"], fieldset[disabled] input[type="checkbox"] {

 cursor: not-allowed;

} .radio-inline.disabled, .checkbox-inline.disabled, fieldset[disabled] .radio-inline, fieldset[disabled] .checkbox-inline {

 cursor: not-allowed;

} .radio.disabled label, .checkbox.disabled label, fieldset[disabled] .radio label, fieldset[disabled] .checkbox label {

 cursor: not-allowed;

} .form-control-static {

 padding-top: 7px;
 padding-bottom: 7px;
 margin-bottom: 0;
 min-height: 31px;

} .form-control-static.input-lg, .form-control-static.input-sm {

 padding-left: 0;
 padding-right: 0;

} .input-sm {

 height: 30px;
 padding: 5px 10px;
 font-size: 12px;
 line-height: 1.5;
 border-radius: 1px;

} select.input-sm {

 height: 30px;
 line-height: 30px;

} textarea.input-sm, select[multiple].input-sm {

 height: auto;

} .form-group-sm .form-control {

 height: 30px;
 padding: 5px 10px;
 font-size: 12px;
 line-height: 1.5;
 border-radius: 1px;

} .form-group-sm select.form-control {

 height: 30px;
 line-height: 30px;

} .form-group-sm textarea.form-control, .form-group-sm select[multiple].form-control {

 height: auto;

} .form-group-sm .form-control-static {

 height: 30px;
 min-height: 30px;
 padding: 6px 10px;
 font-size: 12px;
 line-height: 1.5;

} .input-lg {

 height: 45px;
 padding: 10px 16px;
 font-size: 17px;
 line-height: 1.3333333;
 border-radius: 3px;

} select.input-lg {

 height: 45px;
 line-height: 45px;

} textarea.input-lg, select[multiple].input-lg {

 height: auto;

} .form-group-lg .form-control {

 height: 45px;
 padding: 10px 16px;
 font-size: 17px;
 line-height: 1.3333333;
 border-radius: 3px;

} .form-group-lg select.form-control {

 height: 45px;
 line-height: 45px;

} .form-group-lg textarea.form-control, .form-group-lg select[multiple].form-control {

 height: auto;

} .form-group-lg .form-control-static {

 height: 45px;
 min-height: 35px;
 padding: 11px 16px;
 font-size: 17px;
 line-height: 1.3333333;

} .has-feedback {

 position: relative;

} .has-feedback .form-control {

 padding-right: 40px;

} .form-control-feedback {

 position: absolute;
 top: 0;
 right: 0;
 z-index: 2;
 display: block;
 width: 32px;
 height: 32px;
 line-height: 32px;
 text-align: center;
 pointer-events: none;

} .input-lg + .form-control-feedback, .input-group-lg + .form-control-feedback, .form-group-lg .form-control + .form-control-feedback {

 width: 45px;
 height: 45px;
 line-height: 45px;

} .input-sm + .form-control-feedback, .input-group-sm + .form-control-feedback, .form-group-sm .form-control + .form-control-feedback {

 width: 30px;
 height: 30px;
 line-height: 30px;

} .has-success .help-block, .has-success .control-label, .has-success .radio, .has-success .checkbox, .has-success .radio-inline, .has-success .checkbox-inline, .has-success.radio label, .has-success.checkbox label, .has-success.radio-inline label, .has-success.checkbox-inline label {

 color: #3c763d;

} .has-success .form-control {

 border-color: #3c763d;
 -webkit-box-shadow: inset 0 1px 1px rgba(0, 0, 0, 0.075);
 box-shadow: inset 0 1px 1px rgba(0, 0, 0, 0.075);

} .has-success .form-control:focus {

 border-color: #2b542c;
 -webkit-box-shadow: inset 0 1px 1px rgba(0, 0, 0, 0.075), 0 0 6px #67b168;
 box-shadow: inset 0 1px 1px rgba(0, 0, 0, 0.075), 0 0 6px #67b168;

} .has-success .input-group-addon {

 color: #3c763d;
 border-color: #3c763d;
 background-color: #dff0d8;

} .has-success .form-control-feedback {

 color: #3c763d;

} .has-warning .help-block, .has-warning .control-label, .has-warning .radio, .has-warning .checkbox, .has-warning .radio-inline, .has-warning .checkbox-inline, .has-warning.radio label, .has-warning.checkbox label, .has-warning.radio-inline label, .has-warning.checkbox-inline label {

 color: #8a6d3b;

} .has-warning .form-control {

 border-color: #8a6d3b;
 -webkit-box-shadow: inset 0 1px 1px rgba(0, 0, 0, 0.075);
 box-shadow: inset 0 1px 1px rgba(0, 0, 0, 0.075);

} .has-warning .form-control:focus {

 border-color: #66512c;
 -webkit-box-shadow: inset 0 1px 1px rgba(0, 0, 0, 0.075), 0 0 6px #c0a16b;
 box-shadow: inset 0 1px 1px rgba(0, 0, 0, 0.075), 0 0 6px #c0a16b;

} .has-warning .input-group-addon {

 color: #8a6d3b;
 border-color: #8a6d3b;
 background-color: #fcf8e3;

} .has-warning .form-control-feedback {

 color: #8a6d3b;

} .has-error .help-block, .has-error .control-label, .has-error .radio, .has-error .checkbox, .has-error .radio-inline, .has-error .checkbox-inline, .has-error.radio label, .has-error.checkbox label, .has-error.radio-inline label, .has-error.checkbox-inline label {

 color: #a94442;

} .has-error .form-control {

 border-color: #a94442;
 -webkit-box-shadow: inset 0 1px 1px rgba(0, 0, 0, 0.075);
 box-shadow: inset 0 1px 1px rgba(0, 0, 0, 0.075);

} .has-error .form-control:focus {

 border-color: #843534;
 -webkit-box-shadow: inset 0 1px 1px rgba(0, 0, 0, 0.075), 0 0 6px #ce8483;
 box-shadow: inset 0 1px 1px rgba(0, 0, 0, 0.075), 0 0 6px #ce8483;

} .has-error .input-group-addon {

 color: #a94442;
 border-color: #a94442;
 background-color: #f2dede;

} .has-error .form-control-feedback {

 color: #a94442;

} .has-feedback label ~ .form-control-feedback {

 top: 23px;

} .has-feedback label.sr-only ~ .form-control-feedback {

 top: 0;

} .help-block {

 display: block;
 margin-top: 5px;
 margin-bottom: 10px;
 color: #404040;

} @media (min-width: 768px) {

 .form-inline .form-group {
   display: inline-block;
   margin-bottom: 0;
   vertical-align: middle;
 }
 .form-inline .form-control {
   display: inline-block;
   width: auto;
   vertical-align: middle;
 }
 .form-inline .form-control-static {
   display: inline-block;
 }
 .form-inline .input-group {
   display: inline-table;
   vertical-align: middle;
 }
 .form-inline .input-group .input-group-addon,
 .form-inline .input-group .input-group-btn,
 .form-inline .input-group .form-control {
   width: auto;
 }
 .form-inline .input-group > .form-control {
   width: 100%;
 }
 .form-inline .control-label {
   margin-bottom: 0;
   vertical-align: middle;
 }
 .form-inline .radio,
 .form-inline .checkbox {
   display: inline-block;
   margin-top: 0;
   margin-bottom: 0;
   vertical-align: middle;
 }
 .form-inline .radio label,
 .form-inline .checkbox label {
   padding-left: 0;
 }
 .form-inline .radio input[type="radio"],
 .form-inline .checkbox input[type="checkbox"] {
   position: relative;
   margin-left: 0;
 }
 .form-inline .has-feedback .form-control-feedback {
   top: 0;
 }

} .form-horizontal .radio, .form-horizontal .checkbox, .form-horizontal .radio-inline, .form-horizontal .checkbox-inline {

 margin-top: 0;
 margin-bottom: 0;
 padding-top: 7px;

} .form-horizontal .radio, .form-horizontal .checkbox {

 min-height: 25px;

} .form-horizontal .form-group {

 margin-left: 0px;
 margin-right: 0px;

} @media (min-width: 768px) {

 .form-horizontal .control-label {
   text-align: right;
   margin-bottom: 0;
   padding-top: 7px;
 }

} .form-horizontal .has-feedback .form-control-feedback {

 right: 0px;

} @media (min-width: 768px) {

 .form-horizontal .form-group-lg .control-label {
   padding-top: 11px;
   font-size: 17px;
 }

} @media (min-width: 768px) {

 .form-horizontal .form-group-sm .control-label {
   padding-top: 6px;
   font-size: 12px;
 }

} .btn {

 display: inline-block;
 margin-bottom: 0;
 font-weight: normal;
 text-align: center;
 vertical-align: middle;
 touch-action: manipulation;
 cursor: pointer;
 background-image: none;
 border: 1px solid transparent;
 white-space: nowrap;
 padding: 6px 12px;
 font-size: 13px;
 line-height: 1.42857143;
 border-radius: 2px;
 -webkit-user-select: none;
 -moz-user-select: none;
 -ms-user-select: none;
 user-select: none;

} .btn:focus, .btn:active:focus, .btn.active:focus, .btn.focus, .btn:active.focus, .btn.active.focus {

 outline: thin dotted;
 outline: 5px auto -webkit-focus-ring-color;
 outline-offset: -2px;

} .btn:hover, .btn:focus, .btn.focus {

 color: #333;
 text-decoration: none;

} .btn:active, .btn.active {

 outline: 0;
 background-image: none;
 -webkit-box-shadow: inset 0 3px 5px rgba(0, 0, 0, 0.125);
 box-shadow: inset 0 3px 5px rgba(0, 0, 0, 0.125);

} .btn.disabled, .btn[disabled], fieldset[disabled] .btn {

 cursor: not-allowed;
 opacity: 0.65;
 filter: alpha(opacity=65);
 -webkit-box-shadow: none;
 box-shadow: none;

} a.btn.disabled, fieldset[disabled] a.btn {

 pointer-events: none;

} .btn-default {

 color: #333;
 background-color: #fff;
 border-color: #ccc;

} .btn-default:focus, .btn-default.focus {

 color: #333;
 background-color: #e6e6e6;
 border-color: #8c8c8c;

} .btn-default:hover {

 color: #333;
 background-color: #e6e6e6;
 border-color: #adadad;

} .btn-default:active, .btn-default.active, .open > .dropdown-toggle.btn-default {

 color: #333;
 background-color: #e6e6e6;
 border-color: #adadad;

} .btn-default:active:hover, .btn-default.active:hover, .open > .dropdown-toggle.btn-default:hover, .btn-default:active:focus, .btn-default.active:focus, .open > .dropdown-toggle.btn-default:focus, .btn-default:active.focus, .btn-default.active.focus, .open > .dropdown-toggle.btn-default.focus {

 color: #333;
 background-color: #d4d4d4;
 border-color: #8c8c8c;

} .btn-default:active, .btn-default.active, .open > .dropdown-toggle.btn-default {

 background-image: none;

} .btn-default.disabled:hover, .btn-default[disabled]:hover, fieldset[disabled] .btn-default:hover, .btn-default.disabled:focus, .btn-default[disabled]:focus, fieldset[disabled] .btn-default:focus, .btn-default.disabled.focus, .btn-default[disabled].focus, fieldset[disabled] .btn-default.focus {

 background-color: #fff;
 border-color: #ccc;

} .btn-default .badge {

 color: #fff;
 background-color: #333;

} .btn-primary {

 color: #fff;
 background-color: #337ab7;
 border-color: #2e6da4;

} .btn-primary:focus, .btn-primary.focus {

 color: #fff;
 background-color: #286090;
 border-color: #122b40;

} .btn-primary:hover {

 color: #fff;
 background-color: #286090;
 border-color: #204d74;

} .btn-primary:active, .btn-primary.active, .open > .dropdown-toggle.btn-primary {

 color: #fff;
 background-color: #286090;
 border-color: #204d74;

} .btn-primary:active:hover, .btn-primary.active:hover, .open > .dropdown-toggle.btn-primary:hover, .btn-primary:active:focus, .btn-primary.active:focus, .open > .dropdown-toggle.btn-primary:focus, .btn-primary:active.focus, .btn-primary.active.focus, .open > .dropdown-toggle.btn-primary.focus {

 color: #fff;
 background-color: #204d74;
 border-color: #122b40;

} .btn-primary:active, .btn-primary.active, .open > .dropdown-toggle.btn-primary {

 background-image: none;

} .btn-primary.disabled:hover, .btn-primary[disabled]:hover, fieldset[disabled] .btn-primary:hover, .btn-primary.disabled:focus, .btn-primary[disabled]:focus, fieldset[disabled] .btn-primary:focus, .btn-primary.disabled.focus, .btn-primary[disabled].focus, fieldset[disabled] .btn-primary.focus {

 background-color: #337ab7;
 border-color: #2e6da4;

} .btn-primary .badge {

 color: #337ab7;
 background-color: #fff;

} .btn-success {

 color: #fff;
 background-color: #5cb85c;
 border-color: #4cae4c;

} .btn-success:focus, .btn-success.focus {

 color: #fff;
 background-color: #449d44;
 border-color: #255625;

} .btn-success:hover {

 color: #fff;
 background-color: #449d44;
 border-color: #398439;

} .btn-success:active, .btn-success.active, .open > .dropdown-toggle.btn-success {

 color: #fff;
 background-color: #449d44;
 border-color: #398439;

} .btn-success:active:hover, .btn-success.active:hover, .open > .dropdown-toggle.btn-success:hover, .btn-success:active:focus, .btn-success.active:focus, .open > .dropdown-toggle.btn-success:focus, .btn-success:active.focus, .btn-success.active.focus, .open > .dropdown-toggle.btn-success.focus {

 color: #fff;
 background-color: #398439;
 border-color: #255625;

} .btn-success:active, .btn-success.active, .open > .dropdown-toggle.btn-success {

 background-image: none;

} .btn-success.disabled:hover, .btn-success[disabled]:hover, fieldset[disabled] .btn-success:hover, .btn-success.disabled:focus, .btn-success[disabled]:focus, fieldset[disabled] .btn-success:focus, .btn-success.disabled.focus, .btn-success[disabled].focus, fieldset[disabled] .btn-success.focus {

 background-color: #5cb85c;
 border-color: #4cae4c;

} .btn-success .badge {

 color: #5cb85c;
 background-color: #fff;

} .btn-info {

 color: #fff;
 background-color: #5bc0de;
 border-color: #46b8da;

} .btn-info:focus, .btn-info.focus {

 color: #fff;
 background-color: #31b0d5;
 border-color: #1b6d85;

} .btn-info:hover {

 color: #fff;
 background-color: #31b0d5;
 border-color: #269abc;

} .btn-info:active, .btn-info.active, .open > .dropdown-toggle.btn-info {

 color: #fff;
 background-color: #31b0d5;
 border-color: #269abc;

} .btn-info:active:hover, .btn-info.active:hover, .open > .dropdown-toggle.btn-info:hover, .btn-info:active:focus, .btn-info.active:focus, .open > .dropdown-toggle.btn-info:focus, .btn-info:active.focus, .btn-info.active.focus, .open > .dropdown-toggle.btn-info.focus {

 color: #fff;
 background-color: #269abc;
 border-color: #1b6d85;

} .btn-info:active, .btn-info.active, .open > .dropdown-toggle.btn-info {

 background-image: none;

} .btn-info.disabled:hover, .btn-info[disabled]:hover, fieldset[disabled] .btn-info:hover, .btn-info.disabled:focus, .btn-info[disabled]:focus, fieldset[disabled] .btn-info:focus, .btn-info.disabled.focus, .btn-info[disabled].focus, fieldset[disabled] .btn-info.focus {

 background-color: #5bc0de;
 border-color: #46b8da;

} .btn-info .badge {

 color: #5bc0de;
 background-color: #fff;

} .btn-warning {

 color: #fff;
 background-color: #f0ad4e;
 border-color: #eea236;

} .btn-warning:focus, .btn-warning.focus {

 color: #fff;
 background-color: #ec971f;
 border-color: #985f0d;

} .btn-warning:hover {

 color: #fff;
 background-color: #ec971f;
 border-color: #d58512;

} .btn-warning:active, .btn-warning.active, .open > .dropdown-toggle.btn-warning {

 color: #fff;
 background-color: #ec971f;
 border-color: #d58512;

} .btn-warning:active:hover, .btn-warning.active:hover, .open > .dropdown-toggle.btn-warning:hover, .btn-warning:active:focus, .btn-warning.active:focus, .open > .dropdown-toggle.btn-warning:focus, .btn-warning:active.focus, .btn-warning.active.focus, .open > .dropdown-toggle.btn-warning.focus {

 color: #fff;
 background-color: #d58512;
 border-color: #985f0d;

} .btn-warning:active, .btn-warning.active, .open > .dropdown-toggle.btn-warning {

 background-image: none;

} .btn-warning.disabled:hover, .btn-warning[disabled]:hover, fieldset[disabled] .btn-warning:hover, .btn-warning.disabled:focus, .btn-warning[disabled]:focus, fieldset[disabled] .btn-warning:focus, .btn-warning.disabled.focus, .btn-warning[disabled].focus, fieldset[disabled] .btn-warning.focus {

 background-color: #f0ad4e;
 border-color: #eea236;

} .btn-warning .badge {

 color: #f0ad4e;
 background-color: #fff;

} .btn-danger {

 color: #fff;
 background-color: #d9534f;
 border-color: #d43f3a;

} .btn-danger:focus, .btn-danger.focus {

 color: #fff;
 background-color: #c9302c;
 border-color: #761c19;

} .btn-danger:hover {

 color: #fff;
 background-color: #c9302c;
 border-color: #ac2925;

} .btn-danger:active, .btn-danger.active, .open > .dropdown-toggle.btn-danger {

 color: #fff;
 background-color: #c9302c;
 border-color: #ac2925;

} .btn-danger:active:hover, .btn-danger.active:hover, .open > .dropdown-toggle.btn-danger:hover, .btn-danger:active:focus, .btn-danger.active:focus, .open > .dropdown-toggle.btn-danger:focus, .btn-danger:active.focus, .btn-danger.active.focus, .open > .dropdown-toggle.btn-danger.focus {

 color: #fff;
 background-color: #ac2925;
 border-color: #761c19;

} .btn-danger:active, .btn-danger.active, .open > .dropdown-toggle.btn-danger {

 background-image: none;

} .btn-danger.disabled:hover, .btn-danger[disabled]:hover, fieldset[disabled] .btn-danger:hover, .btn-danger.disabled:focus, .btn-danger[disabled]:focus, fieldset[disabled] .btn-danger:focus, .btn-danger.disabled.focus, .btn-danger[disabled].focus, fieldset[disabled] .btn-danger.focus {

 background-color: #d9534f;
 border-color: #d43f3a;

} .btn-danger .badge {

 color: #d9534f;
 background-color: #fff;

} .btn-link {

 color: #337ab7;
 font-weight: normal;
 border-radius: 0;

} .btn-link, .btn-link:active, .btn-link.active, .btn-link[disabled], fieldset[disabled] .btn-link {

 background-color: transparent;
 -webkit-box-shadow: none;
 box-shadow: none;

} .btn-link, .btn-link:hover, .btn-link:focus, .btn-link:active {

 border-color: transparent;

} .btn-link:hover, .btn-link:focus {

 color: #23527c;
 text-decoration: underline;
 background-color: transparent;

} .btn-link[disabled]:hover, fieldset[disabled] .btn-link:hover, .btn-link[disabled]:focus, fieldset[disabled] .btn-link:focus {

 color: #777777;
 text-decoration: none;

} .btn-lg, .btn-group-lg > .btn {

 padding: 10px 16px;
 font-size: 17px;
 line-height: 1.3333333;
 border-radius: 3px;

} .btn-sm, .btn-group-sm > .btn {

 padding: 5px 10px;
 font-size: 12px;
 line-height: 1.5;
 border-radius: 1px;

} .btn-xs, .btn-group-xs > .btn {

 padding: 1px 5px;
 font-size: 12px;
 line-height: 1.5;
 border-radius: 1px;

} .btn-block {

 display: block;
 width: 100%;

} .btn-block + .btn-block {

 margin-top: 5px;

} input[type="submit"].btn-block, input[type="reset"].btn-block, input[type="button"].btn-block {

 width: 100%;

} .fade {

 opacity: 0;
 -webkit-transition: opacity 0.15s linear;
 -o-transition: opacity 0.15s linear;
 transition: opacity 0.15s linear;

} .fade.in {

 opacity: 1;

} .collapse {

 display: none;

} .collapse.in {

 display: block;

} tr.collapse.in {

 display: table-row;

} tbody.collapse.in {

 display: table-row-group;

} .collapsing {

 position: relative;
 height: 0;
 overflow: hidden;
 -webkit-transition-property: height, visibility;
 transition-property: height, visibility;
 -webkit-transition-duration: 0.35s;
 transition-duration: 0.35s;
 -webkit-transition-timing-function: ease;
 transition-timing-function: ease;

} .caret {

 display: inline-block;
 width: 0;
 height: 0;
 margin-left: 2px;
 vertical-align: middle;
 border-top: 4px dashed;
 border-top: 4px solid \9;
 border-right: 4px solid transparent;
 border-left: 4px solid transparent;

} .dropup, .dropdown {

 position: relative;

} .dropdown-toggle:focus {

 outline: 0;

} .dropdown-menu {

 position: absolute;
 top: 100%;
 left: 0;
 z-index: 1000;
 display: none;
 float: left;
 min-width: 160px;
 padding: 5px 0;
 margin: 2px 0 0;
 list-style: none;
 font-size: 13px;
 text-align: left;
 background-color: #fff;
 border: 1px solid #ccc;
 border: 1px solid rgba(0, 0, 0, 0.15);
 border-radius: 2px;
 -webkit-box-shadow: 0 6px 12px rgba(0, 0, 0, 0.175);
 box-shadow: 0 6px 12px rgba(0, 0, 0, 0.175);
 background-clip: padding-box;

} .dropdown-menu.pull-right {

 right: 0;
 left: auto;

} .dropdown-menu .divider {

 height: 1px;
 margin: 8px 0;
 overflow: hidden;
 background-color: #e5e5e5;

} .dropdown-menu > li > a {

 display: block;
 padding: 3px 20px;
 clear: both;
 font-weight: normal;
 line-height: 1.42857143;
 color: #333333;
 white-space: nowrap;

} .dropdown-menu > li > a:hover, .dropdown-menu > li > a:focus {

 text-decoration: none;
 color: #262626;
 background-color: #f5f5f5;

} .dropdown-menu > .active > a, .dropdown-menu > .active > a:hover, .dropdown-menu > .active > a:focus {

 color: #fff;
 text-decoration: none;
 outline: 0;
 background-color: #337ab7;

} .dropdown-menu > .disabled > a, .dropdown-menu > .disabled > a:hover, .dropdown-menu > .disabled > a:focus {

 color: #777777;

} .dropdown-menu > .disabled > a:hover, .dropdown-menu > .disabled > a:focus {

 text-decoration: none;
 background-color: transparent;
 background-image: none;
 filter: progid:DXImageTransform.Microsoft.gradient(enabled = false);
 cursor: not-allowed;

} .open > .dropdown-menu {

 display: block;

} .open > a {

 outline: 0;

} .dropdown-menu-right {

 left: auto;
 right: 0;

} .dropdown-menu-left {

 left: 0;
 right: auto;

} .dropdown-header {

 display: block;
 padding: 3px 20px;
 font-size: 12px;
 line-height: 1.42857143;
 color: #777777;
 white-space: nowrap;

} .dropdown-backdrop {

 position: fixed;
 left: 0;
 right: 0;
 bottom: 0;
 top: 0;
 z-index: 990;

} .pull-right > .dropdown-menu {

 right: 0;
 left: auto;

} .dropup .caret, .navbar-fixed-bottom .dropdown .caret {

 border-top: 0;
 border-bottom: 4px dashed;
 border-bottom: 4px solid \9;
 content: "";

} .dropup .dropdown-menu, .navbar-fixed-bottom .dropdown .dropdown-menu {

 top: auto;
 bottom: 100%;
 margin-bottom: 2px;

} @media (min-width: 541px) {

 .navbar-right .dropdown-menu {
   left: auto;
   right: 0;
 }
 .navbar-right .dropdown-menu-left {
   left: 0;
   right: auto;
 }

} .btn-group, .btn-group-vertical {

 position: relative;
 display: inline-block;
 vertical-align: middle;

} .btn-group > .btn, .btn-group-vertical > .btn {

 position: relative;
 float: left;

} .btn-group > .btn:hover, .btn-group-vertical > .btn:hover, .btn-group > .btn:focus, .btn-group-vertical > .btn:focus, .btn-group > .btn:active, .btn-group-vertical > .btn:active, .btn-group > .btn.active, .btn-group-vertical > .btn.active {

 z-index: 2;

} .btn-group .btn + .btn, .btn-group .btn + .btn-group, .btn-group .btn-group + .btn, .btn-group .btn-group + .btn-group {

 margin-left: -1px;

} .btn-toolbar {

 margin-left: -5px;

} .btn-toolbar .btn, .btn-toolbar .btn-group, .btn-toolbar .input-group {

 float: left;

} .btn-toolbar > .btn, .btn-toolbar > .btn-group, .btn-toolbar > .input-group {

 margin-left: 5px;

} .btn-group > .btn:not(:first-child):not(:last-child):not(.dropdown-toggle) {

 border-radius: 0;

} .btn-group > .btn:first-child {

 margin-left: 0;

} .btn-group > .btn:first-child:not(:last-child):not(.dropdown-toggle) {

 border-bottom-right-radius: 0;
 border-top-right-radius: 0;

} .btn-group > .btn:last-child:not(:first-child), .btn-group > .dropdown-toggle:not(:first-child) {

 border-bottom-left-radius: 0;
 border-top-left-radius: 0;

} .btn-group > .btn-group {

 float: left;

} .btn-group > .btn-group:not(:first-child):not(:last-child) > .btn {

 border-radius: 0;

} .btn-group > .btn-group:first-child:not(:last-child) > .btn:last-child, .btn-group > .btn-group:first-child:not(:last-child) > .dropdown-toggle {

 border-bottom-right-radius: 0;
 border-top-right-radius: 0;

} .btn-group > .btn-group:last-child:not(:first-child) > .btn:first-child {

 border-bottom-left-radius: 0;
 border-top-left-radius: 0;

} .btn-group .dropdown-toggle:active, .btn-group.open .dropdown-toggle {

 outline: 0;

} .btn-group > .btn + .dropdown-toggle {

 padding-left: 8px;
 padding-right: 8px;

} .btn-group > .btn-lg + .dropdown-toggle {

 padding-left: 12px;
 padding-right: 12px;

} .btn-group.open .dropdown-toggle {

 -webkit-box-shadow: inset 0 3px 5px rgba(0, 0, 0, 0.125);
 box-shadow: inset 0 3px 5px rgba(0, 0, 0, 0.125);

} .btn-group.open .dropdown-toggle.btn-link {

 -webkit-box-shadow: none;
 box-shadow: none;

} .btn .caret {

 margin-left: 0;

} .btn-lg .caret {

 border-width: 5px 5px 0;
 border-bottom-width: 0;

} .dropup .btn-lg .caret {

 border-width: 0 5px 5px;

} .btn-group-vertical > .btn, .btn-group-vertical > .btn-group, .btn-group-vertical > .btn-group > .btn {

 display: block;
 float: none;
 width: 100%;
 max-width: 100%;

} .btn-group-vertical > .btn-group > .btn {

 float: none;

} .btn-group-vertical > .btn + .btn, .btn-group-vertical > .btn + .btn-group, .btn-group-vertical > .btn-group + .btn, .btn-group-vertical > .btn-group + .btn-group {

 margin-top: -1px;
 margin-left: 0;

} .btn-group-vertical > .btn:not(:first-child):not(:last-child) {

 border-radius: 0;

} .btn-group-vertical > .btn:first-child:not(:last-child) {

 border-top-right-radius: 2px;
 border-top-left-radius: 2px;
 border-bottom-right-radius: 0;
 border-bottom-left-radius: 0;

} .btn-group-vertical > .btn:last-child:not(:first-child) {

 border-top-right-radius: 0;
 border-top-left-radius: 0;
 border-bottom-right-radius: 2px;
 border-bottom-left-radius: 2px;

} .btn-group-vertical > .btn-group:not(:first-child):not(:last-child) > .btn {

 border-radius: 0;

} .btn-group-vertical > .btn-group:first-child:not(:last-child) > .btn:last-child, .btn-group-vertical > .btn-group:first-child:not(:last-child) > .dropdown-toggle {

 border-bottom-right-radius: 0;
 border-bottom-left-radius: 0;

} .btn-group-vertical > .btn-group:last-child:not(:first-child) > .btn:first-child {

 border-top-right-radius: 0;
 border-top-left-radius: 0;

} .btn-group-justified {

 display: table;
 width: 100%;
 table-layout: fixed;
 border-collapse: separate;

} .btn-group-justified > .btn, .btn-group-justified > .btn-group {

 float: none;
 display: table-cell;
 width: 1%;

} .btn-group-justified > .btn-group .btn {

 width: 100%;

} .btn-group-justified > .btn-group .dropdown-menu {

 left: auto;

} [data-toggle="buttons"] > .btn input[type="radio"], [data-toggle="buttons"] > .btn-group > .btn input[type="radio"], [data-toggle="buttons"] > .btn input[type="checkbox"], [data-toggle="buttons"] > .btn-group > .btn input[type="checkbox"] {

 position: absolute;
 clip: rect(0, 0, 0, 0);
 pointer-events: none;

} .input-group {

 position: relative;
 display: table;
 border-collapse: separate;

} .input-group[class*="col-"] {

 float: none;
 padding-left: 0;
 padding-right: 0;

} .input-group .form-control {

 position: relative;
 z-index: 2;
 float: left;
 width: 100%;
 margin-bottom: 0;

} .input-group .form-control:focus {

 z-index: 3;

} .input-group-lg > .form-control, .input-group-lg > .input-group-addon, .input-group-lg > .input-group-btn > .btn {

 height: 45px;
 padding: 10px 16px;
 font-size: 17px;
 line-height: 1.3333333;
 border-radius: 3px;

} select.input-group-lg > .form-control, select.input-group-lg > .input-group-addon, select.input-group-lg > .input-group-btn > .btn {

 height: 45px;
 line-height: 45px;

} textarea.input-group-lg > .form-control, textarea.input-group-lg > .input-group-addon, textarea.input-group-lg > .input-group-btn > .btn, select[multiple].input-group-lg > .form-control, select[multiple].input-group-lg > .input-group-addon, select[multiple].input-group-lg > .input-group-btn > .btn {

 height: auto;

} .input-group-sm > .form-control, .input-group-sm > .input-group-addon, .input-group-sm > .input-group-btn > .btn {

 height: 30px;
 padding: 5px 10px;
 font-size: 12px;
 line-height: 1.5;
 border-radius: 1px;

} select.input-group-sm > .form-control, select.input-group-sm > .input-group-addon, select.input-group-sm > .input-group-btn > .btn {

 height: 30px;
 line-height: 30px;

} textarea.input-group-sm > .form-control, textarea.input-group-sm > .input-group-addon, textarea.input-group-sm > .input-group-btn > .btn, select[multiple].input-group-sm > .form-control, select[multiple].input-group-sm > .input-group-addon, select[multiple].input-group-sm > .input-group-btn > .btn {

 height: auto;

} .input-group-addon, .input-group-btn, .input-group .form-control {

 display: table-cell;

} .input-group-addon:not(:first-child):not(:last-child), .input-group-btn:not(:first-child):not(:last-child), .input-group .form-control:not(:first-child):not(:last-child) {

 border-radius: 0;

} .input-group-addon, .input-group-btn {

 width: 1%;
 white-space: nowrap;
 vertical-align: middle;

} .input-group-addon {

 padding: 6px 12px;
 font-size: 13px;
 font-weight: normal;
 line-height: 1;
 color: #555555;
 text-align: center;
 background-color: #eeeeee;
 border: 1px solid #ccc;
 border-radius: 2px;

} .input-group-addon.input-sm {

 padding: 5px 10px;
 font-size: 12px;
 border-radius: 1px;

} .input-group-addon.input-lg {

 padding: 10px 16px;
 font-size: 17px;
 border-radius: 3px;

} .input-group-addon input[type="radio"], .input-group-addon input[type="checkbox"] {

 margin-top: 0;

} .input-group .form-control:first-child, .input-group-addon:first-child, .input-group-btn:first-child > .btn, .input-group-btn:first-child > .btn-group > .btn, .input-group-btn:first-child > .dropdown-toggle, .input-group-btn:last-child > .btn:not(:last-child):not(.dropdown-toggle), .input-group-btn:last-child > .btn-group:not(:last-child) > .btn {

 border-bottom-right-radius: 0;
 border-top-right-radius: 0;

} .input-group-addon:first-child {

 border-right: 0;

} .input-group .form-control:last-child, .input-group-addon:last-child, .input-group-btn:last-child > .btn, .input-group-btn:last-child > .btn-group > .btn, .input-group-btn:last-child > .dropdown-toggle, .input-group-btn:first-child > .btn:not(:first-child), .input-group-btn:first-child > .btn-group:not(:first-child) > .btn {

 border-bottom-left-radius: 0;
 border-top-left-radius: 0;

} .input-group-addon:last-child {

 border-left: 0;

} .input-group-btn {

 position: relative;
 font-size: 0;
 white-space: nowrap;

} .input-group-btn > .btn {

 position: relative;

} .input-group-btn > .btn + .btn {

 margin-left: -1px;

} .input-group-btn > .btn:hover, .input-group-btn > .btn:focus, .input-group-btn > .btn:active {

 z-index: 2;

} .input-group-btn:first-child > .btn, .input-group-btn:first-child > .btn-group {

 margin-right: -1px;

} .input-group-btn:last-child > .btn, .input-group-btn:last-child > .btn-group {

 z-index: 2;
 margin-left: -1px;

} .nav {

 margin-bottom: 0;
 padding-left: 0;
 list-style: none;

} .nav > li {

 position: relative;
 display: block;

} .nav > li > a {

 position: relative;
 display: block;
 padding: 10px 15px;

} .nav > li > a:hover, .nav > li > a:focus {

 text-decoration: none;
 background-color: #eeeeee;

} .nav > li.disabled > a {

 color: #777777;

} .nav > li.disabled > a:hover, .nav > li.disabled > a:focus {

 color: #777777;
 text-decoration: none;
 background-color: transparent;
 cursor: not-allowed;

} .nav .open > a, .nav .open > a:hover, .nav .open > a:focus {

 background-color: #eeeeee;
 border-color: #337ab7;

} .nav .nav-divider {

 height: 1px;
 margin: 8px 0;
 overflow: hidden;
 background-color: #e5e5e5;

} .nav > li > a > img {

 max-width: none;

} .nav-tabs {

 border-bottom: 1px solid #ddd;

} .nav-tabs > li {

 float: left;
 margin-bottom: -1px;

} .nav-tabs > li > a {

 margin-right: 2px;
 line-height: 1.42857143;
 border: 1px solid transparent;
 border-radius: 2px 2px 0 0;

} .nav-tabs > li > a:hover {

 border-color: #eeeeee #eeeeee #ddd;

} .nav-tabs > li.active > a, .nav-tabs > li.active > a:hover, .nav-tabs > li.active > a:focus {

 color: #555555;
 background-color: #fff;
 border: 1px solid #ddd;
 border-bottom-color: transparent;
 cursor: default;

} .nav-tabs.nav-justified {

 width: 100%;
 border-bottom: 0;

} .nav-tabs.nav-justified > li {

 float: none;

} .nav-tabs.nav-justified > li > a {

 text-align: center;
 margin-bottom: 5px;

} .nav-tabs.nav-justified > .dropdown .dropdown-menu {

 top: auto;
 left: auto;

} @media (min-width: 768px) {

 .nav-tabs.nav-justified > li {
   display: table-cell;
   width: 1%;
 }
 .nav-tabs.nav-justified > li > a {
   margin-bottom: 0;
 }

} .nav-tabs.nav-justified > li > a {

 margin-right: 0;
 border-radius: 2px;

} .nav-tabs.nav-justified > .active > a, .nav-tabs.nav-justified > .active > a:hover, .nav-tabs.nav-justified > .active > a:focus {

 border: 1px solid #ddd;

} @media (min-width: 768px) {

 .nav-tabs.nav-justified > li > a {
   border-bottom: 1px solid #ddd;
   border-radius: 2px 2px 0 0;
 }
 .nav-tabs.nav-justified > .active > a,
 .nav-tabs.nav-justified > .active > a:hover,
 .nav-tabs.nav-justified > .active > a:focus {
   border-bottom-color: #fff;
 }

} .nav-pills > li {

 float: left;

} .nav-pills > li > a {

 border-radius: 2px;

} .nav-pills > li + li {

 margin-left: 2px;

} .nav-pills > li.active > a, .nav-pills > li.active > a:hover, .nav-pills > li.active > a:focus {

 color: #fff;
 background-color: #337ab7;

} .nav-stacked > li {

 float: none;

} .nav-stacked > li + li {

 margin-top: 2px;
 margin-left: 0;

} .nav-justified {

 width: 100%;

} .nav-justified > li {

 float: none;

} .nav-justified > li > a {

 text-align: center;
 margin-bottom: 5px;

} .nav-justified > .dropdown .dropdown-menu {

 top: auto;
 left: auto;

} @media (min-width: 768px) {

 .nav-justified > li {
   display: table-cell;
   width: 1%;
 }
 .nav-justified > li > a {
   margin-bottom: 0;
 }

} .nav-tabs-justified {

 border-bottom: 0;

} .nav-tabs-justified > li > a {

 margin-right: 0;
 border-radius: 2px;

} .nav-tabs-justified > .active > a, .nav-tabs-justified > .active > a:hover, .nav-tabs-justified > .active > a:focus {

 border: 1px solid #ddd;

} @media (min-width: 768px) {

 .nav-tabs-justified > li > a {
   border-bottom: 1px solid #ddd;
   border-radius: 2px 2px 0 0;
 }
 .nav-tabs-justified > .active > a,
 .nav-tabs-justified > .active > a:hover,
 .nav-tabs-justified > .active > a:focus {
   border-bottom-color: #fff;
 }

} .tab-content > .tab-pane {

 display: none;

} .tab-content > .active {

 display: block;

} .nav-tabs .dropdown-menu {

 margin-top: -1px;
 border-top-right-radius: 0;
 border-top-left-radius: 0;

} .navbar {

 position: relative;
 min-height: 30px;
 margin-bottom: 18px;
 border: 1px solid transparent;

} @media (min-width: 541px) {

 .navbar {
   border-radius: 2px;
 }

} @media (min-width: 541px) {

 .navbar-header {
   float: left;
 }

} .navbar-collapse {

 overflow-x: visible;
 padding-right: 0px;
 padding-left: 0px;
 border-top: 1px solid transparent;
 box-shadow: inset 0 1px 0 rgba(255, 255, 255, 0.1);
 -webkit-overflow-scrolling: touch;

} .navbar-collapse.in {

 overflow-y: auto;

} @media (min-width: 541px) {

 .navbar-collapse {
   width: auto;
   border-top: 0;
   box-shadow: none;
 }
 .navbar-collapse.collapse {
   display: block !important;
   height: auto !important;
   padding-bottom: 0;
   overflow: visible !important;
 }
 .navbar-collapse.in {
   overflow-y: visible;
 }
 .navbar-fixed-top .navbar-collapse,
 .navbar-static-top .navbar-collapse,
 .navbar-fixed-bottom .navbar-collapse {
   padding-left: 0;
   padding-right: 0;
 }

} .navbar-fixed-top .navbar-collapse, .navbar-fixed-bottom .navbar-collapse {

 max-height: 340px;

} @media (max-device-width: 540px) and (orientation: landscape) {

 .navbar-fixed-top .navbar-collapse,
 .navbar-fixed-bottom .navbar-collapse {
   max-height: 200px;
 }

} .container > .navbar-header, .container-fluid > .navbar-header, .container > .navbar-collapse, .container-fluid > .navbar-collapse {

 margin-right: 0px;
 margin-left: 0px;

} @media (min-width: 541px) {

 .container > .navbar-header,
 .container-fluid > .navbar-header,
 .container > .navbar-collapse,
 .container-fluid > .navbar-collapse {
   margin-right: 0;
   margin-left: 0;
 }

} .navbar-static-top {

 z-index: 1000;
 border-width: 0 0 1px;

} @media (min-width: 541px) {

 .navbar-static-top {
   border-radius: 0;
 }

} .navbar-fixed-top, .navbar-fixed-bottom {

 position: fixed;
 right: 0;
 left: 0;
 z-index: 1030;

} @media (min-width: 541px) {

 .navbar-fixed-top,
 .navbar-fixed-bottom {
   border-radius: 0;
 }

} .navbar-fixed-top {

 top: 0;
 border-width: 0 0 1px;

} .navbar-fixed-bottom {

 bottom: 0;
 margin-bottom: 0;
 border-width: 1px 0 0;

} .navbar-brand {

 float: left;
 padding: 6px 0px;
 font-size: 17px;
 line-height: 18px;
 height: 30px;

} .navbar-brand:hover, .navbar-brand:focus {

 text-decoration: none;

} .navbar-brand > img {

 display: block;

} @media (min-width: 541px) {

 .navbar > .container .navbar-brand,
 .navbar > .container-fluid .navbar-brand {
   margin-left: 0px;
 }

} .navbar-toggle {

 position: relative;
 float: right;
 margin-right: 0px;
 padding: 9px 10px;
 margin-top: -2px;
 margin-bottom: -2px;
 background-color: transparent;
 background-image: none;
 border: 1px solid transparent;
 border-radius: 2px;

} .navbar-toggle:focus {

 outline: 0;

} .navbar-toggle .icon-bar {

 display: block;
 width: 22px;
 height: 2px;
 border-radius: 1px;

} .navbar-toggle .icon-bar + .icon-bar {

 margin-top: 4px;

} @media (min-width: 541px) {

 .navbar-toggle {
   display: none;
 }

} .navbar-nav {

 margin: 3px 0px;

} .navbar-nav > li > a {

 padding-top: 10px;
 padding-bottom: 10px;
 line-height: 18px;

} @media (max-width: 540px) {

 .navbar-nav .open .dropdown-menu {
   position: static;
   float: none;
   width: auto;
   margin-top: 0;
   background-color: transparent;
   border: 0;
   box-shadow: none;
 }
 .navbar-nav .open .dropdown-menu > li > a,
 .navbar-nav .open .dropdown-menu .dropdown-header {
   padding: 5px 15px 5px 25px;
 }
 .navbar-nav .open .dropdown-menu > li > a {
   line-height: 18px;
 }
 .navbar-nav .open .dropdown-menu > li > a:hover,
 .navbar-nav .open .dropdown-menu > li > a:focus {
   background-image: none;
 }

} @media (min-width: 541px) {

 .navbar-nav {
   float: left;
   margin: 0;
 }
 .navbar-nav > li {
   float: left;
 }
 .navbar-nav > li > a {
   padding-top: 6px;
   padding-bottom: 6px;
 }

} .navbar-form {

 margin-left: 0px;
 margin-right: 0px;
 padding: 10px 0px;
 border-top: 1px solid transparent;
 border-bottom: 1px solid transparent;
 -webkit-box-shadow: inset 0 1px 0 rgba(255, 255, 255, 0.1), 0 1px 0 rgba(255, 255, 255, 0.1);
 box-shadow: inset 0 1px 0 rgba(255, 255, 255, 0.1), 0 1px 0 rgba(255, 255, 255, 0.1);
 margin-top: -1px;
 margin-bottom: -1px;

} @media (min-width: 768px) {

 .navbar-form .form-group {
   display: inline-block;
   margin-bottom: 0;
   vertical-align: middle;
 }
 .navbar-form .form-control {
   display: inline-block;
   width: auto;
   vertical-align: middle;
 }
 .navbar-form .form-control-static {
   display: inline-block;
 }
 .navbar-form .input-group {
   display: inline-table;
   vertical-align: middle;
 }
 .navbar-form .input-group .input-group-addon,
 .navbar-form .input-group .input-group-btn,
 .navbar-form .input-group .form-control {
   width: auto;
 }
 .navbar-form .input-group > .form-control {
   width: 100%;
 }
 .navbar-form .control-label {
   margin-bottom: 0;
   vertical-align: middle;
 }
 .navbar-form .radio,
 .navbar-form .checkbox {
   display: inline-block;
   margin-top: 0;
   margin-bottom: 0;
   vertical-align: middle;
 }
 .navbar-form .radio label,
 .navbar-form .checkbox label {
   padding-left: 0;
 }
 .navbar-form .radio input[type="radio"],
 .navbar-form .checkbox input[type="checkbox"] {
   position: relative;
   margin-left: 0;
 }
 .navbar-form .has-feedback .form-control-feedback {
   top: 0;
 }

} @media (max-width: 540px) {

 .navbar-form .form-group {
   margin-bottom: 5px;
 }
 .navbar-form .form-group:last-child {
   margin-bottom: 0;
 }

} @media (min-width: 541px) {

 .navbar-form {
   width: auto;
   border: 0;
   margin-left: 0;
   margin-right: 0;
   padding-top: 0;
   padding-bottom: 0;
   -webkit-box-shadow: none;
   box-shadow: none;
 }

} .navbar-nav > li > .dropdown-menu {

 margin-top: 0;
 border-top-right-radius: 0;
 border-top-left-radius: 0;

} .navbar-fixed-bottom .navbar-nav > li > .dropdown-menu {

 margin-bottom: 0;
 border-top-right-radius: 2px;
 border-top-left-radius: 2px;
 border-bottom-right-radius: 0;
 border-bottom-left-radius: 0;

} .navbar-btn {

 margin-top: -1px;
 margin-bottom: -1px;

} .navbar-btn.btn-sm {

 margin-top: 0px;
 margin-bottom: 0px;

} .navbar-btn.btn-xs {

 margin-top: 4px;
 margin-bottom: 4px;

} .navbar-text {

 margin-top: 6px;
 margin-bottom: 6px;

} @media (min-width: 541px) {

 .navbar-text {
   float: left;
   margin-left: 0px;
   margin-right: 0px;
 }

} @media (min-width: 541px) {

 .navbar-left {
   float: left !important;
   float: left;
 }
 .navbar-right {
   float: right !important;
   float: right;
   margin-right: 0px;
 }
 .navbar-right ~ .navbar-right {
   margin-right: 0;
 }

} .navbar-default {

 background-color: #f8f8f8;
 border-color: #e7e7e7;

} .navbar-default .navbar-brand {

 color: #777;

} .navbar-default .navbar-brand:hover, .navbar-default .navbar-brand:focus {

 color: #5e5e5e;
 background-color: transparent;

} .navbar-default .navbar-text {

 color: #777;

} .navbar-default .navbar-nav > li > a {

 color: #777;

} .navbar-default .navbar-nav > li > a:hover, .navbar-default .navbar-nav > li > a:focus {

 color: #333;
 background-color: transparent;

} .navbar-default .navbar-nav > .active > a, .navbar-default .navbar-nav > .active > a:hover, .navbar-default .navbar-nav > .active > a:focus {

 color: #555;
 background-color: #e7e7e7;

} .navbar-default .navbar-nav > .disabled > a, .navbar-default .navbar-nav > .disabled > a:hover, .navbar-default .navbar-nav > .disabled > a:focus {

 color: #ccc;
 background-color: transparent;

} .navbar-default .navbar-toggle {

 border-color: #ddd;

} .navbar-default .navbar-toggle:hover, .navbar-default .navbar-toggle:focus {

 background-color: #ddd;

} .navbar-default .navbar-toggle .icon-bar {

 background-color: #888;

} .navbar-default .navbar-collapse, .navbar-default .navbar-form {

 border-color: #e7e7e7;

} .navbar-default .navbar-nav > .open > a, .navbar-default .navbar-nav > .open > a:hover, .navbar-default .navbar-nav > .open > a:focus {

 background-color: #e7e7e7;
 color: #555;

} @media (max-width: 540px) {

 .navbar-default .navbar-nav .open .dropdown-menu > li > a {
   color: #777;
 }
 .navbar-default .navbar-nav .open .dropdown-menu > li > a:hover,
 .navbar-default .navbar-nav .open .dropdown-menu > li > a:focus {
   color: #333;
   background-color: transparent;
 }
 .navbar-default .navbar-nav .open .dropdown-menu > .active > a,
 .navbar-default .navbar-nav .open .dropdown-menu > .active > a:hover,
 .navbar-default .navbar-nav .open .dropdown-menu > .active > a:focus {
   color: #555;
   background-color: #e7e7e7;
 }
 .navbar-default .navbar-nav .open .dropdown-menu > .disabled > a,
 .navbar-default .navbar-nav .open .dropdown-menu > .disabled > a:hover,
 .navbar-default .navbar-nav .open .dropdown-menu > .disabled > a:focus {
   color: #ccc;
   background-color: transparent;
 }

} .navbar-default .navbar-link {

 color: #777;

} .navbar-default .navbar-link:hover {

 color: #333;

} .navbar-default .btn-link {

 color: #777;

} .navbar-default .btn-link:hover, .navbar-default .btn-link:focus {

 color: #333;

} .navbar-default .btn-link[disabled]:hover, fieldset[disabled] .navbar-default .btn-link:hover, .navbar-default .btn-link[disabled]:focus, fieldset[disabled] .navbar-default .btn-link:focus {

 color: #ccc;

} .navbar-inverse {

 background-color: #222;
 border-color: #080808;

} .navbar-inverse .navbar-brand {

 color: #9d9d9d;

} .navbar-inverse .navbar-brand:hover, .navbar-inverse .navbar-brand:focus {

 color: #fff;
 background-color: transparent;

} .navbar-inverse .navbar-text {

 color: #9d9d9d;

} .navbar-inverse .navbar-nav > li > a {

 color: #9d9d9d;

} .navbar-inverse .navbar-nav > li > a:hover, .navbar-inverse .navbar-nav > li > a:focus {

 color: #fff;
 background-color: transparent;

} .navbar-inverse .navbar-nav > .active > a, .navbar-inverse .navbar-nav > .active > a:hover, .navbar-inverse .navbar-nav > .active > a:focus {

 color: #fff;
 background-color: #080808;

} .navbar-inverse .navbar-nav > .disabled > a, .navbar-inverse .navbar-nav > .disabled > a:hover, .navbar-inverse .navbar-nav > .disabled > a:focus {

 color: #444;
 background-color: transparent;

} .navbar-inverse .navbar-toggle {

 border-color: #333;

} .navbar-inverse .navbar-toggle:hover, .navbar-inverse .navbar-toggle:focus {

 background-color: #333;

} .navbar-inverse .navbar-toggle .icon-bar {

 background-color: #fff;

} .navbar-inverse .navbar-collapse, .navbar-inverse .navbar-form {

 border-color: #101010;

} .navbar-inverse .navbar-nav > .open > a, .navbar-inverse .navbar-nav > .open > a:hover, .navbar-inverse .navbar-nav > .open > a:focus {

 background-color: #080808;
 color: #fff;

} @media (max-width: 540px) {

 .navbar-inverse .navbar-nav .open .dropdown-menu > .dropdown-header {
   border-color: #080808;
 }
 .navbar-inverse .navbar-nav .open .dropdown-menu .divider {
   background-color: #080808;
 }
 .navbar-inverse .navbar-nav .open .dropdown-menu > li > a {
   color: #9d9d9d;
 }
 .navbar-inverse .navbar-nav .open .dropdown-menu > li > a:hover,
 .navbar-inverse .navbar-nav .open .dropdown-menu > li > a:focus {
   color: #fff;
   background-color: transparent;
 }
 .navbar-inverse .navbar-nav .open .dropdown-menu > .active > a,
 .navbar-inverse .navbar-nav .open .dropdown-menu > .active > a:hover,
 .navbar-inverse .navbar-nav .open .dropdown-menu > .active > a:focus {
   color: #fff;
   background-color: #080808;
 }
 .navbar-inverse .navbar-nav .open .dropdown-menu > .disabled > a,
 .navbar-inverse .navbar-nav .open .dropdown-menu > .disabled > a:hover,
 .navbar-inverse .navbar-nav .open .dropdown-menu > .disabled > a:focus {
   color: #444;
   background-color: transparent;
 }

} .navbar-inverse .navbar-link {

 color: #9d9d9d;

} .navbar-inverse .navbar-link:hover {

 color: #fff;

} .navbar-inverse .btn-link {

 color: #9d9d9d;

} .navbar-inverse .btn-link:hover, .navbar-inverse .btn-link:focus {

 color: #fff;

} .navbar-inverse .btn-link[disabled]:hover, fieldset[disabled] .navbar-inverse .btn-link:hover, .navbar-inverse .btn-link[disabled]:focus, fieldset[disabled] .navbar-inverse .btn-link:focus {

 color: #444;

} .breadcrumb {

 padding: 8px 15px;
 margin-bottom: 18px;
 list-style: none;
 background-color: #f5f5f5;
 border-radius: 2px;

} .breadcrumb > li {

 display: inline-block;

} .breadcrumb > li + li:before {

 content: "/\00a0";
 padding: 0 5px;
 color: #5e5e5e;

} .breadcrumb > .active {

 color: #777777;

} .pagination {

 display: inline-block;
 padding-left: 0;
 margin: 18px 0;
 border-radius: 2px;

} .pagination > li {

 display: inline;

} .pagination > li > a, .pagination > li > span {

 position: relative;
 float: left;
 padding: 6px 12px;
 line-height: 1.42857143;
 text-decoration: none;
 color: #337ab7;
 background-color: #fff;
 border: 1px solid #ddd;
 margin-left: -1px;

} .pagination > li:first-child > a, .pagination > li:first-child > span {

 margin-left: 0;
 border-bottom-left-radius: 2px;
 border-top-left-radius: 2px;

} .pagination > li:last-child > a, .pagination > li:last-child > span {

 border-bottom-right-radius: 2px;
 border-top-right-radius: 2px;

} .pagination > li > a:hover, .pagination > li > span:hover, .pagination > li > a:focus, .pagination > li > span:focus {

 z-index: 2;
 color: #23527c;
 background-color: #eeeeee;
 border-color: #ddd;

} .pagination > .active > a, .pagination > .active > span, .pagination > .active > a:hover, .pagination > .active > span:hover, .pagination > .active > a:focus, .pagination > .active > span:focus {

 z-index: 3;
 color: #fff;
 background-color: #337ab7;
 border-color: #337ab7;
 cursor: default;

} .pagination > .disabled > span, .pagination > .disabled > span:hover, .pagination > .disabled > span:focus, .pagination > .disabled > a, .pagination > .disabled > a:hover, .pagination > .disabled > a:focus {

 color: #777777;
 background-color: #fff;
 border-color: #ddd;
 cursor: not-allowed;

} .pagination-lg > li > a, .pagination-lg > li > span {

 padding: 10px 16px;
 font-size: 17px;
 line-height: 1.3333333;

} .pagination-lg > li:first-child > a, .pagination-lg > li:first-child > span {

 border-bottom-left-radius: 3px;
 border-top-left-radius: 3px;

} .pagination-lg > li:last-child > a, .pagination-lg > li:last-child > span {

 border-bottom-right-radius: 3px;
 border-top-right-radius: 3px;

} .pagination-sm > li > a, .pagination-sm > li > span {

 padding: 5px 10px;
 font-size: 12px;
 line-height: 1.5;

} .pagination-sm > li:first-child > a, .pagination-sm > li:first-child > span {

 border-bottom-left-radius: 1px;
 border-top-left-radius: 1px;

} .pagination-sm > li:last-child > a, .pagination-sm > li:last-child > span {

 border-bottom-right-radius: 1px;
 border-top-right-radius: 1px;

} .pager {

 padding-left: 0;
 margin: 18px 0;
 list-style: none;
 text-align: center;

} .pager li {

 display: inline;

} .pager li > a, .pager li > span {

 display: inline-block;
 padding: 5px 14px;
 background-color: #fff;
 border: 1px solid #ddd;
 border-radius: 15px;

} .pager li > a:hover, .pager li > a:focus {

 text-decoration: none;
 background-color: #eeeeee;

} .pager .next > a, .pager .next > span {

 float: right;

} .pager .previous > a, .pager .previous > span {

 float: left;

} .pager .disabled > a, .pager .disabled > a:hover, .pager .disabled > a:focus, .pager .disabled > span {

 color: #777777;
 background-color: #fff;
 cursor: not-allowed;

} .label {

 display: inline;
 padding: .2em .6em .3em;
 font-size: 75%;
 font-weight: bold;
 line-height: 1;
 color: #fff;
 text-align: center;
 white-space: nowrap;
 vertical-align: baseline;
 border-radius: .25em;

} a.label:hover, a.label:focus {

 color: #fff;
 text-decoration: none;
 cursor: pointer;

} .label:empty {

 display: none;

} .btn .label {

 position: relative;
 top: -1px;

} .label-default {

 background-color: #777777;

} .label-default[href]:hover, .label-default[href]:focus {

 background-color: #5e5e5e;

} .label-primary {

 background-color: #337ab7;

} .label-primary[href]:hover, .label-primary[href]:focus {

 background-color: #286090;

} .label-success {

 background-color: #5cb85c;

} .label-success[href]:hover, .label-success[href]:focus {

 background-color: #449d44;

} .label-info {

 background-color: #5bc0de;

} .label-info[href]:hover, .label-info[href]:focus {

 background-color: #31b0d5;

} .label-warning {

 background-color: #f0ad4e;

} .label-warning[href]:hover, .label-warning[href]:focus {

 background-color: #ec971f;

} .label-danger {

 background-color: #d9534f;

} .label-danger[href]:hover, .label-danger[href]:focus {

 background-color: #c9302c;

} .badge {

 display: inline-block;
 min-width: 10px;
 padding: 3px 7px;
 font-size: 12px;
 font-weight: bold;
 color: #fff;
 line-height: 1;
 vertical-align: middle;
 white-space: nowrap;
 text-align: center;
 background-color: #777777;
 border-radius: 10px;

} .badge:empty {

 display: none;

} .btn .badge {

 position: relative;
 top: -1px;

} .btn-xs .badge, .btn-group-xs > .btn .badge {

 top: 0;
 padding: 1px 5px;

} a.badge:hover, a.badge:focus {

 color: #fff;
 text-decoration: none;
 cursor: pointer;

} .list-group-item.active > .badge, .nav-pills > .active > a > .badge {

 color: #337ab7;
 background-color: #fff;

} .list-group-item > .badge {

 float: right;

} .list-group-item > .badge + .badge {

 margin-right: 5px;

} .nav-pills > li > a > .badge {

 margin-left: 3px;

} .jumbotron {

 padding-top: 30px;
 padding-bottom: 30px;
 margin-bottom: 30px;
 color: inherit;
 background-color: #eeeeee;

} .jumbotron h1, .jumbotron .h1 {

 color: inherit;

} .jumbotron p {

 margin-bottom: 15px;
 font-size: 20px;
 font-weight: 200;

} .jumbotron > hr {

 border-top-color: #d5d5d5;

} .container .jumbotron, .container-fluid .jumbotron {

 border-radius: 3px;
 padding-left: 0px;
 padding-right: 0px;

} .jumbotron .container {

 max-width: 100%;

} @media screen and (min-width: 768px) {

 .jumbotron {
   padding-top: 48px;
   padding-bottom: 48px;
 }
 .container .jumbotron,
 .container-fluid .jumbotron {
   padding-left: 60px;
   padding-right: 60px;
 }
 .jumbotron h1,
 .jumbotron .h1 {
   font-size: 59px;
 }

} .thumbnail {

 display: block;
 padding: 4px;
 margin-bottom: 18px;
 line-height: 1.42857143;
 background-color: #fff;
 border: 1px solid #ddd;
 border-radius: 2px;
 -webkit-transition: border 0.2s ease-in-out;
 -o-transition: border 0.2s ease-in-out;
 transition: border 0.2s ease-in-out;

} .thumbnail > img, .thumbnail a > img {

 margin-left: auto;
 margin-right: auto;

} a.thumbnail:hover, a.thumbnail:focus, a.thumbnail.active {

 border-color: #337ab7;

} .thumbnail .caption {

 padding: 9px;
 color: #000;

} .alert {

 padding: 15px;
 margin-bottom: 18px;
 border: 1px solid transparent;
 border-radius: 2px;

} .alert h4 {

 margin-top: 0;
 color: inherit;

} .alert .alert-link {

 font-weight: bold;

} .alert > p, .alert > ul {

 margin-bottom: 0;

} .alert > p + p {

 margin-top: 5px;

} .alert-dismissable, .alert-dismissible {

 padding-right: 35px;

} .alert-dismissable .close, .alert-dismissible .close {

 position: relative;
 top: -2px;
 right: -21px;
 color: inherit;

} .alert-success {

 background-color: #dff0d8;
 border-color: #d6e9c6;
 color: #3c763d;

} .alert-success hr {

 border-top-color: #c9e2b3;

} .alert-success .alert-link {

 color: #2b542c;

} .alert-info {

 background-color: #d9edf7;
 border-color: #bce8f1;
 color: #31708f;

} .alert-info hr {

 border-top-color: #a6e1ec;

} .alert-info .alert-link {

 color: #245269;

} .alert-warning {

 background-color: #fcf8e3;
 border-color: #faebcc;
 color: #8a6d3b;

} .alert-warning hr {

 border-top-color: #f7e1b5;

} .alert-warning .alert-link {

 color: #66512c;

} .alert-danger {

 background-color: #f2dede;
 border-color: #ebccd1;
 color: #a94442;

} .alert-danger hr {

 border-top-color: #e4b9c0;

} .alert-danger .alert-link {

 color: #843534;

} @-webkit-keyframes progress-bar-stripes {

 from {
   background-position: 40px 0;
 }
 to {
   background-position: 0 0;
 }

} @keyframes progress-bar-stripes {

 from {
   background-position: 40px 0;
 }
 to {
   background-position: 0 0;
 }

} .progress {

 overflow: hidden;
 height: 18px;
 margin-bottom: 18px;
 background-color: #f5f5f5;
 border-radius: 2px;
 -webkit-box-shadow: inset 0 1px 2px rgba(0, 0, 0, 0.1);
 box-shadow: inset 0 1px 2px rgba(0, 0, 0, 0.1);

} .progress-bar {

 float: left;
 width: 0%;
 height: 100%;
 font-size: 12px;
 line-height: 18px;
 color: #fff;
 text-align: center;
 background-color: #337ab7;
 -webkit-box-shadow: inset 0 -1px 0 rgba(0, 0, 0, 0.15);
 box-shadow: inset 0 -1px 0 rgba(0, 0, 0, 0.15);
 -webkit-transition: width 0.6s ease;
 -o-transition: width 0.6s ease;
 transition: width 0.6s ease;

} .progress-striped .progress-bar, .progress-bar-striped {

 background-image: -webkit-linear-gradient(45deg, rgba(255, 255, 255, 0.15) 25%, transparent 25%, transparent 50%, rgba(255, 255, 255, 0.15) 50%, rgba(255, 255, 255, 0.15) 75%, transparent 75%, transparent);
 background-image: -o-linear-gradient(45deg, rgba(255, 255, 255, 0.15) 25%, transparent 25%, transparent 50%, rgba(255, 255, 255, 0.15) 50%, rgba(255, 255, 255, 0.15) 75%, transparent 75%, transparent);
 background-image: linear-gradient(45deg, rgba(255, 255, 255, 0.15) 25%, transparent 25%, transparent 50%, rgba(255, 255, 255, 0.15) 50%, rgba(255, 255, 255, 0.15) 75%, transparent 75%, transparent);
 background-size: 40px 40px;

} .progress.active .progress-bar, .progress-bar.active {

 -webkit-animation: progress-bar-stripes 2s linear infinite;
 -o-animation: progress-bar-stripes 2s linear infinite;
 animation: progress-bar-stripes 2s linear infinite;

} .progress-bar-success {

 background-color: #5cb85c;

} .progress-striped .progress-bar-success {

 background-image: -webkit-linear-gradient(45deg, rgba(255, 255, 255, 0.15) 25%, transparent 25%, transparent 50%, rgba(255, 255, 255, 0.15) 50%, rgba(255, 255, 255, 0.15) 75%, transparent 75%, transparent);
 background-image: -o-linear-gradient(45deg, rgba(255, 255, 255, 0.15) 25%, transparent 25%, transparent 50%, rgba(255, 255, 255, 0.15) 50%, rgba(255, 255, 255, 0.15) 75%, transparent 75%, transparent);
 background-image: linear-gradient(45deg, rgba(255, 255, 255, 0.15) 25%, transparent 25%, transparent 50%, rgba(255, 255, 255, 0.15) 50%, rgba(255, 255, 255, 0.15) 75%, transparent 75%, transparent);

} .progress-bar-info {

 background-color: #5bc0de;

} .progress-striped .progress-bar-info {

 background-image: -webkit-linear-gradient(45deg, rgba(255, 255, 255, 0.15) 25%, transparent 25%, transparent 50%, rgba(255, 255, 255, 0.15) 50%, rgba(255, 255, 255, 0.15) 75%, transparent 75%, transparent);
 background-image: -o-linear-gradient(45deg, rgba(255, 255, 255, 0.15) 25%, transparent 25%, transparent 50%, rgba(255, 255, 255, 0.15) 50%, rgba(255, 255, 255, 0.15) 75%, transparent 75%, transparent);
 background-image: linear-gradient(45deg, rgba(255, 255, 255, 0.15) 25%, transparent 25%, transparent 50%, rgba(255, 255, 255, 0.15) 50%, rgba(255, 255, 255, 0.15) 75%, transparent 75%, transparent);

} .progress-bar-warning {

 background-color: #f0ad4e;

} .progress-striped .progress-bar-warning {

 background-image: -webkit-linear-gradient(45deg, rgba(255, 255, 255, 0.15) 25%, transparent 25%, transparent 50%, rgba(255, 255, 255, 0.15) 50%, rgba(255, 255, 255, 0.15) 75%, transparent 75%, transparent);
 background-image: -o-linear-gradient(45deg, rgba(255, 255, 255, 0.15) 25%, transparent 25%, transparent 50%, rgba(255, 255, 255, 0.15) 50%, rgba(255, 255, 255, 0.15) 75%, transparent 75%, transparent);
 background-image: linear-gradient(45deg, rgba(255, 255, 255, 0.15) 25%, transparent 25%, transparent 50%, rgba(255, 255, 255, 0.15) 50%, rgba(255, 255, 255, 0.15) 75%, transparent 75%, transparent);

} .progress-bar-danger {

 background-color: #d9534f;

} .progress-striped .progress-bar-danger {

 background-image: -webkit-linear-gradient(45deg, rgba(255, 255, 255, 0.15) 25%, transparent 25%, transparent 50%, rgba(255, 255, 255, 0.15) 50%, rgba(255, 255, 255, 0.15) 75%, transparent 75%, transparent);
 background-image: -o-linear-gradient(45deg, rgba(255, 255, 255, 0.15) 25%, transparent 25%, transparent 50%, rgba(255, 255, 255, 0.15) 50%, rgba(255, 255, 255, 0.15) 75%, transparent 75%, transparent);
 background-image: linear-gradient(45deg, rgba(255, 255, 255, 0.15) 25%, transparent 25%, transparent 50%, rgba(255, 255, 255, 0.15) 50%, rgba(255, 255, 255, 0.15) 75%, transparent 75%, transparent);

} .media {

 margin-top: 15px;

} .media:first-child {

 margin-top: 0;

} .media, .media-body {

 zoom: 1;
 overflow: hidden;

} .media-body {

 width: 10000px;

} .media-object {

 display: block;

} .media-object.img-thumbnail {

 max-width: none;

} .media-right, .media > .pull-right {

 padding-left: 10px;

} .media-left, .media > .pull-left {

 padding-right: 10px;

} .media-left, .media-right, .media-body {

 display: table-cell;
 vertical-align: top;

} .media-middle {

 vertical-align: middle;

} .media-bottom {

 vertical-align: bottom;

} .media-heading {

 margin-top: 0;
 margin-bottom: 5px;

} .media-list {

 padding-left: 0;
 list-style: none;

} .list-group {

 margin-bottom: 20px;
 padding-left: 0;

} .list-group-item {

 position: relative;
 display: block;
 padding: 10px 15px;
 margin-bottom: -1px;
 background-color: #fff;
 border: 1px solid #ddd;

} .list-group-item:first-child {

 border-top-right-radius: 2px;
 border-top-left-radius: 2px;

} .list-group-item:last-child {

 margin-bottom: 0;
 border-bottom-right-radius: 2px;
 border-bottom-left-radius: 2px;

} a.list-group-item, button.list-group-item {

 color: #555;

} a.list-group-item .list-group-item-heading, button.list-group-item .list-group-item-heading {

 color: #333;

} a.list-group-item:hover, button.list-group-item:hover, a.list-group-item:focus, button.list-group-item:focus {

 text-decoration: none;
 color: #555;
 background-color: #f5f5f5;

} button.list-group-item {

 width: 100%;
 text-align: left;

} .list-group-item.disabled, .list-group-item.disabled:hover, .list-group-item.disabled:focus {

 background-color: #eeeeee;
 color: #777777;
 cursor: not-allowed;

} .list-group-item.disabled .list-group-item-heading, .list-group-item.disabled:hover .list-group-item-heading, .list-group-item.disabled:focus .list-group-item-heading {

 color: inherit;

} .list-group-item.disabled .list-group-item-text, .list-group-item.disabled:hover .list-group-item-text, .list-group-item.disabled:focus .list-group-item-text {

 color: #777777;

} .list-group-item.active, .list-group-item.active:hover, .list-group-item.active:focus {

 z-index: 2;
 color: #fff;
 background-color: #337ab7;
 border-color: #337ab7;

} .list-group-item.active .list-group-item-heading, .list-group-item.active:hover .list-group-item-heading, .list-group-item.active:focus .list-group-item-heading, .list-group-item.active .list-group-item-heading > small, .list-group-item.active:hover .list-group-item-heading > small, .list-group-item.active:focus .list-group-item-heading > small, .list-group-item.active .list-group-item-heading > .small, .list-group-item.active:hover .list-group-item-heading > .small, .list-group-item.active:focus .list-group-item-heading > .small {

 color: inherit;

} .list-group-item.active .list-group-item-text, .list-group-item.active:hover .list-group-item-text, .list-group-item.active:focus .list-group-item-text {

 color: #c7ddef;

} .list-group-item-success {

 color: #3c763d;
 background-color: #dff0d8;

} a.list-group-item-success, button.list-group-item-success {

 color: #3c763d;

} a.list-group-item-success .list-group-item-heading, button.list-group-item-success .list-group-item-heading {

 color: inherit;

} a.list-group-item-success:hover, button.list-group-item-success:hover, a.list-group-item-success:focus, button.list-group-item-success:focus {

 color: #3c763d;
 background-color: #d0e9c6;

} a.list-group-item-success.active, button.list-group-item-success.active, a.list-group-item-success.active:hover, button.list-group-item-success.active:hover, a.list-group-item-success.active:focus, button.list-group-item-success.active:focus {

 color: #fff;
 background-color: #3c763d;
 border-color: #3c763d;

} .list-group-item-info {

 color: #31708f;
 background-color: #d9edf7;

} a.list-group-item-info, button.list-group-item-info {

 color: #31708f;

} a.list-group-item-info .list-group-item-heading, button.list-group-item-info .list-group-item-heading {

 color: inherit;

} a.list-group-item-info:hover, button.list-group-item-info:hover, a.list-group-item-info:focus, button.list-group-item-info:focus {

 color: #31708f;
 background-color: #c4e3f3;

} a.list-group-item-info.active, button.list-group-item-info.active, a.list-group-item-info.active:hover, button.list-group-item-info.active:hover, a.list-group-item-info.active:focus, button.list-group-item-info.active:focus {

 color: #fff;
 background-color: #31708f;
 border-color: #31708f;

} .list-group-item-warning {

 color: #8a6d3b;
 background-color: #fcf8e3;

} a.list-group-item-warning, button.list-group-item-warning {

 color: #8a6d3b;

} a.list-group-item-warning .list-group-item-heading, button.list-group-item-warning .list-group-item-heading {

 color: inherit;

} a.list-group-item-warning:hover, button.list-group-item-warning:hover, a.list-group-item-warning:focus, button.list-group-item-warning:focus {

 color: #8a6d3b;
 background-color: #faf2cc;

} a.list-group-item-warning.active, button.list-group-item-warning.active, a.list-group-item-warning.active:hover, button.list-group-item-warning.active:hover, a.list-group-item-warning.active:focus, button.list-group-item-warning.active:focus {

 color: #fff;
 background-color: #8a6d3b;
 border-color: #8a6d3b;

} .list-group-item-danger {

 color: #a94442;
 background-color: #f2dede;

} a.list-group-item-danger, button.list-group-item-danger {

 color: #a94442;

} a.list-group-item-danger .list-group-item-heading, button.list-group-item-danger .list-group-item-heading {

 color: inherit;

} a.list-group-item-danger:hover, button.list-group-item-danger:hover, a.list-group-item-danger:focus, button.list-group-item-danger:focus {

 color: #a94442;
 background-color: #ebcccc;

} a.list-group-item-danger.active, button.list-group-item-danger.active, a.list-group-item-danger.active:hover, button.list-group-item-danger.active:hover, a.list-group-item-danger.active:focus, button.list-group-item-danger.active:focus {

 color: #fff;
 background-color: #a94442;
 border-color: #a94442;

} .list-group-item-heading {

 margin-top: 0;
 margin-bottom: 5px;

} .list-group-item-text {

 margin-bottom: 0;
 line-height: 1.3;

} .panel {

 margin-bottom: 18px;
 background-color: #fff;
 border: 1px solid transparent;
 border-radius: 2px;
 -webkit-box-shadow: 0 1px 1px rgba(0, 0, 0, 0.05);
 box-shadow: 0 1px 1px rgba(0, 0, 0, 0.05);

} .panel-body {

 padding: 15px;

} .panel-heading {

 padding: 10px 15px;
 border-bottom: 1px solid transparent;
 border-top-right-radius: 1px;
 border-top-left-radius: 1px;

} .panel-heading > .dropdown .dropdown-toggle {

 color: inherit;

} .panel-title {

 margin-top: 0;
 margin-bottom: 0;
 font-size: 15px;
 color: inherit;

} .panel-title > a, .panel-title > small, .panel-title > .small, .panel-title > small > a, .panel-title > .small > a {

 color: inherit;

} .panel-footer {

 padding: 10px 15px;
 background-color: #f5f5f5;
 border-top: 1px solid #ddd;
 border-bottom-right-radius: 1px;
 border-bottom-left-radius: 1px;

} .panel > .list-group, .panel > .panel-collapse > .list-group {

 margin-bottom: 0;

} .panel > .list-group .list-group-item, .panel > .panel-collapse > .list-group .list-group-item {

 border-width: 1px 0;
 border-radius: 0;

} .panel > .list-group:first-child .list-group-item:first-child, .panel > .panel-collapse > .list-group:first-child .list-group-item:first-child {

 border-top: 0;
 border-top-right-radius: 1px;
 border-top-left-radius: 1px;

} .panel > .list-group:last-child .list-group-item:last-child, .panel > .panel-collapse > .list-group:last-child .list-group-item:last-child {

 border-bottom: 0;
 border-bottom-right-radius: 1px;
 border-bottom-left-radius: 1px;

} .panel > .panel-heading + .panel-collapse > .list-group .list-group-item:first-child {

 border-top-right-radius: 0;
 border-top-left-radius: 0;

} .panel-heading + .list-group .list-group-item:first-child {

 border-top-width: 0;

} .list-group + .panel-footer {

 border-top-width: 0;

} .panel > .table, .panel > .table-responsive > .table, .panel > .panel-collapse > .table {

 margin-bottom: 0;

} .panel > .table caption, .panel > .table-responsive > .table caption, .panel > .panel-collapse > .table caption {

 padding-left: 15px;
 padding-right: 15px;

} .panel > .table:first-child, .panel > .table-responsive:first-child > .table:first-child {

 border-top-right-radius: 1px;
 border-top-left-radius: 1px;

} .panel > .table:first-child > thead:first-child > tr:first-child, .panel > .table-responsive:first-child > .table:first-child > thead:first-child > tr:first-child, .panel > .table:first-child > tbody:first-child > tr:first-child, .panel > .table-responsive:first-child > .table:first-child > tbody:first-child > tr:first-child {

 border-top-left-radius: 1px;
 border-top-right-radius: 1px;

} .panel > .table:first-child > thead:first-child > tr:first-child td:first-child, .panel > .table-responsive:first-child > .table:first-child > thead:first-child > tr:first-child td:first-child, .panel > .table:first-child > tbody:first-child > tr:first-child td:first-child, .panel > .table-responsive:first-child > .table:first-child > tbody:first-child > tr:first-child td:first-child, .panel > .table:first-child > thead:first-child > tr:first-child th:first-child, .panel > .table-responsive:first-child > .table:first-child > thead:first-child > tr:first-child th:first-child, .panel > .table:first-child > tbody:first-child > tr:first-child th:first-child, .panel > .table-responsive:first-child > .table:first-child > tbody:first-child > tr:first-child th:first-child {

 border-top-left-radius: 1px;

} .panel > .table:first-child > thead:first-child > tr:first-child td:last-child, .panel > .table-responsive:first-child > .table:first-child > thead:first-child > tr:first-child td:last-child, .panel > .table:first-child > tbody:first-child > tr:first-child td:last-child, .panel > .table-responsive:first-child > .table:first-child > tbody:first-child > tr:first-child td:last-child, .panel > .table:first-child > thead:first-child > tr:first-child th:last-child, .panel > .table-responsive:first-child > .table:first-child > thead:first-child > tr:first-child th:last-child, .panel > .table:first-child > tbody:first-child > tr:first-child th:last-child, .panel > .table-responsive:first-child > .table:first-child > tbody:first-child > tr:first-child th:last-child {

 border-top-right-radius: 1px;

} .panel > .table:last-child, .panel > .table-responsive:last-child > .table:last-child {

 border-bottom-right-radius: 1px;
 border-bottom-left-radius: 1px;

} .panel > .table:last-child > tbody:last-child > tr:last-child, .panel > .table-responsive:last-child > .table:last-child > tbody:last-child > tr:last-child, .panel > .table:last-child > tfoot:last-child > tr:last-child, .panel > .table-responsive:last-child > .table:last-child > tfoot:last-child > tr:last-child {

 border-bottom-left-radius: 1px;
 border-bottom-right-radius: 1px;

} .panel > .table:last-child > tbody:last-child > tr:last-child td:first-child, .panel > .table-responsive:last-child > .table:last-child > tbody:last-child > tr:last-child td:first-child, .panel > .table:last-child > tfoot:last-child > tr:last-child td:first-child, .panel > .table-responsive:last-child > .table:last-child > tfoot:last-child > tr:last-child td:first-child, .panel > .table:last-child > tbody:last-child > tr:last-child th:first-child, .panel > .table-responsive:last-child > .table:last-child > tbody:last-child > tr:last-child th:first-child, .panel > .table:last-child > tfoot:last-child > tr:last-child th:first-child, .panel > .table-responsive:last-child > .table:last-child > tfoot:last-child > tr:last-child th:first-child {

 border-bottom-left-radius: 1px;

} .panel > .table:last-child > tbody:last-child > tr:last-child td:last-child, .panel > .table-responsive:last-child > .table:last-child > tbody:last-child > tr:last-child td:last-child, .panel > .table:last-child > tfoot:last-child > tr:last-child td:last-child, .panel > .table-responsive:last-child > .table:last-child > tfoot:last-child > tr:last-child td:last-child, .panel > .table:last-child > tbody:last-child > tr:last-child th:last-child, .panel > .table-responsive:last-child > .table:last-child > tbody:last-child > tr:last-child th:last-child, .panel > .table:last-child > tfoot:last-child > tr:last-child th:last-child, .panel > .table-responsive:last-child > .table:last-child > tfoot:last-child > tr:last-child th:last-child {

 border-bottom-right-radius: 1px;

} .panel > .panel-body + .table, .panel > .panel-body + .table-responsive, .panel > .table + .panel-body, .panel > .table-responsive + .panel-body {

 border-top: 1px solid #ddd;

} .panel > .table > tbody:first-child > tr:first-child th, .panel > .table > tbody:first-child > tr:first-child td {

 border-top: 0;

} .panel > .table-bordered, .panel > .table-responsive > .table-bordered {

 border: 0;

} .panel > .table-bordered > thead > tr > th:first-child, .panel > .table-responsive > .table-bordered > thead > tr > th:first-child, .panel > .table-bordered > tbody > tr > th:first-child, .panel > .table-responsive > .table-bordered > tbody > tr > th:first-child, .panel > .table-bordered > tfoot > tr > th:first-child, .panel > .table-responsive > .table-bordered > tfoot > tr > th:first-child, .panel > .table-bordered > thead > tr > td:first-child, .panel > .table-responsive > .table-bordered > thead > tr > td:first-child, .panel > .table-bordered > tbody > tr > td:first-child, .panel > .table-responsive > .table-bordered > tbody > tr > td:first-child, .panel > .table-bordered > tfoot > tr > td:first-child, .panel > .table-responsive > .table-bordered > tfoot > tr > td:first-child {

 border-left: 0;

} .panel > .table-bordered > thead > tr > th:last-child, .panel > .table-responsive > .table-bordered > thead > tr > th:last-child, .panel > .table-bordered > tbody > tr > th:last-child, .panel > .table-responsive > .table-bordered > tbody > tr > th:last-child, .panel > .table-bordered > tfoot > tr > th:last-child, .panel > .table-responsive > .table-bordered > tfoot > tr > th:last-child, .panel > .table-bordered > thead > tr > td:last-child, .panel > .table-responsive > .table-bordered > thead > tr > td:last-child, .panel > .table-bordered > tbody > tr > td:last-child, .panel > .table-responsive > .table-bordered > tbody > tr > td:last-child, .panel > .table-bordered > tfoot > tr > td:last-child, .panel > .table-responsive > .table-bordered > tfoot > tr > td:last-child {

 border-right: 0;

} .panel > .table-bordered > thead > tr:first-child > td, .panel > .table-responsive > .table-bordered > thead > tr:first-child > td, .panel > .table-bordered > tbody > tr:first-child > td, .panel > .table-responsive > .table-bordered > tbody > tr:first-child > td, .panel > .table-bordered > thead > tr:first-child > th, .panel > .table-responsive > .table-bordered > thead > tr:first-child > th, .panel > .table-bordered > tbody > tr:first-child > th, .panel > .table-responsive > .table-bordered > tbody > tr:first-child > th {

 border-bottom: 0;

} .panel > .table-bordered > tbody > tr:last-child > td, .panel > .table-responsive > .table-bordered > tbody > tr:last-child > td, .panel > .table-bordered > tfoot > tr:last-child > td, .panel > .table-responsive > .table-bordered > tfoot > tr:last-child > td, .panel > .table-bordered > tbody > tr:last-child > th, .panel > .table-responsive > .table-bordered > tbody > tr:last-child > th, .panel > .table-bordered > tfoot > tr:last-child > th, .panel > .table-responsive > .table-bordered > tfoot > tr:last-child > th {

 border-bottom: 0;

} .panel > .table-responsive {

 border: 0;
 margin-bottom: 0;

} .panel-group {

 margin-bottom: 18px;

} .panel-group .panel {

 margin-bottom: 0;
 border-radius: 2px;

} .panel-group .panel + .panel {

 margin-top: 5px;

} .panel-group .panel-heading {

 border-bottom: 0;

} .panel-group .panel-heading + .panel-collapse > .panel-body, .panel-group .panel-heading + .panel-collapse > .list-group {

 border-top: 1px solid #ddd;

} .panel-group .panel-footer {

 border-top: 0;

} .panel-group .panel-footer + .panel-collapse .panel-body {

 border-bottom: 1px solid #ddd;

} .panel-default {

 border-color: #ddd;

} .panel-default > .panel-heading {

 color: #333333;
 background-color: #f5f5f5;
 border-color: #ddd;

} .panel-default > .panel-heading + .panel-collapse > .panel-body {

 border-top-color: #ddd;

} .panel-default > .panel-heading .badge {

 color: #f5f5f5;
 background-color: #333333;

} .panel-default > .panel-footer + .panel-collapse > .panel-body {

 border-bottom-color: #ddd;

} .panel-primary {

 border-color: #337ab7;

} .panel-primary > .panel-heading {

 color: #fff;
 background-color: #337ab7;
 border-color: #337ab7;

} .panel-primary > .panel-heading + .panel-collapse > .panel-body {

 border-top-color: #337ab7;

} .panel-primary > .panel-heading .badge {

 color: #337ab7;
 background-color: #fff;

} .panel-primary > .panel-footer + .panel-collapse > .panel-body {

 border-bottom-color: #337ab7;

} .panel-success {

 border-color: #d6e9c6;

} .panel-success > .panel-heading {

 color: #3c763d;
 background-color: #dff0d8;
 border-color: #d6e9c6;

} .panel-success > .panel-heading + .panel-collapse > .panel-body {

 border-top-color: #d6e9c6;

} .panel-success > .panel-heading .badge {

 color: #dff0d8;
 background-color: #3c763d;

} .panel-success > .panel-footer + .panel-collapse > .panel-body {

 border-bottom-color: #d6e9c6;

} .panel-info {

 border-color: #bce8f1;

} .panel-info > .panel-heading {

 color: #31708f;
 background-color: #d9edf7;
 border-color: #bce8f1;

} .panel-info > .panel-heading + .panel-collapse > .panel-body {

 border-top-color: #bce8f1;

} .panel-info > .panel-heading .badge {

 color: #d9edf7;
 background-color: #31708f;

} .panel-info > .panel-footer + .panel-collapse > .panel-body {

 border-bottom-color: #bce8f1;

} .panel-warning {

 border-color: #faebcc;

} .panel-warning > .panel-heading {

 color: #8a6d3b;
 background-color: #fcf8e3;
 border-color: #faebcc;

} .panel-warning > .panel-heading + .panel-collapse > .panel-body {

 border-top-color: #faebcc;

} .panel-warning > .panel-heading .badge {

 color: #fcf8e3;
 background-color: #8a6d3b;

} .panel-warning > .panel-footer + .panel-collapse > .panel-body {

 border-bottom-color: #faebcc;

} .panel-danger {

 border-color: #ebccd1;

} .panel-danger > .panel-heading {

 color: #a94442;
 background-color: #f2dede;
 border-color: #ebccd1;

} .panel-danger > .panel-heading + .panel-collapse > .panel-body {

 border-top-color: #ebccd1;

} .panel-danger > .panel-heading .badge {

 color: #f2dede;
 background-color: #a94442;

} .panel-danger > .panel-footer + .panel-collapse > .panel-body {

 border-bottom-color: #ebccd1;

} .embed-responsive {

 position: relative;
 display: block;
 height: 0;
 padding: 0;
 overflow: hidden;

} .embed-responsive .embed-responsive-item, .embed-responsive iframe, .embed-responsive embed, .embed-responsive object, .embed-responsive video {

 position: absolute;
 top: 0;
 left: 0;
 bottom: 0;
 height: 100%;
 width: 100%;
 border: 0;

} .embed-responsive-16by9 {

 padding-bottom: 56.25%;

} .embed-responsive-4by3 {

 padding-bottom: 75%;

} .well {

 min-height: 20px;
 padding: 19px;
 margin-bottom: 20px;
 background-color: #f5f5f5;
 border: 1px solid #e3e3e3;
 border-radius: 2px;
 -webkit-box-shadow: inset 0 1px 1px rgba(0, 0, 0, 0.05);
 box-shadow: inset 0 1px 1px rgba(0, 0, 0, 0.05);

} .well blockquote {

 border-color: #ddd;
 border-color: rgba(0, 0, 0, 0.15);

} .well-lg {

 padding: 24px;
 border-radius: 3px;

} .well-sm {

 padding: 9px;
 border-radius: 1px;

} .close {

 float: right;
 font-size: 19.5px;
 font-weight: bold;
 line-height: 1;
 color: #000;
 text-shadow: 0 1px 0 #fff;
 opacity: 0.2;
 filter: alpha(opacity=20);

} .close:hover, .close:focus {

 color: #000;
 text-decoration: none;
 cursor: pointer;
 opacity: 0.5;
 filter: alpha(opacity=50);

} button.close {

 padding: 0;
 cursor: pointer;
 background: transparent;
 border: 0;
 -webkit-appearance: none;

} .modal-open {

 overflow: hidden;

} .modal {

 display: none;
 overflow: hidden;
 position: fixed;
 top: 0;
 right: 0;
 bottom: 0;
 left: 0;
 z-index: 1050;
 -webkit-overflow-scrolling: touch;
 outline: 0;

} .modal.fade .modal-dialog {

 -webkit-transform: translate(0, -25%);
 -ms-transform: translate(0, -25%);
 -o-transform: translate(0, -25%);
 transform: translate(0, -25%);
 -webkit-transition: -webkit-transform 0.3s ease-out;
 -moz-transition: -moz-transform 0.3s ease-out;
 -o-transition: -o-transform 0.3s ease-out;
 transition: transform 0.3s ease-out;

} .modal.in .modal-dialog {

 -webkit-transform: translate(0, 0);
 -ms-transform: translate(0, 0);
 -o-transform: translate(0, 0);
 transform: translate(0, 0);

} .modal-open .modal {

 overflow-x: hidden;
 overflow-y: auto;

} .modal-dialog {

 position: relative;
 width: auto;
 margin: 10px;

} .modal-content {

 position: relative;
 background-color: #fff;
 border: 1px solid #999;
 border: 1px solid rgba(0, 0, 0, 0.2);
 border-radius: 3px;
 -webkit-box-shadow: 0 3px 9px rgba(0, 0, 0, 0.5);
 box-shadow: 0 3px 9px rgba(0, 0, 0, 0.5);
 background-clip: padding-box;
 outline: 0;

} .modal-backdrop {

 position: fixed;
 top: 0;
 right: 0;
 bottom: 0;
 left: 0;
 z-index: 1040;
 background-color: #000;

} .modal-backdrop.fade {

 opacity: 0;
 filter: alpha(opacity=0);

} .modal-backdrop.in {

 opacity: 0.5;
 filter: alpha(opacity=50);

} .modal-header {

 padding: 15px;
 border-bottom: 1px solid #e5e5e5;

} .modal-header .close {

 margin-top: -2px;

} .modal-title {

 margin: 0;
 line-height: 1.42857143;

} .modal-body {

 position: relative;
 padding: 15px;

} .modal-footer {

 padding: 15px;
 text-align: right;
 border-top: 1px solid #e5e5e5;

} .modal-footer .btn + .btn {

 margin-left: 5px;
 margin-bottom: 0;

} .modal-footer .btn-group .btn + .btn {

 margin-left: -1px;

} .modal-footer .btn-block + .btn-block {

 margin-left: 0;

} .modal-scrollbar-measure {

 position: absolute;
 top: -9999px;
 width: 50px;
 height: 50px;
 overflow: scroll;

} @media (min-width: 768px) {

 .modal-dialog {
   width: 600px;
   margin: 30px auto;
 }
 .modal-content {
   -webkit-box-shadow: 0 5px 15px rgba(0, 0, 0, 0.5);
   box-shadow: 0 5px 15px rgba(0, 0, 0, 0.5);
 }
 .modal-sm {
   width: 300px;
 }

} @media (min-width: 992px) {

 .modal-lg {
   width: 900px;
 }

} .tooltip {

 position: absolute;
 z-index: 1070;
 display: block;
 font-family: "Helvetica Neue", Helvetica, Arial, sans-serif;
 font-style: normal;
 font-weight: normal;
 letter-spacing: normal;
 line-break: auto;
 line-height: 1.42857143;
 text-align: left;
 text-align: start;
 text-decoration: none;
 text-shadow: none;
 text-transform: none;
 white-space: normal;
 word-break: normal;
 word-spacing: normal;
 word-wrap: normal;
 font-size: 12px;
 opacity: 0;
 filter: alpha(opacity=0);

} .tooltip.in {

 opacity: 0.9;
 filter: alpha(opacity=90);

} .tooltip.top {

 margin-top: -3px;
 padding: 5px 0;

} .tooltip.right {

 margin-left: 3px;
 padding: 0 5px;

} .tooltip.bottom {

 margin-top: 3px;
 padding: 5px 0;

} .tooltip.left {

 margin-left: -3px;
 padding: 0 5px;

} .tooltip-inner {

 max-width: 200px;
 padding: 3px 8px;
 color: #fff;
 text-align: center;
 background-color: #000;
 border-radius: 2px;

} .tooltip-arrow {

 position: absolute;
 width: 0;
 height: 0;
 border-color: transparent;
 border-style: solid;

} .tooltip.top .tooltip-arrow {

 bottom: 0;
 left: 50%;
 margin-left: -5px;
 border-width: 5px 5px 0;
 border-top-color: #000;

} .tooltip.top-left .tooltip-arrow {

 bottom: 0;
 right: 5px;
 margin-bottom: -5px;
 border-width: 5px 5px 0;
 border-top-color: #000;

} .tooltip.top-right .tooltip-arrow {

 bottom: 0;
 left: 5px;
 margin-bottom: -5px;
 border-width: 5px 5px 0;
 border-top-color: #000;

} .tooltip.right .tooltip-arrow {

 top: 50%;
 left: 0;
 margin-top: -5px;
 border-width: 5px 5px 5px 0;
 border-right-color: #000;

} .tooltip.left .tooltip-arrow {

 top: 50%;
 right: 0;
 margin-top: -5px;
 border-width: 5px 0 5px 5px;
 border-left-color: #000;

} .tooltip.bottom .tooltip-arrow {

 top: 0;
 left: 50%;
 margin-left: -5px;
 border-width: 0 5px 5px;
 border-bottom-color: #000;

} .tooltip.bottom-left .tooltip-arrow {

 top: 0;
 right: 5px;
 margin-top: -5px;
 border-width: 0 5px 5px;
 border-bottom-color: #000;

} .tooltip.bottom-right .tooltip-arrow {

 top: 0;
 left: 5px;
 margin-top: -5px;
 border-width: 0 5px 5px;
 border-bottom-color: #000;

} .popover {

 position: absolute;
 top: 0;
 left: 0;
 z-index: 1060;
 display: none;
 max-width: 276px;
 padding: 1px;
 font-family: "Helvetica Neue", Helvetica, Arial, sans-serif;
 font-style: normal;
 font-weight: normal;
 letter-spacing: normal;
 line-break: auto;
 line-height: 1.42857143;
 text-align: left;
 text-align: start;
 text-decoration: none;
 text-shadow: none;
 text-transform: none;
 white-space: normal;
 word-break: normal;
 word-spacing: normal;
 word-wrap: normal;
 font-size: 13px;
 background-color: #fff;
 background-clip: padding-box;
 border: 1px solid #ccc;
 border: 1px solid rgba(0, 0, 0, 0.2);
 border-radius: 3px;
 -webkit-box-shadow: 0 5px 10px rgba(0, 0, 0, 0.2);
 box-shadow: 0 5px 10px rgba(0, 0, 0, 0.2);

} .popover.top {

 margin-top: -10px;

} .popover.right {

 margin-left: 10px;

} .popover.bottom {

 margin-top: 10px;

} .popover.left {

 margin-left: -10px;

} .popover-title {

 margin: 0;
 padding: 8px 14px;
 font-size: 13px;
 background-color: #f7f7f7;
 border-bottom: 1px solid #ebebeb;
 border-radius: 2px 2px 0 0;

} .popover-content {

 padding: 9px 14px;

} .popover > .arrow, .popover > .arrow:after {

 position: absolute;
 display: block;
 width: 0;
 height: 0;
 border-color: transparent;
 border-style: solid;

} .popover > .arrow {

 border-width: 11px;

} .popover > .arrow:after {

 border-width: 10px;
 content: "";

} .popover.top > .arrow {

 left: 50%;
 margin-left: -11px;
 border-bottom-width: 0;
 border-top-color: #999999;
 border-top-color: rgba(0, 0, 0, 0.25);
 bottom: -11px;

} .popover.top > .arrow:after {

 content: " ";
 bottom: 1px;
 margin-left: -10px;
 border-bottom-width: 0;
 border-top-color: #fff;

} .popover.right > .arrow {

 top: 50%;
 left: -11px;
 margin-top: -11px;
 border-left-width: 0;
 border-right-color: #999999;
 border-right-color: rgba(0, 0, 0, 0.25);

} .popover.right > .arrow:after {

 content: " ";
 left: 1px;
 bottom: -10px;
 border-left-width: 0;
 border-right-color: #fff;

} .popover.bottom > .arrow {

 left: 50%;
 margin-left: -11px;
 border-top-width: 0;
 border-bottom-color: #999999;
 border-bottom-color: rgba(0, 0, 0, 0.25);
 top: -11px;

} .popover.bottom > .arrow:after {

 content: " ";
 top: 1px;
 margin-left: -10px;
 border-top-width: 0;
 border-bottom-color: #fff;

} .popover.left > .arrow {

 top: 50%;
 right: -11px;
 margin-top: -11px;
 border-right-width: 0;
 border-left-color: #999999;
 border-left-color: rgba(0, 0, 0, 0.25);

} .popover.left > .arrow:after {

 content: " ";
 right: 1px;
 border-right-width: 0;
 border-left-color: #fff;
 bottom: -10px;

} .carousel {

 position: relative;

} .carousel-inner {

 position: relative;
 overflow: hidden;
 width: 100%;

} .carousel-inner > .item {

 display: none;
 position: relative;
 -webkit-transition: 0.6s ease-in-out left;
 -o-transition: 0.6s ease-in-out left;
 transition: 0.6s ease-in-out left;

} .carousel-inner > .item > img, .carousel-inner > .item > a > img {

 line-height: 1;

} @media all and (transform-3d), (-webkit-transform-3d) {

 .carousel-inner > .item {
   -webkit-transition: -webkit-transform 0.6s ease-in-out;
   -moz-transition: -moz-transform 0.6s ease-in-out;
   -o-transition: -o-transform 0.6s ease-in-out;
   transition: transform 0.6s ease-in-out;
   -webkit-backface-visibility: hidden;
   -moz-backface-visibility: hidden;
   backface-visibility: hidden;
   -webkit-perspective: 1000px;
   -moz-perspective: 1000px;
   perspective: 1000px;
 }
 .carousel-inner > .item.next,
 .carousel-inner > .item.active.right {
   -webkit-transform: translate3d(100%, 0, 0);
   transform: translate3d(100%, 0, 0);
   left: 0;
 }
 .carousel-inner > .item.prev,
 .carousel-inner > .item.active.left {
   -webkit-transform: translate3d(-100%, 0, 0);
   transform: translate3d(-100%, 0, 0);
   left: 0;
 }
 .carousel-inner > .item.next.left,
 .carousel-inner > .item.prev.right,
 .carousel-inner > .item.active {
   -webkit-transform: translate3d(0, 0, 0);
   transform: translate3d(0, 0, 0);
   left: 0;
 }

} .carousel-inner > .active, .carousel-inner > .next, .carousel-inner > .prev {

 display: block;

} .carousel-inner > .active {

 left: 0;

} .carousel-inner > .next, .carousel-inner > .prev {

 position: absolute;
 top: 0;
 width: 100%;

} .carousel-inner > .next {

 left: 100%;

} .carousel-inner > .prev {

 left: -100%;

} .carousel-inner > .next.left, .carousel-inner > .prev.right {

 left: 0;

} .carousel-inner > .active.left {

 left: -100%;

} .carousel-inner > .active.right {

 left: 100%;

} .carousel-control {

 position: absolute;
 top: 0;
 left: 0;
 bottom: 0;
 width: 15%;
 opacity: 0.5;
 filter: alpha(opacity=50);
 font-size: 20px;
 color: #fff;
 text-align: center;
 text-shadow: 0 1px 2px rgba(0, 0, 0, 0.6);
 background-color: rgba(0, 0, 0, 0);

} .carousel-control.left {

 background-image: -webkit-linear-gradient(left, rgba(0, 0, 0, 0.5) 0%, rgba(0, 0, 0, 0.0001) 100%);
 background-image: -o-linear-gradient(left, rgba(0, 0, 0, 0.5) 0%, rgba(0, 0, 0, 0.0001) 100%);
 background-image: linear-gradient(to right, rgba(0, 0, 0, 0.5) 0%, rgba(0, 0, 0, 0.0001) 100%);
 background-repeat: repeat-x;
 filter: progid:DXImageTransform.Microsoft.gradient(startColorstr='#80000000', endColorstr='#00000000', GradientType=1);

} .carousel-control.right {

 left: auto;
 right: 0;
 background-image: -webkit-linear-gradient(left, rgba(0, 0, 0, 0.0001) 0%, rgba(0, 0, 0, 0.5) 100%);
 background-image: -o-linear-gradient(left, rgba(0, 0, 0, 0.0001) 0%, rgba(0, 0, 0, 0.5) 100%);
 background-image: linear-gradient(to right, rgba(0, 0, 0, 0.0001) 0%, rgba(0, 0, 0, 0.5) 100%);
 background-repeat: repeat-x;
 filter: progid:DXImageTransform.Microsoft.gradient(startColorstr='#00000000', endColorstr='#80000000', GradientType=1);

} .carousel-control:hover, .carousel-control:focus {

 outline: 0;
 color: #fff;
 text-decoration: none;
 opacity: 0.9;
 filter: alpha(opacity=90);

} .carousel-control .icon-prev, .carousel-control .icon-next, .carousel-control .glyphicon-chevron-left, .carousel-control .glyphicon-chevron-right {

 position: absolute;
 top: 50%;
 margin-top: -10px;
 z-index: 5;
 display: inline-block;

} .carousel-control .icon-prev, .carousel-control .glyphicon-chevron-left {

 left: 50%;
 margin-left: -10px;

} .carousel-control .icon-next, .carousel-control .glyphicon-chevron-right {

 right: 50%;
 margin-right: -10px;

} .carousel-control .icon-prev, .carousel-control .icon-next {

 width: 20px;
 height: 20px;
 line-height: 1;
 font-family: serif;

} .carousel-control .icon-prev:before {

 content: '\2039';

} .carousel-control .icon-next:before {

 content: '\203a';

} .carousel-indicators {

 position: absolute;
 bottom: 10px;
 left: 50%;
 z-index: 15;
 width: 60%;
 margin-left: -30%;
 padding-left: 0;
 list-style: none;
 text-align: center;

} .carousel-indicators li {

 display: inline-block;
 width: 10px;
 height: 10px;
 margin: 1px;
 text-indent: -999px;
 border: 1px solid #fff;
 border-radius: 10px;
 cursor: pointer;
 background-color: #000 \9;
 background-color: rgba(0, 0, 0, 0);

} .carousel-indicators .active {

 margin: 0;
 width: 12px;
 height: 12px;
 background-color: #fff;

} .carousel-caption {

 position: absolute;
 left: 15%;
 right: 15%;
 bottom: 20px;
 z-index: 10;
 padding-top: 20px;
 padding-bottom: 20px;
 color: #fff;
 text-align: center;
 text-shadow: 0 1px 2px rgba(0, 0, 0, 0.6);

} .carousel-caption .btn {

 text-shadow: none;

} @media screen and (min-width: 768px) {

 .carousel-control .glyphicon-chevron-left,
 .carousel-control .glyphicon-chevron-right,
 .carousel-control .icon-prev,
 .carousel-control .icon-next {
   width: 30px;
   height: 30px;
   margin-top: -10px;
   font-size: 30px;
 }
 .carousel-control .glyphicon-chevron-left,
 .carousel-control .icon-prev {
   margin-left: -10px;
 }
 .carousel-control .glyphicon-chevron-right,
 .carousel-control .icon-next {
   margin-right: -10px;
 }
 .carousel-caption {
   left: 20%;
   right: 20%;
   padding-bottom: 30px;
 }
 .carousel-indicators {
   bottom: 20px;
 }

} .clearfix:before, .clearfix:after, .dl-horizontal dd:before, .dl-horizontal dd:after, .container:before, .container:after, .container-fluid:before, .container-fluid:after, .row:before, .row:after, .form-horizontal .form-group:before, .form-horizontal .form-group:after, .btn-toolbar:before, .btn-toolbar:after, .btn-group-vertical > .btn-group:before, .btn-group-vertical > .btn-group:after, .nav:before, .nav:after, .navbar:before, .navbar:after, .navbar-header:before, .navbar-header:after, .navbar-collapse:before, .navbar-collapse:after, .pager:before, .pager:after, .panel-body:before, .panel-body:after, .modal-header:before, .modal-header:after, .modal-footer:before, .modal-footer:after, .item_buttons:before, .item_buttons:after {

 content: " ";
 display: table;

} .clearfix:after, .dl-horizontal dd:after, .container:after, .container-fluid:after, .row:after, .form-horizontal .form-group:after, .btn-toolbar:after, .btn-group-vertical > .btn-group:after, .nav:after, .navbar:after, .navbar-header:after, .navbar-collapse:after, .pager:after, .panel-body:after, .modal-header:after, .modal-footer:after, .item_buttons:after {

 clear: both;

} .center-block {

 display: block;
 margin-left: auto;
 margin-right: auto;

} .pull-right {

 float: right !important;

} .pull-left {

 float: left !important;

} .hide {

 display: none !important;

} .show {

 display: block !important;

} .invisible {

 visibility: hidden;

} .text-hide {

 font: 0/0 a;
 color: transparent;
 text-shadow: none;
 background-color: transparent;
 border: 0;

} .hidden {

 display: none !important;

} .affix {

 position: fixed;

} @-ms-viewport {

 width: device-width;

} .visible-xs, .visible-sm, .visible-md, .visible-lg {

 display: none !important;

} .visible-xs-block, .visible-xs-inline, .visible-xs-inline-block, .visible-sm-block, .visible-sm-inline, .visible-sm-inline-block, .visible-md-block, .visible-md-inline, .visible-md-inline-block, .visible-lg-block, .visible-lg-inline, .visible-lg-inline-block {

 display: none !important;

} @media (max-width: 767px) {

 .visible-xs {
   display: block !important;
 }
 table.visible-xs {
   display: table !important;
 }
 tr.visible-xs {
   display: table-row !important;
 }
 th.visible-xs,
 td.visible-xs {
   display: table-cell !important;
 }

} @media (max-width: 767px) {

 .visible-xs-block {
   display: block !important;
 }

} @media (max-width: 767px) {

 .visible-xs-inline {
   display: inline !important;
 }

} @media (max-width: 767px) {

 .visible-xs-inline-block {
   display: inline-block !important;
 }

} @media (min-width: 768px) and (max-width: 991px) {

 .visible-sm {
   display: block !important;
 }
 table.visible-sm {
   display: table !important;
 }
 tr.visible-sm {
   display: table-row !important;
 }
 th.visible-sm,
 td.visible-sm {
   display: table-cell !important;
 }

} @media (min-width: 768px) and (max-width: 991px) {

 .visible-sm-block {
   display: block !important;
 }

} @media (min-width: 768px) and (max-width: 991px) {

 .visible-sm-inline {
   display: inline !important;
 }

} @media (min-width: 768px) and (max-width: 991px) {

 .visible-sm-inline-block {
   display: inline-block !important;
 }

} @media (min-width: 992px) and (max-width: 1199px) {

 .visible-md {
   display: block !important;
 }
 table.visible-md {
   display: table !important;
 }
 tr.visible-md {
   display: table-row !important;
 }
 th.visible-md,
 td.visible-md {
   display: table-cell !important;
 }

} @media (min-width: 992px) and (max-width: 1199px) {

 .visible-md-block {
   display: block !important;
 }

} @media (min-width: 992px) and (max-width: 1199px) {

 .visible-md-inline {
   display: inline !important;
 }

} @media (min-width: 992px) and (max-width: 1199px) {

 .visible-md-inline-block {
   display: inline-block !important;
 }

} @media (min-width: 1200px) {

 .visible-lg {
   display: block !important;
 }
 table.visible-lg {
   display: table !important;
 }
 tr.visible-lg {
   display: table-row !important;
 }
 th.visible-lg,
 td.visible-lg {
   display: table-cell !important;
 }

} @media (min-width: 1200px) {

 .visible-lg-block {
   display: block !important;
 }

} @media (min-width: 1200px) {

 .visible-lg-inline {
   display: inline !important;
 }

} @media (min-width: 1200px) {

 .visible-lg-inline-block {
   display: inline-block !important;
 }

} @media (max-width: 767px) {

 .hidden-xs {
   display: none !important;
 }

} @media (min-width: 768px) and (max-width: 991px) {

 .hidden-sm {
   display: none !important;
 }

} @media (min-width: 992px) and (max-width: 1199px) {

 .hidden-md {
   display: none !important;
 }

} @media (min-width: 1200px) {

 .hidden-lg {
   display: none !important;
 }

} .visible-print {

 display: none !important;

} @media print {

 .visible-print {
   display: block !important;
 }
 table.visible-print {
   display: table !important;
 }
 tr.visible-print {
   display: table-row !important;
 }
 th.visible-print,
 td.visible-print {
   display: table-cell !important;
 }

} .visible-print-block {

 display: none !important;

} @media print {

 .visible-print-block {
   display: block !important;
 }

} .visible-print-inline {

 display: none !important;

} @media print {

 .visible-print-inline {
   display: inline !important;
 }

} .visible-print-inline-block {

 display: none !important;

} @media print {

 .visible-print-inline-block {
   display: inline-block !important;
 }

} @media print {

 .hidden-print {
   display: none !important;
 }

} /*!

  • Font Awesome
  • /

/*!

*  Font Awesome 4.2.0 by @davegandy - http://fontawesome.io - @fontawesome
*  License - http://fontawesome.io/license (Font: SIL OFL 1.1, CSS: MIT License)
*/

/* FONT PATH

* -------------------------- */

@font-face {

 font-family: 'FontAwesome';
 src: url('../components/font-awesome/fonts/fontawesome-webfont.eot?v=4.2.0');
 src: url('../components/font-awesome/fonts/fontawesome-webfont.eot?#iefix&v=4.2.0') format('embedded-opentype'), url('../components/font-awesome/fonts/fontawesome-webfont.woff?v=4.2.0') format('woff'), url('../components/font-awesome/fonts/fontawesome-webfont.ttf?v=4.2.0') format('truetype'), url('../components/font-awesome/fonts/fontawesome-webfont.svg?v=4.2.0#fontawesomeregular') format('svg');
 font-weight: normal;
 font-style: normal;

} .fa {

 display: inline-block;
 font: normal normal normal 14px/1 FontAwesome;
 font-size: inherit;
 text-rendering: auto;
 -webkit-font-smoothing: antialiased;
 -moz-osx-font-smoothing: grayscale;

} /* makes the font 33% larger relative to the icon container */ .fa-lg {

 font-size: 1.33333333em;
 line-height: 0.75em;
 vertical-align: -15%;

} .fa-2x {

 font-size: 2em;

} .fa-3x {

 font-size: 3em;

} .fa-4x {

 font-size: 4em;

} .fa-5x {

 font-size: 5em;

} .fa-fw {

 width: 1.28571429em;
 text-align: center;

} .fa-ul {

 padding-left: 0;
 margin-left: 2.14285714em;
 list-style-type: none;

} .fa-ul > li {

 position: relative;

} .fa-li {

 position: absolute;
 left: -2.14285714em;
 width: 2.14285714em;
 top: 0.14285714em;
 text-align: center;

} .fa-li.fa-lg {

 left: -1.85714286em;

} .fa-border {

 padding: .2em .25em .15em;
 border: solid 0.08em #eee;
 border-radius: .1em;

} .pull-right {

 float: right;

} .pull-left {

 float: left;

} .fa.pull-left {

 margin-right: .3em;

} .fa.pull-right {

 margin-left: .3em;

} .fa-spin {

 -webkit-animation: fa-spin 2s infinite linear;
 animation: fa-spin 2s infinite linear;

} @-webkit-keyframes fa-spin {

 0% {
   -webkit-transform: rotate(0deg);
   transform: rotate(0deg);
 }
 100% {
   -webkit-transform: rotate(359deg);
   transform: rotate(359deg);
 }

} @keyframes fa-spin {

 0% {
   -webkit-transform: rotate(0deg);
   transform: rotate(0deg);
 }
 100% {
   -webkit-transform: rotate(359deg);
   transform: rotate(359deg);
 }

} .fa-rotate-90 {

 filter: progid:DXImageTransform.Microsoft.BasicImage(rotation=1);
 -webkit-transform: rotate(90deg);
 -ms-transform: rotate(90deg);
 transform: rotate(90deg);

} .fa-rotate-180 {

 filter: progid:DXImageTransform.Microsoft.BasicImage(rotation=2);
 -webkit-transform: rotate(180deg);
 -ms-transform: rotate(180deg);
 transform: rotate(180deg);

} .fa-rotate-270 {

 filter: progid:DXImageTransform.Microsoft.BasicImage(rotation=3);
 -webkit-transform: rotate(270deg);
 -ms-transform: rotate(270deg);
 transform: rotate(270deg);

} .fa-flip-horizontal {

 filter: progid:DXImageTransform.Microsoft.BasicImage(rotation=0, mirror=1);
 -webkit-transform: scale(-1, 1);
 -ms-transform: scale(-1, 1);
 transform: scale(-1, 1);

} .fa-flip-vertical {

 filter: progid:DXImageTransform.Microsoft.BasicImage(rotation=2, mirror=1);
 -webkit-transform: scale(1, -1);
 -ms-transform: scale(1, -1);
 transform: scale(1, -1);

}

root .fa-rotate-90,
root .fa-rotate-180,
root .fa-rotate-270,
root .fa-flip-horizontal,
root .fa-flip-vertical {
 filter: none;

} .fa-stack {

 position: relative;
 display: inline-block;
 width: 2em;
 height: 2em;
 line-height: 2em;
 vertical-align: middle;

} .fa-stack-1x, .fa-stack-2x {

 position: absolute;
 left: 0;
 width: 100%;
 text-align: center;

} .fa-stack-1x {

 line-height: inherit;

} .fa-stack-2x {

 font-size: 2em;

} .fa-inverse {

 color: #fff;

} /* Font Awesome uses the Unicode Private Use Area (PUA) to ensure screen

  readers do not read off random characters that represent icons */

.fa-glass:before {

 content: "\f000";

} .fa-music:before {

 content: "\f001";

} .fa-search:before {

 content: "\f002";

} .fa-envelope-o:before {

 content: "\f003";

} .fa-heart:before {

 content: "\f004";

} .fa-star:before {

 content: "\f005";

} .fa-star-o:before {

 content: "\f006";

} .fa-user:before {

 content: "\f007";

} .fa-film:before {

 content: "\f008";

} .fa-th-large:before {

 content: "\f009";

} .fa-th:before {

 content: "\f00a";

} .fa-th-list:before {

 content: "\f00b";

} .fa-check:before {

 content: "\f00c";

} .fa-remove:before, .fa-close:before, .fa-times:before {

 content: "\f00d";

} .fa-search-plus:before {

 content: "\f00e";

} .fa-search-minus:before {

 content: "\f010";

} .fa-power-off:before {

 content: "\f011";

} .fa-signal:before {

 content: "\f012";

} .fa-gear:before, .fa-cog:before {

 content: "\f013";

} .fa-trash-o:before {

 content: "\f014";

} .fa-home:before {

 content: "\f015";

} .fa-file-o:before {

 content: "\f016";

} .fa-clock-o:before {

 content: "\f017";

} .fa-road:before {

 content: "\f018";

} .fa-download:before {

 content: "\f019";

} .fa-arrow-circle-o-down:before {

 content: "\f01a";

} .fa-arrow-circle-o-up:before {

 content: "\f01b";

} .fa-inbox:before {

 content: "\f01c";

} .fa-play-circle-o:before {

 content: "\f01d";

} .fa-rotate-right:before, .fa-repeat:before {

 content: "\f01e";

} .fa-refresh:before {

 content: "\f021";

} .fa-list-alt:before {

 content: "\f022";

} .fa-lock:before {

 content: "\f023";

} .fa-flag:before {

 content: "\f024";

} .fa-headphones:before {

 content: "\f025";

} .fa-volume-off:before {

 content: "\f026";

} .fa-volume-down:before {

 content: "\f027";

} .fa-volume-up:before {

 content: "\f028";

} .fa-qrcode:before {

 content: "\f029";

} .fa-barcode:before {

 content: "\f02a";

} .fa-tag:before {

 content: "\f02b";

} .fa-tags:before {

 content: "\f02c";

} .fa-book:before {

 content: "\f02d";

} .fa-bookmark:before {

 content: "\f02e";

} .fa-print:before {

 content: "\f02f";

} .fa-camera:before {

 content: "\f030";

} .fa-font:before {

 content: "\f031";

} .fa-bold:before {

 content: "\f032";

} .fa-italic:before {

 content: "\f033";

} .fa-text-height:before {

 content: "\f034";

} .fa-text-width:before {

 content: "\f035";

} .fa-align-left:before {

 content: "\f036";

} .fa-align-center:before {

 content: "\f037";

} .fa-align-right:before {

 content: "\f038";

} .fa-align-justify:before {

 content: "\f039";

} .fa-list:before {

 content: "\f03a";

} .fa-dedent:before, .fa-outdent:before {

 content: "\f03b";

} .fa-indent:before {

 content: "\f03c";

} .fa-video-camera:before {

 content: "\f03d";

} .fa-photo:before, .fa-image:before, .fa-picture-o:before {

 content: "\f03e";

} .fa-pencil:before {

 content: "\f040";

} .fa-map-marker:before {

 content: "\f041";

} .fa-adjust:before {

 content: "\f042";

} .fa-tint:before {

 content: "\f043";

} .fa-edit:before, .fa-pencil-square-o:before {

 content: "\f044";

} .fa-share-square-o:before {

 content: "\f045";

} .fa-check-square-o:before {

 content: "\f046";

} .fa-arrows:before {

 content: "\f047";

} .fa-step-backward:before {

 content: "\f048";

} .fa-fast-backward:before {

 content: "\f049";

} .fa-backward:before {

 content: "\f04a";

} .fa-play:before {

 content: "\f04b";

} .fa-pause:before {

 content: "\f04c";

} .fa-stop:before {

 content: "\f04d";

} .fa-forward:before {

 content: "\f04e";

} .fa-fast-forward:before {

 content: "\f050";

} .fa-step-forward:before {

 content: "\f051";

} .fa-eject:before {

 content: "\f052";

} .fa-chevron-left:before {

 content: "\f053";

} .fa-chevron-right:before {

 content: "\f054";

} .fa-plus-circle:before {

 content: "\f055";

} .fa-minus-circle:before {

 content: "\f056";

} .fa-times-circle:before {

 content: "\f057";

} .fa-check-circle:before {

 content: "\f058";

} .fa-question-circle:before {

 content: "\f059";

} .fa-info-circle:before {

 content: "\f05a";

} .fa-crosshairs:before {

 content: "\f05b";

} .fa-times-circle-o:before {

 content: "\f05c";

} .fa-check-circle-o:before {

 content: "\f05d";

} .fa-ban:before {

 content: "\f05e";

} .fa-arrow-left:before {

 content: "\f060";

} .fa-arrow-right:before {

 content: "\f061";

} .fa-arrow-up:before {

 content: "\f062";

} .fa-arrow-down:before {

 content: "\f063";

} .fa-mail-forward:before, .fa-share:before {

 content: "\f064";

} .fa-expand:before {

 content: "\f065";

} .fa-compress:before {

 content: "\f066";

} .fa-plus:before {

 content: "\f067";

} .fa-minus:before {

 content: "\f068";

} .fa-asterisk:before {

 content: "\f069";

} .fa-exclamation-circle:before {

 content: "\f06a";

} .fa-gift:before {

 content: "\f06b";

} .fa-leaf:before {

 content: "\f06c";

} .fa-fire:before {

 content: "\f06d";

} .fa-eye:before {

 content: "\f06e";

} .fa-eye-slash:before {

 content: "\f070";

} .fa-warning:before, .fa-exclamation-triangle:before {

 content: "\f071";

} .fa-plane:before {

 content: "\f072";

} .fa-calendar:before {

 content: "\f073";

} .fa-random:before {

 content: "\f074";

} .fa-comment:before {

 content: "\f075";

} .fa-magnet:before {

 content: "\f076";

} .fa-chevron-up:before {

 content: "\f077";

} .fa-chevron-down:before {

 content: "\f078";

} .fa-retweet:before {

 content: "\f079";

} .fa-shopping-cart:before {

 content: "\f07a";

} .fa-folder:before {

 content: "\f07b";

} .fa-folder-open:before {

 content: "\f07c";

} .fa-arrows-v:before {

 content: "\f07d";

} .fa-arrows-h:before {

 content: "\f07e";

} .fa-bar-chart-o:before, .fa-bar-chart:before {

 content: "\f080";

} .fa-twitter-square:before {

 content: "\f081";

} .fa-facebook-square:before {

 content: "\f082";

} .fa-camera-retro:before {

 content: "\f083";

} .fa-key:before {

 content: "\f084";

} .fa-gears:before, .fa-cogs:before {

 content: "\f085";

} .fa-comments:before {

 content: "\f086";

} .fa-thumbs-o-up:before {

 content: "\f087";

} .fa-thumbs-o-down:before {

 content: "\f088";

} .fa-star-half:before {

 content: "\f089";

} .fa-heart-o:before {

 content: "\f08a";

} .fa-sign-out:before {

 content: "\f08b";

} .fa-linkedin-square:before {

 content: "\f08c";

} .fa-thumb-tack:before {

 content: "\f08d";

} .fa-external-link:before {

 content: "\f08e";

} .fa-sign-in:before {

 content: "\f090";

} .fa-trophy:before {

 content: "\f091";

} .fa-github-square:before {

 content: "\f092";

} .fa-upload:before {

 content: "\f093";

} .fa-lemon-o:before {

 content: "\f094";

} .fa-phone:before {

 content: "\f095";

} .fa-square-o:before {

 content: "\f096";

} .fa-bookmark-o:before {

 content: "\f097";

} .fa-phone-square:before {

 content: "\f098";

} .fa-twitter:before {

 content: "\f099";

} .fa-facebook:before {

 content: "\f09a";

} .fa-github:before {

 content: "\f09b";

} .fa-unlock:before {

 content: "\f09c";

} .fa-credit-card:before {

 content: "\f09d";

} .fa-rss:before {

 content: "\f09e";

} .fa-hdd-o:before {

 content: "\f0a0";

} .fa-bullhorn:before {

 content: "\f0a1";

} .fa-bell:before {

 content: "\f0f3";

} .fa-certificate:before {

 content: "\f0a3";

} .fa-hand-o-right:before {

 content: "\f0a4";

} .fa-hand-o-left:before {

 content: "\f0a5";

} .fa-hand-o-up:before {

 content: "\f0a6";

} .fa-hand-o-down:before {

 content: "\f0a7";

} .fa-arrow-circle-left:before {

 content: "\f0a8";

} .fa-arrow-circle-right:before {

 content: "\f0a9";

} .fa-arrow-circle-up:before {

 content: "\f0aa";

} .fa-arrow-circle-down:before {

 content: "\f0ab";

} .fa-globe:before {

 content: "\f0ac";

} .fa-wrench:before {

 content: "\f0ad";

} .fa-tasks:before {

 content: "\f0ae";

} .fa-filter:before {

 content: "\f0b0";

} .fa-briefcase:before {

 content: "\f0b1";

} .fa-arrows-alt:before {

 content: "\f0b2";

} .fa-group:before, .fa-users:before {

 content: "\f0c0";

} .fa-chain:before, .fa-link:before {

 content: "\f0c1";

} .fa-cloud:before {

 content: "\f0c2";

} .fa-flask:before {

 content: "\f0c3";

} .fa-cut:before, .fa-scissors:before {

 content: "\f0c4";

} .fa-copy:before, .fa-files-o:before {

 content: "\f0c5";

} .fa-paperclip:before {

 content: "\f0c6";

} .fa-save:before, .fa-floppy-o:before {

 content: "\f0c7";

} .fa-square:before {

 content: "\f0c8";

} .fa-navicon:before, .fa-reorder:before, .fa-bars:before {

 content: "\f0c9";

} .fa-list-ul:before {

 content: "\f0ca";

} .fa-list-ol:before {

 content: "\f0cb";

} .fa-strikethrough:before {

 content: "\f0cc";

} .fa-underline:before {

 content: "\f0cd";

} .fa-table:before {

 content: "\f0ce";

} .fa-magic:before {

 content: "\f0d0";

} .fa-truck:before {

 content: "\f0d1";

} .fa-pinterest:before {

 content: "\f0d2";

} .fa-pinterest-square:before {

 content: "\f0d3";

} .fa-google-plus-square:before {

 content: "\f0d4";

} .fa-google-plus:before {

 content: "\f0d5";

} .fa-money:before {

 content: "\f0d6";

} .fa-caret-down:before {

 content: "\f0d7";

} .fa-caret-up:before {

 content: "\f0d8";

} .fa-caret-left:before {

 content: "\f0d9";

} .fa-caret-right:before {

 content: "\f0da";

} .fa-columns:before {

 content: "\f0db";

} .fa-unsorted:before, .fa-sort:before {

 content: "\f0dc";

} .fa-sort-down:before, .fa-sort-desc:before {

 content: "\f0dd";

} .fa-sort-up:before, .fa-sort-asc:before {

 content: "\f0de";

} .fa-envelope:before {

 content: "\f0e0";

} .fa-linkedin:before {

 content: "\f0e1";

} .fa-rotate-left:before, .fa-undo:before {

 content: "\f0e2";

} .fa-legal:before, .fa-gavel:before {

 content: "\f0e3";

} .fa-dashboard:before, .fa-tachometer:before {

 content: "\f0e4";

} .fa-comment-o:before {

 content: "\f0e5";

} .fa-comments-o:before {

 content: "\f0e6";

} .fa-flash:before, .fa-bolt:before {

 content: "\f0e7";

} .fa-sitemap:before {

 content: "\f0e8";

} .fa-umbrella:before {

 content: "\f0e9";

} .fa-paste:before, .fa-clipboard:before {

 content: "\f0ea";

} .fa-lightbulb-o:before {

 content: "\f0eb";

} .fa-exchange:before {

 content: "\f0ec";

} .fa-cloud-download:before {

 content: "\f0ed";

} .fa-cloud-upload:before {

 content: "\f0ee";

} .fa-user-md:before {

 content: "\f0f0";

} .fa-stethoscope:before {

 content: "\f0f1";

} .fa-suitcase:before {

 content: "\f0f2";

} .fa-bell-o:before {

 content: "\f0a2";

} .fa-coffee:before {

 content: "\f0f4";

} .fa-cutlery:before {

 content: "\f0f5";

} .fa-file-text-o:before {

 content: "\f0f6";

} .fa-building-o:before {

 content: "\f0f7";

} .fa-hospital-o:before {

 content: "\f0f8";

} .fa-ambulance:before {

 content: "\f0f9";

} .fa-medkit:before {

 content: "\f0fa";

} .fa-fighter-jet:before {

 content: "\f0fb";

} .fa-beer:before {

 content: "\f0fc";

} .fa-h-square:before {

 content: "\f0fd";

} .fa-plus-square:before {

 content: "\f0fe";

} .fa-angle-double-left:before {

 content: "\f100";

} .fa-angle-double-right:before {

 content: "\f101";

} .fa-angle-double-up:before {

 content: "\f102";

} .fa-angle-double-down:before {

 content: "\f103";

} .fa-angle-left:before {

 content: "\f104";

} .fa-angle-right:before {

 content: "\f105";

} .fa-angle-up:before {

 content: "\f106";

} .fa-angle-down:before {

 content: "\f107";

} .fa-desktop:before {

 content: "\f108";

} .fa-laptop:before {

 content: "\f109";

} .fa-tablet:before {

 content: "\f10a";

} .fa-mobile-phone:before, .fa-mobile:before {

 content: "\f10b";

} .fa-circle-o:before {

 content: "\f10c";

} .fa-quote-left:before {

 content: "\f10d";

} .fa-quote-right:before {

 content: "\f10e";

} .fa-spinner:before {

 content: "\f110";

} .fa-circle:before {

 content: "\f111";

} .fa-mail-reply:before, .fa-reply:before {

 content: "\f112";

} .fa-github-alt:before {

 content: "\f113";

} .fa-folder-o:before {

 content: "\f114";

} .fa-folder-open-o:before {

 content: "\f115";

} .fa-smile-o:before {

 content: "\f118";

} .fa-frown-o:before {

 content: "\f119";

} .fa-meh-o:before {

 content: "\f11a";

} .fa-gamepad:before {

 content: "\f11b";

} .fa-keyboard-o:before {

 content: "\f11c";

} .fa-flag-o:before {

 content: "\f11d";

} .fa-flag-checkered:before {

 content: "\f11e";

} .fa-terminal:before {

 content: "\f120";

} .fa-code:before {

 content: "\f121";

} .fa-mail-reply-all:before, .fa-reply-all:before {

 content: "\f122";

} .fa-star-half-empty:before, .fa-star-half-full:before, .fa-star-half-o:before {

 content: "\f123";

} .fa-location-arrow:before {

 content: "\f124";

} .fa-crop:before {

 content: "\f125";

} .fa-code-fork:before {

 content: "\f126";

} .fa-unlink:before, .fa-chain-broken:before {

 content: "\f127";

} .fa-question:before {

 content: "\f128";

} .fa-info:before {

 content: "\f129";

} .fa-exclamation:before {

 content: "\f12a";

} .fa-superscript:before {

 content: "\f12b";

} .fa-subscript:before {

 content: "\f12c";

} .fa-eraser:before {

 content: "\f12d";

} .fa-puzzle-piece:before {

 content: "\f12e";

} .fa-microphone:before {

 content: "\f130";

} .fa-microphone-slash:before {

 content: "\f131";

} .fa-shield:before {

 content: "\f132";

} .fa-calendar-o:before {

 content: "\f133";

} .fa-fire-extinguisher:before {

 content: "\f134";

} .fa-rocket:before {

 content: "\f135";

} .fa-maxcdn:before {

 content: "\f136";

} .fa-chevron-circle-left:before {

 content: "\f137";

} .fa-chevron-circle-right:before {

 content: "\f138";

} .fa-chevron-circle-up:before {

 content: "\f139";

} .fa-chevron-circle-down:before {

 content: "\f13a";

} .fa-html5:before {

 content: "\f13b";

} .fa-css3:before {

 content: "\f13c";

} .fa-anchor:before {

 content: "\f13d";

} .fa-unlock-alt:before {

 content: "\f13e";

} .fa-bullseye:before {

 content: "\f140";

} .fa-ellipsis-h:before {

 content: "\f141";

} .fa-ellipsis-v:before {

 content: "\f142";

} .fa-rss-square:before {

 content: "\f143";

} .fa-play-circle:before {

 content: "\f144";

} .fa-ticket:before {

 content: "\f145";

} .fa-minus-square:before {

 content: "\f146";

} .fa-minus-square-o:before {

 content: "\f147";

} .fa-level-up:before {

 content: "\f148";

} .fa-level-down:before {

 content: "\f149";

} .fa-check-square:before {

 content: "\f14a";

} .fa-pencil-square:before {

 content: "\f14b";

} .fa-external-link-square:before {

 content: "\f14c";

} .fa-share-square:before {

 content: "\f14d";

} .fa-compass:before {

 content: "\f14e";

} .fa-toggle-down:before, .fa-caret-square-o-down:before {

 content: "\f150";

} .fa-toggle-up:before, .fa-caret-square-o-up:before {

 content: "\f151";

} .fa-toggle-right:before, .fa-caret-square-o-right:before {

 content: "\f152";

} .fa-euro:before, .fa-eur:before {

 content: "\f153";

} .fa-gbp:before {

 content: "\f154";

} .fa-dollar:before, .fa-usd:before {

 content: "\f155";

} .fa-rupee:before, .fa-inr:before {

 content: "\f156";

} .fa-cny:before, .fa-rmb:before, .fa-yen:before, .fa-jpy:before {

 content: "\f157";

} .fa-ruble:before, .fa-rouble:before, .fa-rub:before {

 content: "\f158";

} .fa-won:before, .fa-krw:before {

 content: "\f159";

} .fa-bitcoin:before, .fa-btc:before {

 content: "\f15a";

} .fa-file:before {

 content: "\f15b";

} .fa-file-text:before {

 content: "\f15c";

} .fa-sort-alpha-asc:before {

 content: "\f15d";

} .fa-sort-alpha-desc:before {

 content: "\f15e";

} .fa-sort-amount-asc:before {

 content: "\f160";

} .fa-sort-amount-desc:before {

 content: "\f161";

} .fa-sort-numeric-asc:before {

 content: "\f162";

} .fa-sort-numeric-desc:before {

 content: "\f163";

} .fa-thumbs-up:before {

 content: "\f164";

} .fa-thumbs-down:before {

 content: "\f165";

} .fa-youtube-square:before {

 content: "\f166";

} .fa-youtube:before {

 content: "\f167";

} .fa-xing:before {

 content: "\f168";

} .fa-xing-square:before {

 content: "\f169";

} .fa-youtube-play:before {

 content: "\f16a";

} .fa-dropbox:before {

 content: "\f16b";

} .fa-stack-overflow:before {

 content: "\f16c";

} .fa-instagram:before {

 content: "\f16d";

} .fa-flickr:before {

 content: "\f16e";

} .fa-adn:before {

 content: "\f170";

} .fa-bitbucket:before {

 content: "\f171";

} .fa-bitbucket-square:before {

 content: "\f172";

} .fa-tumblr:before {

 content: "\f173";

} .fa-tumblr-square:before {

 content: "\f174";

} .fa-long-arrow-down:before {

 content: "\f175";

} .fa-long-arrow-up:before {

 content: "\f176";

} .fa-long-arrow-left:before {

 content: "\f177";

} .fa-long-arrow-right:before {

 content: "\f178";

} .fa-apple:before {

 content: "\f179";

} .fa-windows:before {

 content: "\f17a";

} .fa-android:before {

 content: "\f17b";

} .fa-linux:before {

 content: "\f17c";

} .fa-dribbble:before {

 content: "\f17d";

} .fa-skype:before {

 content: "\f17e";

} .fa-foursquare:before {

 content: "\f180";

} .fa-trello:before {

 content: "\f181";

} .fa-female:before {

 content: "\f182";

} .fa-male:before {

 content: "\f183";

} .fa-gittip:before {

 content: "\f184";

} .fa-sun-o:before {

 content: "\f185";

} .fa-moon-o:before {

 content: "\f186";

} .fa-archive:before {

 content: "\f187";

} .fa-bug:before {

 content: "\f188";

} .fa-vk:before {

 content: "\f189";

} .fa-weibo:before {

 content: "\f18a";

} .fa-renren:before {

 content: "\f18b";

} .fa-pagelines:before {

 content: "\f18c";

} .fa-stack-exchange:before {

 content: "\f18d";

} .fa-arrow-circle-o-right:before {

 content: "\f18e";

} .fa-arrow-circle-o-left:before {

 content: "\f190";

} .fa-toggle-left:before, .fa-caret-square-o-left:before {

 content: "\f191";

} .fa-dot-circle-o:before {

 content: "\f192";

} .fa-wheelchair:before {

 content: "\f193";

} .fa-vimeo-square:before {

 content: "\f194";

} .fa-turkish-lira:before, .fa-try:before {

 content: "\f195";

} .fa-plus-square-o:before {

 content: "\f196";

} .fa-space-shuttle:before {

 content: "\f197";

} .fa-slack:before {

 content: "\f198";

} .fa-envelope-square:before {

 content: "\f199";

} .fa-wordpress:before {

 content: "\f19a";

} .fa-openid:before {

 content: "\f19b";

} .fa-institution:before, .fa-bank:before, .fa-university:before {

 content: "\f19c";

} .fa-mortar-board:before, .fa-graduation-cap:before {

 content: "\f19d";

} .fa-yahoo:before {

 content: "\f19e";

} .fa-google:before {

 content: "\f1a0";

} .fa-reddit:before {

 content: "\f1a1";

} .fa-reddit-square:before {

 content: "\f1a2";

} .fa-stumbleupon-circle:before {

 content: "\f1a3";

} .fa-stumbleupon:before {

 content: "\f1a4";

} .fa-delicious:before {

 content: "\f1a5";

} .fa-digg:before {

 content: "\f1a6";

} .fa-pied-piper:before {

 content: "\f1a7";

} .fa-pied-piper-alt:before {

 content: "\f1a8";

} .fa-drupal:before {

 content: "\f1a9";

} .fa-joomla:before {

 content: "\f1aa";

} .fa-language:before {

 content: "\f1ab";

} .fa-fax:before {

 content: "\f1ac";

} .fa-building:before {

 content: "\f1ad";

} .fa-child:before {

 content: "\f1ae";

} .fa-paw:before {

 content: "\f1b0";

} .fa-spoon:before {

 content: "\f1b1";

} .fa-cube:before {

 content: "\f1b2";

} .fa-cubes:before {

 content: "\f1b3";

} .fa-behance:before {

 content: "\f1b4";

} .fa-behance-square:before {

 content: "\f1b5";

} .fa-steam:before {

 content: "\f1b6";

} .fa-steam-square:before {

 content: "\f1b7";

} .fa-recycle:before {

 content: "\f1b8";

} .fa-automobile:before, .fa-car:before {

 content: "\f1b9";

} .fa-cab:before, .fa-taxi:before {

 content: "\f1ba";

} .fa-tree:before {

 content: "\f1bb";

} .fa-spotify:before {

 content: "\f1bc";

} .fa-deviantart:before {

 content: "\f1bd";

} .fa-soundcloud:before {

 content: "\f1be";

} .fa-database:before {

 content: "\f1c0";

} .fa-file-pdf-o:before {

 content: "\f1c1";

} .fa-file-word-o:before {

 content: "\f1c2";

} .fa-file-excel-o:before {

 content: "\f1c3";

} .fa-file-powerpoint-o:before {

 content: "\f1c4";

} .fa-file-photo-o:before, .fa-file-picture-o:before, .fa-file-image-o:before {

 content: "\f1c5";

} .fa-file-zip-o:before, .fa-file-archive-o:before {

 content: "\f1c6";

} .fa-file-sound-o:before, .fa-file-audio-o:before {

 content: "\f1c7";

} .fa-file-movie-o:before, .fa-file-video-o:before {

 content: "\f1c8";

} .fa-file-code-o:before {

 content: "\f1c9";

} .fa-vine:before {

 content: "\f1ca";

} .fa-codepen:before {

 content: "\f1cb";

} .fa-jsfiddle:before {

 content: "\f1cc";

} .fa-life-bouy:before, .fa-life-buoy:before, .fa-life-saver:before, .fa-support:before, .fa-life-ring:before {

 content: "\f1cd";

} .fa-circle-o-notch:before {

 content: "\f1ce";

} .fa-ra:before, .fa-rebel:before {

 content: "\f1d0";

} .fa-ge:before, .fa-empire:before {

 content: "\f1d1";

} .fa-git-square:before {

 content: "\f1d2";

} .fa-git:before {

 content: "\f1d3";

} .fa-hacker-news:before {

 content: "\f1d4";

} .fa-tencent-weibo:before {

 content: "\f1d5";

} .fa-qq:before {

 content: "\f1d6";

} .fa-wechat:before, .fa-weixin:before {

 content: "\f1d7";

} .fa-send:before, .fa-paper-plane:before {

 content: "\f1d8";

} .fa-send-o:before, .fa-paper-plane-o:before {

 content: "\f1d9";

} .fa-history:before {

 content: "\f1da";

} .fa-circle-thin:before {

 content: "\f1db";

} .fa-header:before {

 content: "\f1dc";

} .fa-paragraph:before {

 content: "\f1dd";

} .fa-sliders:before {

 content: "\f1de";

} .fa-share-alt:before {

 content: "\f1e0";

} .fa-share-alt-square:before {

 content: "\f1e1";

} .fa-bomb:before {

 content: "\f1e2";

} .fa-soccer-ball-o:before, .fa-futbol-o:before {

 content: "\f1e3";

} .fa-tty:before {

 content: "\f1e4";

} .fa-binoculars:before {

 content: "\f1e5";

} .fa-plug:before {

 content: "\f1e6";

} .fa-slideshare:before {

 content: "\f1e7";

} .fa-twitch:before {

 content: "\f1e8";

} .fa-yelp:before {

 content: "\f1e9";

} .fa-newspaper-o:before {

 content: "\f1ea";

} .fa-wifi:before {

 content: "\f1eb";

} .fa-calculator:before {

 content: "\f1ec";

} .fa-paypal:before {

 content: "\f1ed";

} .fa-google-wallet:before {

 content: "\f1ee";

} .fa-cc-visa:before {

 content: "\f1f0";

} .fa-cc-mastercard:before {

 content: "\f1f1";

} .fa-cc-discover:before {

 content: "\f1f2";

} .fa-cc-amex:before {

 content: "\f1f3";

} .fa-cc-paypal:before {

 content: "\f1f4";

} .fa-cc-stripe:before {

 content: "\f1f5";

} .fa-bell-slash:before {

 content: "\f1f6";

} .fa-bell-slash-o:before {

 content: "\f1f7";

} .fa-trash:before {

 content: "\f1f8";

} .fa-copyright:before {

 content: "\f1f9";

} .fa-at:before {

 content: "\f1fa";

} .fa-eyedropper:before {

 content: "\f1fb";

} .fa-paint-brush:before {

 content: "\f1fc";

} .fa-birthday-cake:before {

 content: "\f1fd";

} .fa-area-chart:before {

 content: "\f1fe";

} .fa-pie-chart:before {

 content: "\f200";

} .fa-line-chart:before {

 content: "\f201";

} .fa-lastfm:before {

 content: "\f202";

} .fa-lastfm-square:before {

 content: "\f203";

} .fa-toggle-off:before {

 content: "\f204";

} .fa-toggle-on:before {

 content: "\f205";

} .fa-bicycle:before {

 content: "\f206";

} .fa-bus:before {

 content: "\f207";

} .fa-ioxhost:before {

 content: "\f208";

} .fa-angellist:before {

 content: "\f209";

} .fa-cc:before {

 content: "\f20a";

} .fa-shekel:before, .fa-sheqel:before, .fa-ils:before {

 content: "\f20b";

} .fa-meanpath:before {

 content: "\f20c";

} /*!

  • IPython base
  • /

.modal.fade .modal-dialog {

 -webkit-transform: translate(0, 0);
 -ms-transform: translate(0, 0);
 -o-transform: translate(0, 0);
 transform: translate(0, 0);

} code {

 color: #000;

} pre {

 font-size: inherit;
 line-height: inherit;

} label {

 font-weight: normal;

} /* Make the page background atleast 100% the height of the view port */ /* Make the page itself atleast 70% the height of the view port */ .border-box-sizing {

 box-sizing: border-box;
 -moz-box-sizing: border-box;
 -webkit-box-sizing: border-box;

} .corner-all {

 border-radius: 2px;

} .no-padding {

 padding: 0px;

} /* Flexible box model classes */ /* Taken from Alex Russell http://infrequently.org/2009/08/css-3-progress/ */ /* This file is a compatability layer. It allows the usage of flexible box model layouts accross multiple browsers, including older browsers. The newest, universal implementation of the flexible box model is used when available (see `Modern browsers` comments below). Browsers that are known to implement this new spec completely include:

   Firefox 28.0+
   Chrome 29.0+
   Internet Explorer 11+ 
   Opera 17.0+

Browsers not listed, including Safari, are supported via the styling under the `Old browsers` comments below.

  • /

.hbox {

 /* Old browsers */
 display: -webkit-box;
 -webkit-box-orient: horizontal;
 -webkit-box-align: stretch;
 display: -moz-box;
 -moz-box-orient: horizontal;
 -moz-box-align: stretch;
 display: box;
 box-orient: horizontal;
 box-align: stretch;
 /* Modern browsers */
 display: flex;
 flex-direction: row;
 align-items: stretch;

} .hbox > * {

 /* Old browsers */
 -webkit-box-flex: 0;
 -moz-box-flex: 0;
 box-flex: 0;
 /* Modern browsers */
 flex: none;

} .vbox {

 /* Old browsers */
 display: -webkit-box;
 -webkit-box-orient: vertical;
 -webkit-box-align: stretch;
 display: -moz-box;
 -moz-box-orient: vertical;
 -moz-box-align: stretch;
 display: box;
 box-orient: vertical;
 box-align: stretch;
 /* Modern browsers */
 display: flex;
 flex-direction: column;
 align-items: stretch;

} .vbox > * {

 /* Old browsers */
 -webkit-box-flex: 0;
 -moz-box-flex: 0;
 box-flex: 0;
 /* Modern browsers */
 flex: none;

} .hbox.reverse, .vbox.reverse, .reverse {

 /* Old browsers */
 -webkit-box-direction: reverse;
 -moz-box-direction: reverse;
 box-direction: reverse;
 /* Modern browsers */
 flex-direction: row-reverse;

} .hbox.box-flex0, .vbox.box-flex0, .box-flex0 {

 /* Old browsers */
 -webkit-box-flex: 0;
 -moz-box-flex: 0;
 box-flex: 0;
 /* Modern browsers */
 flex: none;
 width: auto;

} .hbox.box-flex1, .vbox.box-flex1, .box-flex1 {

 /* Old browsers */
 -webkit-box-flex: 1;
 -moz-box-flex: 1;
 box-flex: 1;
 /* Modern browsers */
 flex: 1;

} .hbox.box-flex, .vbox.box-flex, .box-flex {

 /* Old browsers */
 /* Old browsers */
 -webkit-box-flex: 1;
 -moz-box-flex: 1;
 box-flex: 1;
 /* Modern browsers */
 flex: 1;

} .hbox.box-flex2, .vbox.box-flex2, .box-flex2 {

 /* Old browsers */
 -webkit-box-flex: 2;
 -moz-box-flex: 2;
 box-flex: 2;
 /* Modern browsers */
 flex: 2;

} .box-group1 {

 /*  Deprecated */
 -webkit-box-flex-group: 1;
 -moz-box-flex-group: 1;
 box-flex-group: 1;

} .box-group2 {

 /* Deprecated */
 -webkit-box-flex-group: 2;
 -moz-box-flex-group: 2;
 box-flex-group: 2;

} .hbox.start, .vbox.start, .start {

 /* Old browsers */
 -webkit-box-pack: start;
 -moz-box-pack: start;
 box-pack: start;
 /* Modern browsers */
 justify-content: flex-start;

} .hbox.end, .vbox.end, .end {

 /* Old browsers */
 -webkit-box-pack: end;
 -moz-box-pack: end;
 box-pack: end;
 /* Modern browsers */
 justify-content: flex-end;

} .hbox.center, .vbox.center, .center {

 /* Old browsers */
 -webkit-box-pack: center;
 -moz-box-pack: center;
 box-pack: center;
 /* Modern browsers */
 justify-content: center;

} .hbox.baseline, .vbox.baseline, .baseline {

 /* Old browsers */
 -webkit-box-pack: baseline;
 -moz-box-pack: baseline;
 box-pack: baseline;
 /* Modern browsers */
 justify-content: baseline;

} .hbox.stretch, .vbox.stretch, .stretch {

 /* Old browsers */
 -webkit-box-pack: stretch;
 -moz-box-pack: stretch;
 box-pack: stretch;
 /* Modern browsers */
 justify-content: stretch;

} .hbox.align-start, .vbox.align-start, .align-start {

 /* Old browsers */
 -webkit-box-align: start;
 -moz-box-align: start;
 box-align: start;
 /* Modern browsers */
 align-items: flex-start;

} .hbox.align-end, .vbox.align-end, .align-end {

 /* Old browsers */
 -webkit-box-align: end;
 -moz-box-align: end;
 box-align: end;
 /* Modern browsers */
 align-items: flex-end;

} .hbox.align-center, .vbox.align-center, .align-center {

 /* Old browsers */
 -webkit-box-align: center;
 -moz-box-align: center;
 box-align: center;
 /* Modern browsers */
 align-items: center;

} .hbox.align-baseline, .vbox.align-baseline, .align-baseline {

 /* Old browsers */
 -webkit-box-align: baseline;
 -moz-box-align: baseline;
 box-align: baseline;
 /* Modern browsers */
 align-items: baseline;

} .hbox.align-stretch, .vbox.align-stretch, .align-stretch {

 /* Old browsers */
 -webkit-box-align: stretch;
 -moz-box-align: stretch;
 box-align: stretch;
 /* Modern browsers */
 align-items: stretch;

} div.error {

 margin: 2em;
 text-align: center;

} div.error > h1 {

 font-size: 500%;
 line-height: normal;

} div.error > p {

 font-size: 200%;
 line-height: normal;

} div.traceback-wrapper {

 text-align: left;
 max-width: 800px;
 margin: auto;

} /**

* Primary styles
*
* Author: Jupyter Development Team
*/

body {

 background-color: #fff;
 /* This makes sure that the body covers the entire window and needs to
      be in a different element than the display: box in wrapper below */
 position: absolute;
 left: 0px;
 right: 0px;
 top: 0px;
 bottom: 0px;
 overflow: visible;

} body > #header {

 /* Initially hidden to prevent FLOUC */
 display: none;
 background-color: #fff;
 /* Display over codemirror */
 position: relative;
 z-index: 100;

} body > #header #header-container {

 padding-bottom: 5px;
 padding-top: 5px;
 box-sizing: border-box;
 -moz-box-sizing: border-box;
 -webkit-box-sizing: border-box;

} body > #header .header-bar {

 width: 100%;
 height: 1px;
 background: #e7e7e7;
 margin-bottom: -1px;

} @media print {

 body > #header {
   display: none !important;
 }

}

  1. header-spacer {
 width: 100%;
 visibility: hidden;

} @media print {

 #header-spacer {
   display: none;
 }

}

  1. ipython_notebook {
 padding-left: 0px;
 padding-top: 1px;
 padding-bottom: 1px;

} @media (max-width: 991px) {

 #ipython_notebook {
   margin-left: 10px;
 }

}

  1. noscript {
 width: auto;
 padding-top: 16px;
 padding-bottom: 16px;
 text-align: center;
 font-size: 22px;
 color: red;
 font-weight: bold;

}

  1. ipython_notebook img {
 height: 28px;

}

  1. site {
 width: 100%;
 display: none;
 box-sizing: border-box;
 -moz-box-sizing: border-box;
 -webkit-box-sizing: border-box;
 overflow: auto;

} @media print {

 #site {
   height: auto !important;
 }

} /* Smaller buttons */ .ui-button .ui-button-text {

 padding: 0.2em 0.8em;
 font-size: 77%;

} input.ui-button {

 padding: 0.3em 0.9em;

} span#login_widget {

 float: right;

} span#login_widget > .button,

  1. logout {
 color: #333;
 background-color: #fff;
 border-color: #ccc;

} span#login_widget > .button:focus,

  1. logout:focus,

span#login_widget > .button.focus,

  1. logout.focus {
 color: #333;
 background-color: #e6e6e6;
 border-color: #8c8c8c;

} span#login_widget > .button:hover,

  1. logout:hover {
 color: #333;
 background-color: #e6e6e6;
 border-color: #adadad;

} span#login_widget > .button:active,

  1. logout:active,

span#login_widget > .button.active,

  1. logout.active,

.open > .dropdown-togglespan#login_widget > .button, .open > .dropdown-toggle#logout {

 color: #333;
 background-color: #e6e6e6;
 border-color: #adadad;

} span#login_widget > .button:active:hover,

  1. logout:active:hover,

span#login_widget > .button.active:hover,

  1. logout.active:hover,

.open > .dropdown-togglespan#login_widget > .button:hover, .open > .dropdown-toggle#logout:hover, span#login_widget > .button:active:focus,

  1. logout:active:focus,

span#login_widget > .button.active:focus,

  1. logout.active:focus,

.open > .dropdown-togglespan#login_widget > .button:focus, .open > .dropdown-toggle#logout:focus, span#login_widget > .button:active.focus,

  1. logout:active.focus,

span#login_widget > .button.active.focus,

  1. logout.active.focus,

.open > .dropdown-togglespan#login_widget > .button.focus, .open > .dropdown-toggle#logout.focus {

 color: #333;
 background-color: #d4d4d4;
 border-color: #8c8c8c;

} span#login_widget > .button:active,

  1. logout:active,

span#login_widget > .button.active,

  1. logout.active,

.open > .dropdown-togglespan#login_widget > .button, .open > .dropdown-toggle#logout {

 background-image: none;

} span#login_widget > .button.disabled:hover,

  1. logout.disabled:hover,

span#login_widget > .button[disabled]:hover,

  1. logout[disabled]:hover,

fieldset[disabled] span#login_widget > .button:hover, fieldset[disabled] #logout:hover, span#login_widget > .button.disabled:focus,

  1. logout.disabled:focus,

span#login_widget > .button[disabled]:focus,

  1. logout[disabled]:focus,

fieldset[disabled] span#login_widget > .button:focus, fieldset[disabled] #logout:focus, span#login_widget > .button.disabled.focus,

  1. logout.disabled.focus,

span#login_widget > .button[disabled].focus,

  1. logout[disabled].focus,

fieldset[disabled] span#login_widget > .button.focus, fieldset[disabled] #logout.focus {

 background-color: #fff;
 border-color: #ccc;

} span#login_widget > .button .badge,

  1. logout .badge {
 color: #fff;
 background-color: #333;

} .nav-header {

 text-transform: none;

}

  1. header > span {
 margin-top: 10px;

} .modal_stretch .modal-dialog {

 /* Old browsers */
 display: -webkit-box;
 -webkit-box-orient: vertical;
 -webkit-box-align: stretch;
 display: -moz-box;
 -moz-box-orient: vertical;
 -moz-box-align: stretch;
 display: box;
 box-orient: vertical;
 box-align: stretch;
 /* Modern browsers */
 display: flex;
 flex-direction: column;
 align-items: stretch;
 min-height: 80vh;

} .modal_stretch .modal-dialog .modal-body {

 max-height: calc(100vh - 200px);
 overflow: auto;
 flex: 1;

} @media (min-width: 768px) {

 .modal .modal-dialog {
   width: 700px;
 }

} @media (min-width: 768px) {

 select.form-control {
   margin-left: 12px;
   margin-right: 12px;
 }

} /*!

  • IPython auth
  • /

.center-nav {

 display: inline-block;
 margin-bottom: -4px;

} /*!

  • IPython tree view
  • /

/* We need an invisible input field on top of the sentense*/ /* "Drag file onto the list ..." */ .alternate_upload {

 background-color: none;
 display: inline;

} .alternate_upload.form {

 padding: 0;
 margin: 0;

} .alternate_upload input.fileinput {

 text-align: center;
 vertical-align: middle;
 display: inline;
 opacity: 0;
 z-index: 2;
 width: 12ex;
 margin-right: -12ex;

} .alternate_upload .btn-upload {

 height: 22px;

} /**

* Primary styles
*
* Author: Jupyter Development Team
*/

ul#tabs {

 margin-bottom: 4px;

} ul#tabs a {

 padding-top: 6px;
 padding-bottom: 4px;

} ul.breadcrumb a:focus, ul.breadcrumb a:hover {

 text-decoration: none;

} ul.breadcrumb i.icon-home {

 font-size: 16px;
 margin-right: 4px;

} ul.breadcrumb span {

 color: #5e5e5e;

} .list_toolbar {

 padding: 4px 0 4px 0;
 vertical-align: middle;

} .list_toolbar .tree-buttons {

 padding-top: 1px;

} .dynamic-buttons {

 padding-top: 3px;
 display: inline-block;

} .list_toolbar [class*="span"] {

 min-height: 24px;

} .list_header {

 font-weight: bold;
 background-color: #EEE;

} .list_placeholder {

 font-weight: bold;
 padding-top: 4px;
 padding-bottom: 4px;
 padding-left: 7px;
 padding-right: 7px;

} .list_container {

 margin-top: 4px;
 margin-bottom: 20px;
 border: 1px solid #ddd;
 border-radius: 2px;

} .list_container > div {

 border-bottom: 1px solid #ddd;

} .list_container > div:hover .list-item {

 background-color: red;

} .list_container > div:last-child {

 border: none;

} .list_item:hover .list_item {

 background-color: #ddd;

} .list_item a {

 text-decoration: none;

} .list_item:hover {

 background-color: #fafafa;

} .list_header > div, .list_item > div {

 padding-top: 4px;
 padding-bottom: 4px;
 padding-left: 7px;
 padding-right: 7px;
 line-height: 22px;

} .list_header > div input, .list_item > div input {

 margin-right: 7px;
 margin-left: 14px;
 vertical-align: baseline;
 line-height: 22px;
 position: relative;
 top: -1px;

} .list_header > div .item_link, .list_item > div .item_link {

 margin-left: -1px;
 vertical-align: baseline;
 line-height: 22px;

} .new-file input[type=checkbox] {

 visibility: hidden;

} .item_name {

 line-height: 22px;
 height: 24px;

} .item_icon {

 font-size: 14px;
 color: #5e5e5e;
 margin-right: 7px;
 margin-left: 7px;
 line-height: 22px;
 vertical-align: baseline;

} .item_buttons {

 line-height: 1em;
 margin-left: -5px;

} .item_buttons .btn, .item_buttons .btn-group, .item_buttons .input-group {

 float: left;

} .item_buttons > .btn, .item_buttons > .btn-group, .item_buttons > .input-group {

 margin-left: 5px;

} .item_buttons .btn {

 min-width: 13ex;

} .item_buttons .running-indicator {

 padding-top: 4px;
 color: #5cb85c;

} .item_buttons .kernel-name {

 padding-top: 4px;
 color: #5bc0de;
 margin-right: 7px;
 float: left;

} .toolbar_info {

 height: 24px;
 line-height: 24px;

} .list_item input:not([type=checkbox]) {

 padding-top: 3px;
 padding-bottom: 3px;
 height: 22px;
 line-height: 14px;
 margin: 0px;

} .highlight_text {

 color: blue;

}

  1. project_name {
 display: inline-block;
 padding-left: 7px;
 margin-left: -2px;

}

  1. project_name > .breadcrumb {
 padding: 0px;
 margin-bottom: 0px;
 background-color: transparent;
 font-weight: bold;

}

  1. tree-selector {
 padding-right: 0px;

}

  1. button-select-all {
 min-width: 50px;

}

  1. select-all {
 margin-left: 7px;
 margin-right: 2px;

} .menu_icon {

 margin-right: 2px;

} .tab-content .row {

 margin-left: 0px;
 margin-right: 0px;

} .folder_icon:before {

 display: inline-block;
 font: normal normal normal 14px/1 FontAwesome;
 font-size: inherit;
 text-rendering: auto;
 -webkit-font-smoothing: antialiased;
 -moz-osx-font-smoothing: grayscale;
 content: "\f114";

} .folder_icon:before.pull-left {

 margin-right: .3em;

} .folder_icon:before.pull-right {

 margin-left: .3em;

} .notebook_icon:before {

 display: inline-block;
 font: normal normal normal 14px/1 FontAwesome;
 font-size: inherit;
 text-rendering: auto;
 -webkit-font-smoothing: antialiased;
 -moz-osx-font-smoothing: grayscale;
 content: "\f02d";
 position: relative;
 top: -1px;

} .notebook_icon:before.pull-left {

 margin-right: .3em;

} .notebook_icon:before.pull-right {

 margin-left: .3em;

} .running_notebook_icon:before {

 display: inline-block;
 font: normal normal normal 14px/1 FontAwesome;
 font-size: inherit;
 text-rendering: auto;
 -webkit-font-smoothing: antialiased;
 -moz-osx-font-smoothing: grayscale;
 content: "\f02d";
 position: relative;
 top: -1px;
 color: #5cb85c;

} .running_notebook_icon:before.pull-left {

 margin-right: .3em;

} .running_notebook_icon:before.pull-right {

 margin-left: .3em;

} .file_icon:before {

 display: inline-block;
 font: normal normal normal 14px/1 FontAwesome;
 font-size: inherit;
 text-rendering: auto;
 -webkit-font-smoothing: antialiased;
 -moz-osx-font-smoothing: grayscale;
 content: "\f016";
 position: relative;
 top: -2px;

} .file_icon:before.pull-left {

 margin-right: .3em;

} .file_icon:before.pull-right {

 margin-left: .3em;

}

  1. notebook_toolbar .pull-right {
 padding-top: 0px;
 margin-right: -1px;

} ul#new-menu {

 left: auto;
 right: 0;

} .kernel-menu-icon {

 padding-right: 12px;
 width: 24px;
 content: "\f096";

} .kernel-menu-icon:before {

 content: "\f096";

} .kernel-menu-icon-current:before {

 content: "\f00c";

}

  1. tab_content {
 padding-top: 20px;

}

  1. running .panel-group .panel {
 margin-top: 3px;
 margin-bottom: 1em;

}

  1. running .panel-group .panel .panel-heading {
 background-color: #EEE;
 padding-top: 4px;
 padding-bottom: 4px;
 padding-left: 7px;
 padding-right: 7px;
 line-height: 22px;

}

  1. running .panel-group .panel .panel-heading a:focus,
  2. running .panel-group .panel .panel-heading a:hover {
 text-decoration: none;

}

  1. running .panel-group .panel .panel-body {
 padding: 0px;

}

  1. running .panel-group .panel .panel-body .list_container {
 margin-top: 0px;
 margin-bottom: 0px;
 border: 0px;
 border-radius: 0px;

}

  1. running .panel-group .panel .panel-body .list_container .list_item {
 border-bottom: 1px solid #ddd;

}

  1. running .panel-group .panel .panel-body .list_container .list_item:last-child {
 border-bottom: 0px;

} .delete-button {

 display: none;

} .duplicate-button {

 display: none;

} .rename-button {

 display: none;

} .shutdown-button {

 display: none;

} .dynamic-instructions {

 display: inline-block;
 padding-top: 4px;

} /*!

  • IPython text editor webapp
  • /

.selected-keymap i.fa {

 padding: 0px 5px;

} .selected-keymap i.fa:before {

 content: "\f00c";

}

  1. mode-menu {
 overflow: auto;
 max-height: 20em;

} .edit_app #header {

 -webkit-box-shadow: 0px 0px 12px 1px rgba(87, 87, 87, 0.2);
 box-shadow: 0px 0px 12px 1px rgba(87, 87, 87, 0.2);

} .edit_app #menubar .navbar {

 /* Use a negative 1 bottom margin, so the border overlaps the border of the
   header */
 margin-bottom: -1px;

} .dirty-indicator {

 display: inline-block;
 font: normal normal normal 14px/1 FontAwesome;
 font-size: inherit;
 text-rendering: auto;
 -webkit-font-smoothing: antialiased;
 -moz-osx-font-smoothing: grayscale;
 width: 20px;

} .dirty-indicator.pull-left {

 margin-right: .3em;

} .dirty-indicator.pull-right {

 margin-left: .3em;

} .dirty-indicator-dirty {

 display: inline-block;
 font: normal normal normal 14px/1 FontAwesome;
 font-size: inherit;
 text-rendering: auto;
 -webkit-font-smoothing: antialiased;
 -moz-osx-font-smoothing: grayscale;
 width: 20px;

} .dirty-indicator-dirty.pull-left {

 margin-right: .3em;

} .dirty-indicator-dirty.pull-right {

 margin-left: .3em;

} .dirty-indicator-clean {

 display: inline-block;
 font: normal normal normal 14px/1 FontAwesome;
 font-size: inherit;
 text-rendering: auto;
 -webkit-font-smoothing: antialiased;
 -moz-osx-font-smoothing: grayscale;
 width: 20px;

} .dirty-indicator-clean.pull-left {

 margin-right: .3em;

} .dirty-indicator-clean.pull-right {

 margin-left: .3em;

} .dirty-indicator-clean:before {

 display: inline-block;
 font: normal normal normal 14px/1 FontAwesome;
 font-size: inherit;
 text-rendering: auto;
 -webkit-font-smoothing: antialiased;
 -moz-osx-font-smoothing: grayscale;
 content: "\f00c";

} .dirty-indicator-clean:before.pull-left {

 margin-right: .3em;

} .dirty-indicator-clean:before.pull-right {

 margin-left: .3em;

}

  1. filename {
 font-size: 16pt;
 display: table;
 padding: 0px 5px;

}

  1. current-mode {
 padding-left: 5px;
 padding-right: 5px;

}

  1. texteditor-backdrop {
 padding-top: 20px;
 padding-bottom: 20px;

} @media not print {

 #texteditor-backdrop {
   background-color: #EEE;
 }

} @media print {

 #texteditor-backdrop #texteditor-container .CodeMirror-gutter,
 #texteditor-backdrop #texteditor-container .CodeMirror-gutters {
   background-color: #fff;
 }

} @media not print {

 #texteditor-backdrop #texteditor-container .CodeMirror-gutter,
 #texteditor-backdrop #texteditor-container .CodeMirror-gutters {
   background-color: #fff;
 }

} @media not print {

 #texteditor-backdrop #texteditor-container {
   padding: 0px;
   background-color: #fff;
   -webkit-box-shadow: 0px 0px 12px 1px rgba(87, 87, 87, 0.2);
   box-shadow: 0px 0px 12px 1px rgba(87, 87, 87, 0.2);
 }

} /*!

  • IPython notebook
  • /

/* CSS font colors for translated ANSI colors. */ .ansibold {

 font-weight: bold;

} /* use dark versions for foreground, to improve visibility */ .ansiblack {

 color: black;

} .ansired {

 color: darkred;

} .ansigreen {

 color: darkgreen;

} .ansiyellow {

 color: #c4a000;

} .ansiblue {

 color: darkblue;

} .ansipurple {

 color: darkviolet;

} .ansicyan {

 color: steelblue;

} .ansigray {

 color: gray;

} /* and light for background, for the same reason */ .ansibgblack {

 background-color: black;

} .ansibgred {

 background-color: red;

} .ansibggreen {

 background-color: green;

} .ansibgyellow {

 background-color: yellow;

} .ansibgblue {

 background-color: blue;

} .ansibgpurple {

 background-color: magenta;

} .ansibgcyan {

 background-color: cyan;

} .ansibggray {

 background-color: gray;

} div.cell {

 /* Old browsers */
 display: -webkit-box;
 -webkit-box-orient: vertical;
 -webkit-box-align: stretch;
 display: -moz-box;
 -moz-box-orient: vertical;
 -moz-box-align: stretch;
 display: box;
 box-orient: vertical;
 box-align: stretch;
 /* Modern browsers */
 display: flex;
 flex-direction: column;
 align-items: stretch;
 border-radius: 2px;
 box-sizing: border-box;
 -moz-box-sizing: border-box;
 -webkit-box-sizing: border-box;
 border-width: 1px;
 border-style: solid;
 border-color: transparent;
 width: 100%;
 padding: 5px;
 /* This acts as a spacer between cells, that is outside the border */
 margin: 0px;
 outline: none;
 border-left-width: 1px;
 padding-left: 5px;
 background: linear-gradient(to right, transparent -40px, transparent 1px, transparent 1px, transparent 100%);

} div.cell.jupyter-soft-selected {

 border-left-color: #90CAF9;
 border-left-color: #E3F2FD;
 border-left-width: 1px;
 padding-left: 5px;
 border-right-color: #E3F2FD;
 border-right-width: 1px;
 background: #E3F2FD;

} @media print {

 div.cell.jupyter-soft-selected {
   border-color: transparent;
 }

} div.cell.selected {

 border-color: #ababab;
 border-left-width: 0px;
 padding-left: 6px;
 background: linear-gradient(to right, #42A5F5 -40px, #42A5F5 5px, transparent 5px, transparent 100%);

} @media print {

 div.cell.selected {
   border-color: transparent;
 }

} div.cell.selected.jupyter-soft-selected {

 border-left-width: 0;
 padding-left: 6px;
 background: linear-gradient(to right, #42A5F5 -40px, #42A5F5 7px, #E3F2FD 7px, #E3F2FD 100%);

} .edit_mode div.cell.selected {

 border-color: #66BB6A;
 border-left-width: 0px;
 padding-left: 6px;
 background: linear-gradient(to right, #66BB6A -40px, #66BB6A 5px, transparent 5px, transparent 100%);

} @media print {

 .edit_mode div.cell.selected {
   border-color: transparent;
 }

} .prompt {

 /* This needs to be wide enough for 3 digit prompt numbers: In[100]: */
 min-width: 14ex;
 /* This padding is tuned to match the padding on the CodeMirror editor. */
 padding: 0.4em;
 margin: 0px;
 font-family: monospace;
 text-align: right;
 /* This has to match that of the the CodeMirror class line-height below */
 line-height: 1.21429em;
 /* Don't highlight prompt number selection */
 -webkit-touch-callout: none;
 -webkit-user-select: none;
 -khtml-user-select: none;
 -moz-user-select: none;
 -ms-user-select: none;
 user-select: none;
 /* Use default cursor */
 cursor: default;

} @media (max-width: 540px) {

 .prompt {
   text-align: left;
 }

} div.inner_cell {

 /* Old browsers */
 display: -webkit-box;
 -webkit-box-orient: vertical;
 -webkit-box-align: stretch;
 display: -moz-box;
 -moz-box-orient: vertical;
 -moz-box-align: stretch;
 display: box;
 box-orient: vertical;
 box-align: stretch;
 /* Modern browsers */
 display: flex;
 flex-direction: column;
 align-items: stretch;
 /* Old browsers */
 -webkit-box-flex: 1;
 -moz-box-flex: 1;
 box-flex: 1;
 /* Modern browsers */
 flex: 1;

} @-moz-document url-prefix() {

 div.inner_cell {
   overflow-x: hidden;
 }

} /* input_area and input_prompt must match in top border and margin for alignment */ div.input_area {

 border: 1px solid #cfcfcf;
 border-radius: 2px;
 background: #f7f7f7;
 line-height: 1.21429em;

} /* This is needed so that empty prompt areas can collapse to zero height when there

  is no content in the output_subarea and the prompt. The main purpose of this is
  to make sure that empty JavaScript output_subareas have no height. */

div.prompt:empty {

 padding-top: 0;
 padding-bottom: 0;

} div.unrecognized_cell {

 padding: 5px 5px 5px 0px;
 /* Old browsers */
 display: -webkit-box;
 -webkit-box-orient: horizontal;
 -webkit-box-align: stretch;
 display: -moz-box;
 -moz-box-orient: horizontal;
 -moz-box-align: stretch;
 display: box;
 box-orient: horizontal;
 box-align: stretch;
 /* Modern browsers */
 display: flex;
 flex-direction: row;
 align-items: stretch;

} div.unrecognized_cell .inner_cell {

 border-radius: 2px;
 padding: 5px;
 font-weight: bold;
 color: red;
 border: 1px solid #cfcfcf;
 background: #eaeaea;

} div.unrecognized_cell .inner_cell a {

 color: inherit;
 text-decoration: none;

} div.unrecognized_cell .inner_cell a:hover {

 color: inherit;
 text-decoration: none;

} @media (max-width: 540px) {

 div.unrecognized_cell > div.prompt {
   display: none;
 }

} div.code_cell {

 /* avoid page breaking on code cells when printing */

} @media print {

 div.code_cell {
   page-break-inside: avoid;
 }

} /* any special styling for code cells that are currently running goes here */ div.input {

 page-break-inside: avoid;
 /* Old browsers */
 display: -webkit-box;
 -webkit-box-orient: horizontal;
 -webkit-box-align: stretch;
 display: -moz-box;
 -moz-box-orient: horizontal;
 -moz-box-align: stretch;
 display: box;
 box-orient: horizontal;
 box-align: stretch;
 /* Modern browsers */
 display: flex;
 flex-direction: row;
 align-items: stretch;

} @media (max-width: 540px) {

 div.input {
   /* Old browsers */
   display: -webkit-box;
   -webkit-box-orient: vertical;
   -webkit-box-align: stretch;
   display: -moz-box;
   -moz-box-orient: vertical;
   -moz-box-align: stretch;
   display: box;
   box-orient: vertical;
   box-align: stretch;
   /* Modern browsers */
   display: flex;
   flex-direction: column;
   align-items: stretch;
 }

} /* input_area and input_prompt must match in top border and margin for alignment */ div.input_prompt {

 color: #303F9F;
 border-top: 1px solid transparent;

} div.input_area > div.highlight {

 margin: 0.4em;
 border: none;
 padding: 0px;
 background-color: transparent;

} div.input_area > div.highlight > pre {

 margin: 0px;
 border: none;
 padding: 0px;
 background-color: transparent;

} /* The following gets added to the <head> if it is detected that the user has a

* monospace font with inconsistent normal/bold/italic height.  See
* notebookmain.js.  Such fonts will have keywords vertically offset with
* respect to the rest of the text.  The user should select a better font.
* See: https://github.com/ipython/ipython/issues/1503
*
* .CodeMirror span {
*      vertical-align: bottom;
* }
*/

.CodeMirror {

 line-height: 1.21429em;
 /* Changed from 1em to our global default */
 font-size: 14px;
 height: auto;
 /* Changed to auto to autogrow */
 background: none;
 /* Changed from white to allow our bg to show through */

} .CodeMirror-scroll {

 /*  The CodeMirror docs are a bit fuzzy on if overflow-y should be hidden or visible.*/
 /*  We have found that if it is visible, vertical scrollbars appear with font size changes.*/
 overflow-y: hidden;
 overflow-x: auto;

} .CodeMirror-lines {

 /* In CM2, this used to be 0.4em, but in CM3 it went to 4px. We need the em value because */
 /* we have set a different line-height and want this to scale with that. */
 padding: 0.4em;

} .CodeMirror-linenumber {

 padding: 0 8px 0 4px;

} .CodeMirror-gutters {

 border-bottom-left-radius: 2px;
 border-top-left-radius: 2px;

} .CodeMirror pre {

 /* In CM3 this went to 4px from 0 in CM2. We need the 0 value because of how we size */
 /* .CodeMirror-lines */
 padding: 0;
 border: 0;
 border-radius: 0;

} /*

Original style from softwaremaniacs.org (c) Ivan Sagalaev <Maniac@SoftwareManiacs.Org> Adapted from GitHub theme

  • /

.highlight-base {

 color: #000;

} .highlight-variable {

 color: #000;

} .highlight-variable-2 {

 color: #1a1a1a;

} .highlight-variable-3 {

 color: #333333;

} .highlight-string {

 color: #BA2121;

} .highlight-comment {

 color: #408080;
 font-style: italic;

} .highlight-number {

 color: #080;

} .highlight-atom {

 color: #88F;

} .highlight-keyword {

 color: #008000;
 font-weight: bold;

} .highlight-builtin {

 color: #008000;

} .highlight-error {

 color: #f00;

} .highlight-operator {

 color: #AA22FF;
 font-weight: bold;

} .highlight-meta {

 color: #AA22FF;

} /* previously not defined, copying from default codemirror */ .highlight-def {

 color: #00f;

} .highlight-string-2 {

 color: #f50;

} .highlight-qualifier {

 color: #555;

} .highlight-bracket {

 color: #997;

} .highlight-tag {

 color: #170;

} .highlight-attribute {

 color: #00c;

} .highlight-header {

 color: blue;

} .highlight-quote {

 color: #090;

} .highlight-link {

 color: #00c;

} /* apply the same style to codemirror */ .cm-s-ipython span.cm-keyword {

 color: #008000;
 font-weight: bold;

} .cm-s-ipython span.cm-atom {

 color: #88F;

} .cm-s-ipython span.cm-number {

 color: #080;

} .cm-s-ipython span.cm-def {

 color: #00f;

} .cm-s-ipython span.cm-variable {

 color: #000;

} .cm-s-ipython span.cm-operator {

 color: #AA22FF;
 font-weight: bold;

} .cm-s-ipython span.cm-variable-2 {

 color: #1a1a1a;

} .cm-s-ipython span.cm-variable-3 {

 color: #333333;

} .cm-s-ipython span.cm-comment {

 color: #408080;
 font-style: italic;

} .cm-s-ipython span.cm-string {

 color: #BA2121;

} .cm-s-ipython span.cm-string-2 {

 color: #f50;

} .cm-s-ipython span.cm-meta {

 color: #AA22FF;

} .cm-s-ipython span.cm-qualifier {

 color: #555;

} .cm-s-ipython span.cm-builtin {

 color: #008000;

} .cm-s-ipython span.cm-bracket {

 color: #997;

} .cm-s-ipython span.cm-tag {

 color: #170;

} .cm-s-ipython span.cm-attribute {

 color: #00c;

} .cm-s-ipython span.cm-header {

 color: blue;

} .cm-s-ipython span.cm-quote {

 color: #090;

} .cm-s-ipython span.cm-link {

 color: #00c;

} .cm-s-ipython span.cm-error {

 color: #f00;

} .cm-s-ipython span.cm-tab {

 background: url();
 background-position: right;
 background-repeat: no-repeat;

} div.output_wrapper {

 /* this position must be relative to enable descendents to be absolute within it */
 position: relative;
 /* Old browsers */
 display: -webkit-box;
 -webkit-box-orient: vertical;
 -webkit-box-align: stretch;
 display: -moz-box;
 -moz-box-orient: vertical;
 -moz-box-align: stretch;
 display: box;
 box-orient: vertical;
 box-align: stretch;
 /* Modern browsers */
 display: flex;
 flex-direction: column;
 align-items: stretch;
 z-index: 1;

} /* class for the output area when it should be height-limited */ div.output_scroll {

 /* ideally, this would be max-height, but FF barfs all over that */
 height: 24em;
 /* FF needs this *and the wrapper* to specify full width, or it will shrinkwrap */
 width: 100%;
 overflow: auto;
 border-radius: 2px;
 -webkit-box-shadow: inset 0 2px 8px rgba(0, 0, 0, 0.8);
 box-shadow: inset 0 2px 8px rgba(0, 0, 0, 0.8);
 display: block;

} /* output div while it is collapsed */ div.output_collapsed {

 margin: 0px;
 padding: 0px;
 /* Old browsers */
 display: -webkit-box;
 -webkit-box-orient: vertical;
 -webkit-box-align: stretch;
 display: -moz-box;
 -moz-box-orient: vertical;
 -moz-box-align: stretch;
 display: box;
 box-orient: vertical;
 box-align: stretch;
 /* Modern browsers */
 display: flex;
 flex-direction: column;
 align-items: stretch;

} div.out_prompt_overlay {

 height: 100%;
 padding: 0px 0.4em;
 position: absolute;
 border-radius: 2px;

} div.out_prompt_overlay:hover {

 /* use inner shadow to get border that is computed the same on WebKit/FF */
 -webkit-box-shadow: inset 0 0 1px #000;
 box-shadow: inset 0 0 1px #000;
 background: rgba(240, 240, 240, 0.5);

} div.output_prompt {

 color: #D84315;

} /* This class is the outer container of all output sections. */ div.output_area {

 padding: 0px;
 page-break-inside: avoid;
 /* Old browsers */
 display: -webkit-box;
 -webkit-box-orient: horizontal;
 -webkit-box-align: stretch;
 display: -moz-box;
 -moz-box-orient: horizontal;
 -moz-box-align: stretch;
 display: box;
 box-orient: horizontal;
 box-align: stretch;
 /* Modern browsers */
 display: flex;
 flex-direction: row;
 align-items: stretch;

} div.output_area .MathJax_Display {

 text-align: left !important;

} div.output_area .rendered_html table {

 margin-left: 0;
 margin-right: 0;

} div.output_area .rendered_html img {

 margin-left: 0;
 margin-right: 0;

} div.output_area img, div.output_area svg {

 max-width: 100%;
 height: auto;

} div.output_area img.unconfined, div.output_area svg.unconfined {

 max-width: none;

} /* This is needed to protect the pre formating from global settings such

  as that of bootstrap */

.output {

 /* Old browsers */
 display: -webkit-box;
 -webkit-box-orient: vertical;
 -webkit-box-align: stretch;
 display: -moz-box;
 -moz-box-orient: vertical;
 -moz-box-align: stretch;
 display: box;
 box-orient: vertical;
 box-align: stretch;
 /* Modern browsers */
 display: flex;
 flex-direction: column;
 align-items: stretch;

} @media (max-width: 540px) {

 div.output_area {
   /* Old browsers */
   display: -webkit-box;
   -webkit-box-orient: vertical;
   -webkit-box-align: stretch;
   display: -moz-box;
   -moz-box-orient: vertical;
   -moz-box-align: stretch;
   display: box;
   box-orient: vertical;
   box-align: stretch;
   /* Modern browsers */
   display: flex;
   flex-direction: column;
   align-items: stretch;
 }

} div.output_area pre {

 margin: 0;
 padding: 0;
 border: 0;
 vertical-align: baseline;
 color: black;
 background-color: transparent;
 border-radius: 0;

} /* This class is for the output subarea inside the output_area and after

  the prompt div. */

div.output_subarea {

 overflow-x: auto;
 padding: 0.4em;
 /* Old browsers */
 -webkit-box-flex: 1;
 -moz-box-flex: 1;
 box-flex: 1;
 /* Modern browsers */
 flex: 1;
 max-width: calc(100% - 14ex);

} div.output_scroll div.output_subarea {

 overflow-x: visible;

} /* The rest of the output_* classes are for special styling of the different

  output types */

/* all text output has this class: */ div.output_text {

 text-align: left;
 color: #000;
 /* This has to match that of the the CodeMirror class line-height below */
 line-height: 1.21429em;

} /* stdout/stderr are 'text' as well as 'stream', but execute_result/error are *not* streams */ div.output_stderr {

 background: #fdd;
 /* very light red background for stderr */

} div.output_latex {

 text-align: left;

} /* Empty output_javascript divs should have no height */ div.output_javascript:empty {

 padding: 0;

} .js-error {

 color: darkred;

} /* raw_input styles */ div.raw_input_container {

 line-height: 1.21429em;
 padding-top: 5px;

} pre.raw_input_prompt {

 /* nothing needed here. */

} input.raw_input {

 font-family: monospace;
 font-size: inherit;
 color: inherit;
 width: auto;
 /* make sure input baseline aligns with prompt */
 vertical-align: baseline;
 /* padding + margin = 0.5em between prompt and cursor */
 padding: 0em 0.25em;
 margin: 0em 0.25em;

} input.raw_input:focus {

 box-shadow: none;

} p.p-space {

 margin-bottom: 10px;

} div.output_unrecognized {

 padding: 5px;
 font-weight: bold;
 color: red;

} div.output_unrecognized a {

 color: inherit;
 text-decoration: none;

} div.output_unrecognized a:hover {

 color: inherit;
 text-decoration: none;

} .rendered_html {

 color: #000;
 /* any extras will just be numbers: */

} .rendered_html em {

 font-style: italic;

} .rendered_html strong {

 font-weight: bold;

} .rendered_html u {

 text-decoration: underline;

} .rendered_html :link {

 text-decoration: underline;

} .rendered_html :visited {

 text-decoration: underline;

} .rendered_html h1 {

 font-size: 185.7%;
 margin: 1.08em 0 0 0;
 font-weight: bold;
 line-height: 1.0;

} .rendered_html h2 {

 font-size: 157.1%;
 margin: 1.27em 0 0 0;
 font-weight: bold;
 line-height: 1.0;

} .rendered_html h3 {

 font-size: 128.6%;
 margin: 1.55em 0 0 0;
 font-weight: bold;
 line-height: 1.0;

} .rendered_html h4 {

 font-size: 100%;
 margin: 2em 0 0 0;
 font-weight: bold;
 line-height: 1.0;

} .rendered_html h5 {

 font-size: 100%;
 margin: 2em 0 0 0;
 font-weight: bold;
 line-height: 1.0;
 font-style: italic;

} .rendered_html h6 {

 font-size: 100%;
 margin: 2em 0 0 0;
 font-weight: bold;
 line-height: 1.0;
 font-style: italic;

} .rendered_html h1:first-child {

 margin-top: 0.538em;

} .rendered_html h2:first-child {

 margin-top: 0.636em;

} .rendered_html h3:first-child {

 margin-top: 0.777em;

} .rendered_html h4:first-child {

 margin-top: 1em;

} .rendered_html h5:first-child {

 margin-top: 1em;

} .rendered_html h6:first-child {

 margin-top: 1em;

} .rendered_html ul {

 list-style: disc;
 margin: 0em 2em;
 padding-left: 0px;

} .rendered_html ul ul {

 list-style: square;
 margin: 0em 2em;

} .rendered_html ul ul ul {

 list-style: circle;
 margin: 0em 2em;

} .rendered_html ol {

 list-style: decimal;
 margin: 0em 2em;
 padding-left: 0px;

} .rendered_html ol ol {

 list-style: upper-alpha;
 margin: 0em 2em;

} .rendered_html ol ol ol {

 list-style: lower-alpha;
 margin: 0em 2em;

} .rendered_html ol ol ol ol {

 list-style: lower-roman;
 margin: 0em 2em;

} .rendered_html ol ol ol ol ol {

 list-style: decimal;
 margin: 0em 2em;

} .rendered_html * + ul {

 margin-top: 1em;

} .rendered_html * + ol {

 margin-top: 1em;

} .rendered_html hr {

 color: black;
 background-color: black;

} .rendered_html pre {

 margin: 1em 2em;

} .rendered_html pre, .rendered_html code {

 border: 0;
 background-color: #fff;
 color: #000;
 font-size: 100%;
 padding: 0px;

} .rendered_html blockquote {

 margin: 1em 2em;

} .rendered_html table {

 margin-left: auto;
 margin-right: auto;
 border: 1px solid black;
 border-collapse: collapse;

} .rendered_html tr, .rendered_html th, .rendered_html td {

 border: 1px solid black;
 border-collapse: collapse;
 margin: 1em 2em;

} .rendered_html td, .rendered_html th {

 text-align: left;
 vertical-align: middle;
 padding: 4px;

} .rendered_html th {

 font-weight: bold;

} .rendered_html * + table {

 margin-top: 1em;

} .rendered_html p {

 text-align: left;

} .rendered_html * + p {

 margin-top: 1em;

} .rendered_html img {

 display: block;
 margin-left: auto;
 margin-right: auto;

} .rendered_html * + img {

 margin-top: 1em;

} .rendered_html img, .rendered_html svg {

 max-width: 100%;
 height: auto;

} .rendered_html img.unconfined, .rendered_html svg.unconfined {

 max-width: none;

} div.text_cell {

 /* Old browsers */
 display: -webkit-box;
 -webkit-box-orient: horizontal;
 -webkit-box-align: stretch;
 display: -moz-box;
 -moz-box-orient: horizontal;
 -moz-box-align: stretch;
 display: box;
 box-orient: horizontal;
 box-align: stretch;
 /* Modern browsers */
 display: flex;
 flex-direction: row;
 align-items: stretch;

} @media (max-width: 540px) {

 div.text_cell > div.prompt {
   display: none;
 }

} div.text_cell_render {

 /*font-family: "Helvetica Neue", Arial, Helvetica, Geneva, sans-serif;*/
 outline: none;
 resize: none;
 width: inherit;
 border-style: none;
 padding: 0.5em 0.5em 0.5em 0.4em;
 color: #000;
 box-sizing: border-box;
 -moz-box-sizing: border-box;
 -webkit-box-sizing: border-box;

} a.anchor-link:link {

 text-decoration: none;
 padding: 0px 20px;
 visibility: hidden;

} h1:hover .anchor-link, h2:hover .anchor-link, h3:hover .anchor-link, h4:hover .anchor-link, h5:hover .anchor-link, h6:hover .anchor-link {

 visibility: visible;

} .text_cell.rendered .input_area {

 display: none;

} .text_cell.rendered .rendered_html {

 overflow-x: auto;
 overflow-y: hidden;

} .text_cell.unrendered .text_cell_render {

 display: none;

} .cm-header-1, .cm-header-2, .cm-header-3, .cm-header-4, .cm-header-5, .cm-header-6 {

 font-weight: bold;
 font-family: "Helvetica Neue", Helvetica, Arial, sans-serif;

} .cm-header-1 {

 font-size: 185.7%;

} .cm-header-2 {

 font-size: 157.1%;

} .cm-header-3 {

 font-size: 128.6%;

} .cm-header-4 {

 font-size: 110%;

} .cm-header-5 {

 font-size: 100%;
 font-style: italic;

} .cm-header-6 {

 font-size: 100%;
 font-style: italic;

} /*!

  • IPython notebook webapp
  • /

@media (max-width: 767px) {

 .notebook_app {
   padding-left: 0px;
   padding-right: 0px;
 }

}

  1. ipython-main-app {
 box-sizing: border-box;
 -moz-box-sizing: border-box;
 -webkit-box-sizing: border-box;
 height: 100%;

} div#notebook_panel {

 margin: 0px;
 padding: 0px;
 box-sizing: border-box;
 -moz-box-sizing: border-box;
 -webkit-box-sizing: border-box;
 height: 100%;

} div#notebook {

 font-size: 14px;
 line-height: 20px;
 overflow-y: hidden;
 overflow-x: auto;
 width: 100%;
 /* This spaces the page away from the edge of the notebook area */
 padding-top: 20px;
 margin: 0px;
 outline: none;
 box-sizing: border-box;
 -moz-box-sizing: border-box;
 -webkit-box-sizing: border-box;
 min-height: 100%;

} @media not print {

 #notebook-container {
   padding: 15px;
   background-color: #fff;
   min-height: 0;
   -webkit-box-shadow: 0px 0px 12px 1px rgba(87, 87, 87, 0.2);
   box-shadow: 0px 0px 12px 1px rgba(87, 87, 87, 0.2);
 }

} @media print {

 #notebook-container {
   width: 100%;
 }

} div.ui-widget-content {

 border: 1px solid #ababab;
 outline: none;

} pre.dialog {

 background-color: #f7f7f7;
 border: 1px solid #ddd;
 border-radius: 2px;
 padding: 0.4em;
 padding-left: 2em;

} p.dialog {

 padding: 0.2em;

} /* Word-wrap output correctly. This is the CSS3 spelling, though Firefox seems

  to not honor it correctly.  Webkit browsers (Chrome, rekonq, Safari) do.
*/

pre, code, kbd, samp {

 white-space: pre-wrap;

}

  1. fonttest {
 font-family: monospace;

} p {

 margin-bottom: 0;

} .end_space {

 min-height: 100px;
 transition: height .2s ease;

} .notebook_app > #header {

 -webkit-box-shadow: 0px 0px 12px 1px rgba(87, 87, 87, 0.2);
 box-shadow: 0px 0px 12px 1px rgba(87, 87, 87, 0.2);

} @media not print {

 .notebook_app {
   background-color: #EEE;
 }

} kbd {

 border-style: solid;
 border-width: 1px;
 box-shadow: none;
 margin: 2px;
 padding-left: 2px;
 padding-right: 2px;
 padding-top: 1px;
 padding-bottom: 1px;

} /* CSS for the cell toolbar */ .celltoolbar {

 border: thin solid #CFCFCF;
 border-bottom: none;
 background: #EEE;
 border-radius: 2px 2px 0px 0px;
 width: 100%;
 height: 29px;
 padding-right: 4px;
 /* Old browsers */
 display: -webkit-box;
 -webkit-box-orient: horizontal;
 -webkit-box-align: stretch;
 display: -moz-box;
 -moz-box-orient: horizontal;
 -moz-box-align: stretch;
 display: box;
 box-orient: horizontal;
 box-align: stretch;
 /* Modern browsers */
 display: flex;
 flex-direction: row;
 align-items: stretch;
 /* Old browsers */
 -webkit-box-pack: end;
 -moz-box-pack: end;
 box-pack: end;
 /* Modern browsers */
 justify-content: flex-end;
 display: -webkit-flex;

} @media print {

 .celltoolbar {
   display: none;
 }

} .ctb_hideshow {

 display: none;
 vertical-align: bottom;

} /* ctb_show is added to the ctb_hideshow div to show the cell toolbar.

  Cell toolbars are only shown when the ctb_global_show class is also set.
  • /

.ctb_global_show .ctb_show.ctb_hideshow {

 display: block;

} .ctb_global_show .ctb_show + .input_area, .ctb_global_show .ctb_show + div.text_cell_input, .ctb_global_show .ctb_show ~ div.text_cell_render {

 border-top-right-radius: 0px;
 border-top-left-radius: 0px;

} .ctb_global_show .ctb_show ~ div.text_cell_render {

 border: 1px solid #cfcfcf;

} .celltoolbar {

 font-size: 87%;
 padding-top: 3px;

} .celltoolbar select {

 display: block;
 width: 100%;
 height: 32px;
 padding: 6px 12px;
 font-size: 13px;
 line-height: 1.42857143;
 color: #555555;
 background-color: #fff;
 background-image: none;
 border: 1px solid #ccc;
 border-radius: 2px;
 -webkit-box-shadow: inset 0 1px 1px rgba(0, 0, 0, 0.075);
 box-shadow: inset 0 1px 1px rgba(0, 0, 0, 0.075);
 -webkit-transition: border-color ease-in-out .15s, box-shadow ease-in-out .15s;
 -o-transition: border-color ease-in-out .15s, box-shadow ease-in-out .15s;
 transition: border-color ease-in-out .15s, box-shadow ease-in-out .15s;
 height: 30px;
 padding: 5px 10px;
 font-size: 12px;
 line-height: 1.5;
 border-radius: 1px;
 width: inherit;
 font-size: inherit;
 height: 22px;
 padding: 0px;
 display: inline-block;

} .celltoolbar select:focus {

 border-color: #66afe9;
 outline: 0;
 -webkit-box-shadow: inset 0 1px 1px rgba(0,0,0,.075), 0 0 8px rgba(102, 175, 233, 0.6);
 box-shadow: inset 0 1px 1px rgba(0,0,0,.075), 0 0 8px rgba(102, 175, 233, 0.6);

} .celltoolbar select::-moz-placeholder {

 color: #999;
 opacity: 1;

} .celltoolbar select:-ms-input-placeholder {

 color: #999;

} .celltoolbar select::-webkit-input-placeholder {

 color: #999;

} .celltoolbar select::-ms-expand {

 border: 0;
 background-color: transparent;

} .celltoolbar select[disabled], .celltoolbar select[readonly], fieldset[disabled] .celltoolbar select {

 background-color: #eeeeee;
 opacity: 1;

} .celltoolbar select[disabled], fieldset[disabled] .celltoolbar select {

 cursor: not-allowed;

} textarea.celltoolbar select {

 height: auto;

} select.celltoolbar select {

 height: 30px;
 line-height: 30px;

} textarea.celltoolbar select, select[multiple].celltoolbar select {

 height: auto;

} .celltoolbar label {

 margin-left: 5px;
 margin-right: 5px;

} .completions {

 position: absolute;
 z-index: 110;
 overflow: hidden;
 border: 1px solid #ababab;
 border-radius: 2px;
 -webkit-box-shadow: 0px 6px 10px -1px #adadad;
 box-shadow: 0px 6px 10px -1px #adadad;
 line-height: 1;

} .completions select {

 background: white;
 outline: none;
 border: none;
 padding: 0px;
 margin: 0px;
 overflow: auto;
 font-family: monospace;
 font-size: 110%;
 color: #000;
 width: auto;

} .completions select option.context {

 color: #286090;

}

  1. kernel_logo_widget {
 float: right !important;
 float: right;

}

  1. kernel_logo_widget .current_kernel_logo {
 display: none;
 margin-top: -1px;
 margin-bottom: -1px;
 width: 32px;
 height: 32px;

}

  1. menubar {
 box-sizing: border-box;
 -moz-box-sizing: border-box;
 -webkit-box-sizing: border-box;
 margin-top: 1px;

}

  1. menubar .navbar {
 border-top: 1px;
 border-radius: 0px 0px 2px 2px;
 margin-bottom: 0px;

}

  1. menubar .navbar-toggle {
 float: left;
 padding-top: 7px;
 padding-bottom: 7px;
 border: none;

}

  1. menubar .navbar-collapse {
 clear: left;

} .nav-wrapper {

 border-bottom: 1px solid #e7e7e7;

} i.menu-icon {

 padding-top: 4px;

} ul#help_menu li a {

 overflow: hidden;
 padding-right: 2.2em;

} ul#help_menu li a i {

 margin-right: -1.2em;

} .dropdown-submenu {

 position: relative;

} .dropdown-submenu > .dropdown-menu {

 top: 0;
 left: 100%;
 margin-top: -6px;
 margin-left: -1px;

} .dropdown-submenu:hover > .dropdown-menu {

 display: block;

} .dropdown-submenu > a:after {

 display: inline-block;
 font: normal normal normal 14px/1 FontAwesome;
 font-size: inherit;
 text-rendering: auto;
 -webkit-font-smoothing: antialiased;
 -moz-osx-font-smoothing: grayscale;
 display: block;
 content: "\f0da";
 float: right;
 color: #333333;
 margin-top: 2px;
 margin-right: -10px;

} .dropdown-submenu > a:after.pull-left {

 margin-right: .3em;

} .dropdown-submenu > a:after.pull-right {

 margin-left: .3em;

} .dropdown-submenu:hover > a:after {

 color: #262626;

} .dropdown-submenu.pull-left {

 float: none;

} .dropdown-submenu.pull-left > .dropdown-menu {

 left: -100%;
 margin-left: 10px;

}

  1. notification_area {
 float: right !important;
 float: right;
 z-index: 10;

} .indicator_area {

 float: right !important;
 float: right;
 color: #777;
 margin-left: 5px;
 margin-right: 5px;
 width: 11px;
 z-index: 10;
 text-align: center;
 width: auto;

}

  1. kernel_indicator {
 float: right !important;
 float: right;
 color: #777;
 margin-left: 5px;
 margin-right: 5px;
 width: 11px;
 z-index: 10;
 text-align: center;
 width: auto;
 border-left: 1px solid;

}

  1. kernel_indicator .kernel_indicator_name {
 padding-left: 5px;
 padding-right: 5px;

}

  1. modal_indicator {
 float: right !important;
 float: right;
 color: #777;
 margin-left: 5px;
 margin-right: 5px;
 width: 11px;
 z-index: 10;
 text-align: center;
 width: auto;

}

  1. readonly-indicator {
 float: right !important;
 float: right;
 color: #777;
 margin-left: 5px;
 margin-right: 5px;
 width: 11px;
 z-index: 10;
 text-align: center;
 width: auto;
 margin-top: 2px;
 margin-bottom: 0px;
 margin-left: 0px;
 margin-right: 0px;
 display: none;

} .modal_indicator:before {

 width: 1.28571429em;
 text-align: center;

} .edit_mode .modal_indicator:before {

 display: inline-block;
 font: normal normal normal 14px/1 FontAwesome;
 font-size: inherit;
 text-rendering: auto;
 -webkit-font-smoothing: antialiased;
 -moz-osx-font-smoothing: grayscale;
 content: "\f040";

} .edit_mode .modal_indicator:before.pull-left {

 margin-right: .3em;

} .edit_mode .modal_indicator:before.pull-right {

 margin-left: .3em;

} .command_mode .modal_indicator:before {

 display: inline-block;
 font: normal normal normal 14px/1 FontAwesome;
 font-size: inherit;
 text-rendering: auto;
 -webkit-font-smoothing: antialiased;
 -moz-osx-font-smoothing: grayscale;
 content: ' ';

} .command_mode .modal_indicator:before.pull-left {

 margin-right: .3em;

} .command_mode .modal_indicator:before.pull-right {

 margin-left: .3em;

} .kernel_idle_icon:before {

 display: inline-block;
 font: normal normal normal 14px/1 FontAwesome;
 font-size: inherit;
 text-rendering: auto;
 -webkit-font-smoothing: antialiased;
 -moz-osx-font-smoothing: grayscale;
 content: "\f10c";

} .kernel_idle_icon:before.pull-left {

 margin-right: .3em;

} .kernel_idle_icon:before.pull-right {

 margin-left: .3em;

} .kernel_busy_icon:before {

 display: inline-block;
 font: normal normal normal 14px/1 FontAwesome;
 font-size: inherit;
 text-rendering: auto;
 -webkit-font-smoothing: antialiased;
 -moz-osx-font-smoothing: grayscale;
 content: "\f111";

} .kernel_busy_icon:before.pull-left {

 margin-right: .3em;

} .kernel_busy_icon:before.pull-right {

 margin-left: .3em;

} .kernel_dead_icon:before {

 display: inline-block;
 font: normal normal normal 14px/1 FontAwesome;
 font-size: inherit;
 text-rendering: auto;
 -webkit-font-smoothing: antialiased;
 -moz-osx-font-smoothing: grayscale;
 content: "\f1e2";

} .kernel_dead_icon:before.pull-left {

 margin-right: .3em;

} .kernel_dead_icon:before.pull-right {

 margin-left: .3em;

} .kernel_disconnected_icon:before {

 display: inline-block;
 font: normal normal normal 14px/1 FontAwesome;
 font-size: inherit;
 text-rendering: auto;
 -webkit-font-smoothing: antialiased;
 -moz-osx-font-smoothing: grayscale;
 content: "\f127";

} .kernel_disconnected_icon:before.pull-left {

 margin-right: .3em;

} .kernel_disconnected_icon:before.pull-right {

 margin-left: .3em;

} .notification_widget {

 color: #777;
 z-index: 10;
 background: rgba(240, 240, 240, 0.5);
 margin-right: 4px;
 color: #333;
 background-color: #fff;
 border-color: #ccc;

} .notification_widget:focus, .notification_widget.focus {

 color: #333;
 background-color: #e6e6e6;
 border-color: #8c8c8c;

} .notification_widget:hover {

 color: #333;
 background-color: #e6e6e6;
 border-color: #adadad;

} .notification_widget:active, .notification_widget.active, .open > .dropdown-toggle.notification_widget {

 color: #333;
 background-color: #e6e6e6;
 border-color: #adadad;

} .notification_widget:active:hover, .notification_widget.active:hover, .open > .dropdown-toggle.notification_widget:hover, .notification_widget:active:focus, .notification_widget.active:focus, .open > .dropdown-toggle.notification_widget:focus, .notification_widget:active.focus, .notification_widget.active.focus, .open > .dropdown-toggle.notification_widget.focus {

 color: #333;
 background-color: #d4d4d4;
 border-color: #8c8c8c;

} .notification_widget:active, .notification_widget.active, .open > .dropdown-toggle.notification_widget {

 background-image: none;

} .notification_widget.disabled:hover, .notification_widget[disabled]:hover, fieldset[disabled] .notification_widget:hover, .notification_widget.disabled:focus, .notification_widget[disabled]:focus, fieldset[disabled] .notification_widget:focus, .notification_widget.disabled.focus, .notification_widget[disabled].focus, fieldset[disabled] .notification_widget.focus {

 background-color: #fff;
 border-color: #ccc;

} .notification_widget .badge {

 color: #fff;
 background-color: #333;

} .notification_widget.warning {

 color: #fff;
 background-color: #f0ad4e;
 border-color: #eea236;

} .notification_widget.warning:focus, .notification_widget.warning.focus {

 color: #fff;
 background-color: #ec971f;
 border-color: #985f0d;

} .notification_widget.warning:hover {

 color: #fff;
 background-color: #ec971f;
 border-color: #d58512;

} .notification_widget.warning:active, .notification_widget.warning.active, .open > .dropdown-toggle.notification_widget.warning {

 color: #fff;
 background-color: #ec971f;
 border-color: #d58512;

} .notification_widget.warning:active:hover, .notification_widget.warning.active:hover, .open > .dropdown-toggle.notification_widget.warning:hover, .notification_widget.warning:active:focus, .notification_widget.warning.active:focus, .open > .dropdown-toggle.notification_widget.warning:focus, .notification_widget.warning:active.focus, .notification_widget.warning.active.focus, .open > .dropdown-toggle.notification_widget.warning.focus {

 color: #fff;
 background-color: #d58512;
 border-color: #985f0d;

} .notification_widget.warning:active, .notification_widget.warning.active, .open > .dropdown-toggle.notification_widget.warning {

 background-image: none;

} .notification_widget.warning.disabled:hover, .notification_widget.warning[disabled]:hover, fieldset[disabled] .notification_widget.warning:hover, .notification_widget.warning.disabled:focus, .notification_widget.warning[disabled]:focus, fieldset[disabled] .notification_widget.warning:focus, .notification_widget.warning.disabled.focus, .notification_widget.warning[disabled].focus, fieldset[disabled] .notification_widget.warning.focus {

 background-color: #f0ad4e;
 border-color: #eea236;

} .notification_widget.warning .badge {

 color: #f0ad4e;
 background-color: #fff;

} .notification_widget.success {

 color: #fff;
 background-color: #5cb85c;
 border-color: #4cae4c;

} .notification_widget.success:focus, .notification_widget.success.focus {

 color: #fff;
 background-color: #449d44;
 border-color: #255625;

} .notification_widget.success:hover {

 color: #fff;
 background-color: #449d44;
 border-color: #398439;

} .notification_widget.success:active, .notification_widget.success.active, .open > .dropdown-toggle.notification_widget.success {

 color: #fff;
 background-color: #449d44;
 border-color: #398439;

} .notification_widget.success:active:hover, .notification_widget.success.active:hover, .open > .dropdown-toggle.notification_widget.success:hover, .notification_widget.success:active:focus, .notification_widget.success.active:focus, .open > .dropdown-toggle.notification_widget.success:focus, .notification_widget.success:active.focus, .notification_widget.success.active.focus, .open > .dropdown-toggle.notification_widget.success.focus {

 color: #fff;
 background-color: #398439;
 border-color: #255625;

} .notification_widget.success:active, .notification_widget.success.active, .open > .dropdown-toggle.notification_widget.success {

 background-image: none;

} .notification_widget.success.disabled:hover, .notification_widget.success[disabled]:hover, fieldset[disabled] .notification_widget.success:hover, .notification_widget.success.disabled:focus, .notification_widget.success[disabled]:focus, fieldset[disabled] .notification_widget.success:focus, .notification_widget.success.disabled.focus, .notification_widget.success[disabled].focus, fieldset[disabled] .notification_widget.success.focus {

 background-color: #5cb85c;
 border-color: #4cae4c;

} .notification_widget.success .badge {

 color: #5cb85c;
 background-color: #fff;

} .notification_widget.info {

 color: #fff;
 background-color: #5bc0de;
 border-color: #46b8da;

} .notification_widget.info:focus, .notification_widget.info.focus {

 color: #fff;
 background-color: #31b0d5;
 border-color: #1b6d85;

} .notification_widget.info:hover {

 color: #fff;
 background-color: #31b0d5;
 border-color: #269abc;

} .notification_widget.info:active, .notification_widget.info.active, .open > .dropdown-toggle.notification_widget.info {

 color: #fff;
 background-color: #31b0d5;
 border-color: #269abc;

} .notification_widget.info:active:hover, .notification_widget.info.active:hover, .open > .dropdown-toggle.notification_widget.info:hover, .notification_widget.info:active:focus, .notification_widget.info.active:focus, .open > .dropdown-toggle.notification_widget.info:focus, .notification_widget.info:active.focus, .notification_widget.info.active.focus, .open > .dropdown-toggle.notification_widget.info.focus {

 color: #fff;
 background-color: #269abc;
 border-color: #1b6d85;

} .notification_widget.info:active, .notification_widget.info.active, .open > .dropdown-toggle.notification_widget.info {

 background-image: none;

} .notification_widget.info.disabled:hover, .notification_widget.info[disabled]:hover, fieldset[disabled] .notification_widget.info:hover, .notification_widget.info.disabled:focus, .notification_widget.info[disabled]:focus, fieldset[disabled] .notification_widget.info:focus, .notification_widget.info.disabled.focus, .notification_widget.info[disabled].focus, fieldset[disabled] .notification_widget.info.focus {

 background-color: #5bc0de;
 border-color: #46b8da;

} .notification_widget.info .badge {

 color: #5bc0de;
 background-color: #fff;

} .notification_widget.danger {

 color: #fff;
 background-color: #d9534f;
 border-color: #d43f3a;

} .notification_widget.danger:focus, .notification_widget.danger.focus {

 color: #fff;
 background-color: #c9302c;
 border-color: #761c19;

} .notification_widget.danger:hover {

 color: #fff;
 background-color: #c9302c;
 border-color: #ac2925;

} .notification_widget.danger:active, .notification_widget.danger.active, .open > .dropdown-toggle.notification_widget.danger {

 color: #fff;
 background-color: #c9302c;
 border-color: #ac2925;

} .notification_widget.danger:active:hover, .notification_widget.danger.active:hover, .open > .dropdown-toggle.notification_widget.danger:hover, .notification_widget.danger:active:focus, .notification_widget.danger.active:focus, .open > .dropdown-toggle.notification_widget.danger:focus, .notification_widget.danger:active.focus, .notification_widget.danger.active.focus, .open > .dropdown-toggle.notification_widget.danger.focus {

 color: #fff;
 background-color: #ac2925;
 border-color: #761c19;

} .notification_widget.danger:active, .notification_widget.danger.active, .open > .dropdown-toggle.notification_widget.danger {

 background-image: none;

} .notification_widget.danger.disabled:hover, .notification_widget.danger[disabled]:hover, fieldset[disabled] .notification_widget.danger:hover, .notification_widget.danger.disabled:focus, .notification_widget.danger[disabled]:focus, fieldset[disabled] .notification_widget.danger:focus, .notification_widget.danger.disabled.focus, .notification_widget.danger[disabled].focus, fieldset[disabled] .notification_widget.danger.focus {

 background-color: #d9534f;
 border-color: #d43f3a;

} .notification_widget.danger .badge {

 color: #d9534f;
 background-color: #fff;

} div#pager {

 background-color: #fff;
 font-size: 14px;
 line-height: 20px;
 overflow: hidden;
 display: none;
 position: fixed;
 bottom: 0px;
 width: 100%;
 max-height: 50%;
 padding-top: 8px;
 -webkit-box-shadow: 0px 0px 12px 1px rgba(87, 87, 87, 0.2);
 box-shadow: 0px 0px 12px 1px rgba(87, 87, 87, 0.2);
 /* Display over codemirror */
 z-index: 100;
 /* Hack which prevents jquery ui resizable from changing top. */
 top: auto !important;

} div#pager pre {

 line-height: 1.21429em;
 color: #000;
 background-color: #f7f7f7;
 padding: 0.4em;

} div#pager #pager-button-area {

 position: absolute;
 top: 8px;
 right: 20px;

} div#pager #pager-contents {

 position: relative;
 overflow: auto;
 width: 100%;
 height: 100%;

} div#pager #pager-contents #pager-container {

 position: relative;
 padding: 15px 0px;
 box-sizing: border-box;
 -moz-box-sizing: border-box;
 -webkit-box-sizing: border-box;

} div#pager .ui-resizable-handle {

 top: 0px;
 height: 8px;
 background: #f7f7f7;
 border-top: 1px solid #cfcfcf;
 border-bottom: 1px solid #cfcfcf;
 /* This injects handle bars (a short, wide = symbol) for 
       the resize handle. */

} div#pager .ui-resizable-handle::after {

 content: ;
 top: 2px;
 left: 50%;
 height: 3px;
 width: 30px;
 margin-left: -15px;
 position: absolute;
 border-top: 1px solid #cfcfcf;

} .quickhelp {

 /* Old browsers */
 display: -webkit-box;
 -webkit-box-orient: horizontal;
 -webkit-box-align: stretch;
 display: -moz-box;
 -moz-box-orient: horizontal;
 -moz-box-align: stretch;
 display: box;
 box-orient: horizontal;
 box-align: stretch;
 /* Modern browsers */
 display: flex;
 flex-direction: row;
 align-items: stretch;
 line-height: 1.8em;

} .shortcut_key {

 display: inline-block;
 width: 20ex;
 text-align: right;
 font-family: monospace;

} .shortcut_descr {

 display: inline-block;
 /* Old browsers */
 -webkit-box-flex: 1;
 -moz-box-flex: 1;
 box-flex: 1;
 /* Modern browsers */
 flex: 1;

} span.save_widget {

 margin-top: 6px;

} span.save_widget span.filename {

 height: 1em;
 line-height: 1em;
 padding: 3px;
 margin-left: 16px;
 border: none;
 font-size: 146.5%;
 border-radius: 2px;

} span.save_widget span.filename:hover {

 background-color: #e6e6e6;

} span.checkpoint_status, span.autosave_status {

 font-size: small;

} @media (max-width: 767px) {

 span.save_widget {
   font-size: small;
 }
 span.checkpoint_status,
 span.autosave_status {
   display: none;
 }

} @media (min-width: 768px) and (max-width: 991px) {

 span.checkpoint_status {
   display: none;
 }
 span.autosave_status {
   font-size: x-small;
 }

} .toolbar {

 padding: 0px;
 margin-left: -5px;
 margin-top: 2px;
 margin-bottom: 5px;
 box-sizing: border-box;
 -moz-box-sizing: border-box;
 -webkit-box-sizing: border-box;

} .toolbar select, .toolbar label {

 width: auto;
 vertical-align: middle;
 margin-right: 2px;
 margin-bottom: 0px;
 display: inline;
 font-size: 92%;
 margin-left: 0.3em;
 margin-right: 0.3em;
 padding: 0px;
 padding-top: 3px;

} .toolbar .btn {

 padding: 2px 8px;

} .toolbar .btn-group {

 margin-top: 0px;
 margin-left: 5px;

}

  1. maintoolbar {
 margin-bottom: -3px;
 margin-top: -8px;
 border: 0px;
 min-height: 27px;
 margin-left: 0px;
 padding-top: 11px;
 padding-bottom: 3px;

}

  1. maintoolbar .navbar-text {
 float: none;
 vertical-align: middle;
 text-align: right;
 margin-left: 5px;
 margin-right: 0px;
 margin-top: 0px;

} .select-xs {

 height: 24px;

} .pulse, .dropdown-menu > li > a.pulse, li.pulse > a.dropdown-toggle, li.pulse.open > a.dropdown-toggle {

 background-color: #F37626;
 color: white;

} /**

* Primary styles
*
* Author: Jupyter Development Team
*/

/** WARNING IF YOU ARE EDITTING THIS FILE, if this is a .css file, It has a lot

* of chance of beeing generated from the ../less/[samename].less file, you can
* try to get back the less file by reverting somme commit in history
**/

/*

* We'll try to get something pretty, so we
* have some strange css to have the scroll bar on
* the left with fix button on the top right of the tooltip
*/

@-moz-keyframes fadeOut {

 from {
   opacity: 1;
 }
 to {
   opacity: 0;
 }

} @-webkit-keyframes fadeOut {

 from {
   opacity: 1;
 }
 to {
   opacity: 0;
 }

} @-moz-keyframes fadeIn {

 from {
   opacity: 0;
 }
 to {
   opacity: 1;
 }

} @-webkit-keyframes fadeIn {

 from {
   opacity: 0;
 }
 to {
   opacity: 1;
 }

} /*properties of tooltip after "expand"*/ .bigtooltip {

 overflow: auto;
 height: 200px;
 -webkit-transition-property: height;
 -webkit-transition-duration: 500ms;
 -moz-transition-property: height;
 -moz-transition-duration: 500ms;
 transition-property: height;
 transition-duration: 500ms;

} /*properties of tooltip before "expand"*/ .smalltooltip {

 -webkit-transition-property: height;
 -webkit-transition-duration: 500ms;
 -moz-transition-property: height;
 -moz-transition-duration: 500ms;
 transition-property: height;
 transition-duration: 500ms;
 text-overflow: ellipsis;
 overflow: hidden;
 height: 80px;

} .tooltipbuttons {

 position: absolute;
 padding-right: 15px;
 top: 0px;
 right: 0px;

} .tooltiptext {

 /*avoid the button to overlap on some docstring*/
 padding-right: 30px;

} .ipython_tooltip {

 max-width: 700px;
 /*fade-in animation when inserted*/
 -webkit-animation: fadeOut 400ms;
 -moz-animation: fadeOut 400ms;
 animation: fadeOut 400ms;
 -webkit-animation: fadeIn 400ms;
 -moz-animation: fadeIn 400ms;
 animation: fadeIn 400ms;
 vertical-align: middle;
 background-color: #f7f7f7;
 overflow: visible;
 border: #ababab 1px solid;
 outline: none;
 padding: 3px;
 margin: 0px;
 padding-left: 7px;
 font-family: monospace;
 min-height: 50px;
 -moz-box-shadow: 0px 6px 10px -1px #adadad;
 -webkit-box-shadow: 0px 6px 10px -1px #adadad;
 box-shadow: 0px 6px 10px -1px #adadad;
 border-radius: 2px;
 position: absolute;
 z-index: 1000;

} .ipython_tooltip a {

 float: right;

} .ipython_tooltip .tooltiptext pre {

 border: 0;
 border-radius: 0;
 font-size: 100%;
 background-color: #f7f7f7;

} .pretooltiparrow {

 left: 0px;
 margin: 0px;
 top: -16px;
 width: 40px;
 height: 16px;
 overflow: hidden;
 position: absolute;

} .pretooltiparrow:before {

 background-color: #f7f7f7;
 border: 1px #ababab solid;
 z-index: 11;
 content: "";
 position: absolute;
 left: 15px;
 top: 10px;
 width: 25px;
 height: 25px;
 -webkit-transform: rotate(45deg);
 -moz-transform: rotate(45deg);
 -ms-transform: rotate(45deg);
 -o-transform: rotate(45deg);

} ul.typeahead-list i {

 margin-left: -10px;
 width: 18px;

} ul.typeahead-list {

 max-height: 80vh;
 overflow: auto;

} ul.typeahead-list > li > a {

 /** Firefox bug **/
 /* see https://github.com/jupyter/notebook/issues/559 */
 white-space: normal;

} .cmd-palette .modal-body {

 padding: 7px;

} .cmd-palette form {

 background: white;

} .cmd-palette input {

 outline: none;

} .no-shortcut {

 display: none;

} .command-shortcut:before {

 content: "(command)";
 padding-right: 3px;
 color: #777777;

} .edit-shortcut:before {

 content: "(edit)";
 padding-right: 3px;
 color: #777777;

}

  1. find-and-replace #replace-preview .match,
  2. find-and-replace #replace-preview .insert {
 background-color: #BBDEFB;
 border-color: #90CAF9;
 border-style: solid;
 border-width: 1px;
 border-radius: 0px;

}

  1. find-and-replace #replace-preview .replace .match {
 background-color: #FFCDD2;
 border-color: #EF9A9A;
 border-radius: 0px;

}

  1. find-and-replace #replace-preview .replace .insert {
 background-color: #C8E6C9;
 border-color: #A5D6A7;
 border-radius: 0px;

}

  1. find-and-replace #replace-preview {
 max-height: 60vh;
 overflow: auto;

}

  1. find-and-replace #replace-preview pre {
 padding: 5px 10px;

} .terminal-app {

 background: #EEE;

} .terminal-app #header {

 background: #fff;
 -webkit-box-shadow: 0px 0px 12px 1px rgba(87, 87, 87, 0.2);
 box-shadow: 0px 0px 12px 1px rgba(87, 87, 87, 0.2);

} .terminal-app .terminal {

 float: left;
 font-family: monospace;
 color: white;
 background: black;
 padding: 0.4em;
 border-radius: 2px;
 -webkit-box-shadow: 0px 0px 12px 1px rgba(87, 87, 87, 0.4);
 box-shadow: 0px 0px 12px 1px rgba(87, 87, 87, 0.4);

} .terminal-app .terminal, .terminal-app .terminal dummy-screen {

 line-height: 1em;
 font-size: 14px;

} .terminal-app .terminal-cursor {

 color: black;
 background: white;

} .terminal-app #terminado-container {

 margin-top: 20px;

} /*# sourceMappingURL=style.min.css.map */

   </style>

<style type="text/css">

   .highlight .hll { background-color: #ffffcc }

.highlight { background: #f8f8f8; } .highlight .c { color: #408080; font-style: italic } /* Comment */ .highlight .err { border: 1px solid #FF0000 } /* Error */ .highlight .k { color: #008000; font-weight: bold } /* Keyword */ .highlight .o { color: #666666 } /* Operator */ .highlight .ch { color: #408080; font-style: italic } /* Comment.Hashbang */ .highlight .cm { color: #408080; font-style: italic } /* Comment.Multiline */ .highlight .cp { color: #BC7A00 } /* Comment.Preproc */ .highlight .cpf { color: #408080; font-style: italic } /* Comment.PreprocFile */ .highlight .c1 { color: #408080; font-style: italic } /* Comment.Single */ .highlight .cs { color: #408080; font-style: italic } /* Comment.Special */ .highlight .gd { color: #A00000 } /* Generic.Deleted */ .highlight .ge { font-style: italic } /* Generic.Emph */ .highlight .gr { color: #FF0000 } /* Generic.Error */ .highlight .gh { color: #000080; font-weight: bold } /* Generic.Heading */ .highlight .gi { color: #00A000 } /* Generic.Inserted */ .highlight .go { color: #888888 } /* Generic.Output */ .highlight .gp { color: #000080; font-weight: bold } /* Generic.Prompt */ .highlight .gs { font-weight: bold } /* Generic.Strong */ .highlight .gu { color: #800080; font-weight: bold } /* Generic.Subheading */ .highlight .gt { color: #0044DD } /* Generic.Traceback */ .highlight .kc { color: #008000; font-weight: bold } /* Keyword.Constant */ .highlight .kd { color: #008000; font-weight: bold } /* Keyword.Declaration */ .highlight .kn { color: #008000; font-weight: bold } /* Keyword.Namespace */ .highlight .kp { color: #008000 } /* Keyword.Pseudo */ .highlight .kr { color: #008000; font-weight: bold } /* Keyword.Reserved */ .highlight .kt { color: #B00040 } /* Keyword.Type */ .highlight .m { color: #666666 } /* Literal.Number */ .highlight .s { color: #BA2121 } /* Literal.String */ .highlight .na { color: #7D9029 } /* Name.Attribute */ .highlight .nb { color: #008000 } /* Name.Builtin */ .highlight .nc { color: #0000FF; font-weight: bold } /* Name.Class */ .highlight .no { color: #880000 } /* Name.Constant */ .highlight .nd { color: #AA22FF } /* Name.Decorator */ .highlight .ni { color: #999999; font-weight: bold } /* Name.Entity */ .highlight .ne { color: #D2413A; font-weight: bold } /* Name.Exception */ .highlight .nf { color: #0000FF } /* Name.Function */ .highlight .nl { color: #A0A000 } /* Name.Label */ .highlight .nn { color: #0000FF; font-weight: bold } /* Name.Namespace */ .highlight .nt { color: #008000; font-weight: bold } /* Name.Tag */ .highlight .nv { color: #19177C } /* Name.Variable */ .highlight .ow { color: #AA22FF; font-weight: bold } /* Operator.Word */ .highlight .w { color: #bbbbbb } /* Text.Whitespace */ .highlight .mb { color: #666666 } /* Literal.Number.Bin */ .highlight .mf { color: #666666 } /* Literal.Number.Float */ .highlight .mh { color: #666666 } /* Literal.Number.Hex */ .highlight .mi { color: #666666 } /* Literal.Number.Integer */ .highlight .mo { color: #666666 } /* Literal.Number.Oct */ .highlight .sb { color: #BA2121 } /* Literal.String.Backtick */ .highlight .sc { color: #BA2121 } /* Literal.String.Char */ .highlight .sd { color: #BA2121; font-style: italic } /* Literal.String.Doc */ .highlight .s2 { color: #BA2121 } /* Literal.String.Double */ .highlight .se { color: #BB6622; font-weight: bold } /* Literal.String.Escape */ .highlight .sh { color: #BA2121 } /* Literal.String.Heredoc */ .highlight .si { color: #BB6688; font-weight: bold } /* Literal.String.Interpol */ .highlight .sx { color: #008000 } /* Literal.String.Other */ .highlight .sr { color: #BB6688 } /* Literal.String.Regex */ .highlight .s1 { color: #BA2121 } /* Literal.String.Single */ .highlight .ss { color: #19177C } /* Literal.String.Symbol */ .highlight .bp { color: #008000 } /* Name.Builtin.Pseudo */ .highlight .vc { color: #19177C } /* Name.Variable.Class */ .highlight .vg { color: #19177C } /* Name.Variable.Global */ .highlight .vi { color: #19177C } /* Name.Variable.Instance */ .highlight .il { color: #666666 } /* Literal.Number.Integer.Long */

   </style>

<style type="text/css">

/* Temporary definitions which will become obsolete with Notebook release 5.0 */ .ansi-black-fg { color: #3E424D; } .ansi-black-bg { background-color: #3E424D; } .ansi-black-intense-fg { color: #282C36; } .ansi-black-intense-bg { background-color: #282C36; } .ansi-red-fg { color: #E75C58; } .ansi-red-bg { background-color: #E75C58; } .ansi-red-intense-fg { color: #B22B31; } .ansi-red-intense-bg { background-color: #B22B31; } .ansi-green-fg { color: #00A250; } .ansi-green-bg { background-color: #00A250; } .ansi-green-intense-fg { color: #007427; } .ansi-green-intense-bg { background-color: #007427; } .ansi-yellow-fg { color: #DDB62B; } .ansi-yellow-bg { background-color: #DDB62B; } .ansi-yellow-intense-fg { color: #B27D12; } .ansi-yellow-intense-bg { background-color: #B27D12; } .ansi-blue-fg { color: #208FFB; } .ansi-blue-bg { background-color: #208FFB; } .ansi-blue-intense-fg { color: #0065CA; } .ansi-blue-intense-bg { background-color: #0065CA; } .ansi-magenta-fg { color: #D160C4; } .ansi-magenta-bg { background-color: #D160C4; } .ansi-magenta-intense-fg { color: #A03196; } .ansi-magenta-intense-bg { background-color: #A03196; } .ansi-cyan-fg { color: #60C6C8; } .ansi-cyan-bg { background-color: #60C6C8; } .ansi-cyan-intense-fg { color: #258F8F; } .ansi-cyan-intense-bg { background-color: #258F8F; } .ansi-white-fg { color: #C5C1B4; } .ansi-white-bg { background-color: #C5C1B4; } .ansi-white-intense-fg { color: #A1A6B2; } .ansi-white-intense-bg { background-color: #A1A6B2; }

.ansi-bold { font-weight: bold; }

   </style>


<style type="text/css"> /* Overrides of notebook CSS for static HTML export */ body {

 overflow: visible;
 padding: 8px;

}

div#notebook {

 overflow: visible;
 border-top: none;

}

@media print {

 div.cell {
   display: block;
   page-break-inside: avoid;
 } 
 div.output_wrapper { 
   display: block;
   page-break-inside: avoid; 
 }
 div.output { 
   display: block;
   page-break-inside: avoid; 
 }

} </style>

<link rel="stylesheet" href="custom.css">

   <script src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-AMS_HTML"></script>
   <script type="text/x-mathjax-config">
   MathJax.Hub.Config({
       tex2jax: {
           inlineMath: [ ['$','$'], ["\\(","\\)"] ],
           displayMath: [ ['$$','$$'], ["\\[","\\]"] ],
           processEscapes: true,
           processEnvironments: true
       },
       // Center justify equations in code and markdown cells. Elsewhere
       // we use CSS to left justify single line equations in code cells.
       displayAlign: 'center',
       "HTML-CSS": {
           styles: {'.MathJax_Display': {"margin": 0}},
           linebreaks: { automatic: true }
       }
   });
   </script>
   </head>

<body>

Najpierw importujemy biblioteki wykorzystywane w tym notebooku:

In [1]:
<span></span><span class="kn">import</span> <span class="nn">numpy</span> <span class="kn">as</span> <span class="nn">np</span>
<span class="kn">import</span> <span class="nn">pylab</span> <span class="kn">as</span> <span class="nn">py</span>

Spis treści

Procesy AR<a class="anchor-link" href="#Procesy-AR">¶</a>

Dla przypomnienia:<a class="anchor-link" href="#Dla-przypomnienia:">¶</a>

proces AR generowany jest tak, że kolejna próbka jest ważoną sumą $p$ poprzednich próbek i niezależnej zmiennej losowej o średniej 0 i wariancji $\sigma^2$:

$x[n] = \sum_{k=1}^p a[k] * x[n-k] +\varepsilon[n]$

i $\varepsilon[n] \sim N(0,\sigma^2)$

Proces AR można zatem scharakteryzować podając:

  • współczynniki $a$ oraz
  • $\sigma^2$.

Zadanie: ilustracja realizacji procesu<a class="anchor-link" href="#Zadanie:-ilustracja-realizacji-procesu">¶</a>

Poniższy kod po uzupełnieniu będzie ilustrował jak mogą wyglądać pojedyncze realizacje procesu opisywanego przez:

  • współczynniki:
In [3]:
<span></span><span class="n">a</span><span class="o">=</span><span class="p">[</span><span class="mf">0.9</span><span class="p">,</span> <span class="o">-</span><span class="mf">0.7</span><span class="p">]</span>  
  • wariancję $\sigma^2 = 1$:
In [4]:
<span></span><span class="n">sigma</span> <span class="o">=</span> <span class="mi">1</span>

Teraz definiujemy funkcję, która wytwarza jedną realizację procesu:

In [5]:
<span></span><span class="k">def</span> <span class="nf">realizacjaAR</span><span class="p">(</span><span class="n">a</span><span class="p">,</span><span class="n">sigma</span><span class="p">,</span> <span class="n">N</span><span class="p">):</span>
    <span class="sd">'''</span>
<span class="sd">    a: współczynniki </span>
<span class="sd">    sigma: standardowe odchylenie</span>
<span class="sd">    N: liczba próbek w realizacji</span>
<span class="sd">    '''</span>
    <span class="n">x</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">zeros</span><span class="p">(</span><span class="n">N</span><span class="p">)</span>
    <span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="mi">2</span><span class="p">,</span><span class="n">N</span><span class="p">):</span> <span class="c1">#kolejno tworzymy próbki w realizacji</span>
        <span class="n">x</span><span class="p">[</span><span class="n">i</span><span class="p">]</span><span class="o">=</span><span class="n">a</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span><span class="o">*</span><span class="n">x</span><span class="p">[</span><span class="n">i</span><span class="o">-</span><span class="mi">1</span><span class="p">]</span><span class="o">+</span><span class="n">a</span><span class="p">[</span><span class="mi">1</span><span class="p">]</span><span class="o">*</span><span class="n">x</span><span class="p">[</span><span class="n">i</span><span class="o">-</span><span class="mi">2</span><span class="p">]</span><span class="o">+</span> <span class="n">sigma</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">random</span><span class="o">.</span><span class="n">randn</span><span class="p">()</span>
    <span class="k">return</span> <span class="n">x</span>
  

Wykorzystajmy teraz tą funkcję do wytworzenia 5 realizacji po 500 próbek każda:

In [6]:
<span></span><span class="n">N_realizacji</span> <span class="o">=</span> <span class="mi">5</span> <span class="c1"># liczba realizacji</span>
<span class="n">N</span><span class="o">=</span><span class="mi">5000</span> <span class="c1">#liczba punktów w realizacji</span>

<span class="n">realizacja</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">zeros</span><span class="p">((</span><span class="n">N_realizacji</span><span class="p">,</span> <span class="n">N</span><span class="p">));</span> <span class="c1"># macierz na wszystkie realizacje</span>
<span class="k">for</span> <span class="n">r</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span><span class="n">N_realizacji</span><span class="p">):</span>    <span class="c1">#generujemy realizacje procesu</span>
    <span class="n">realizacja</span><span class="p">[</span><span class="n">r</span><span class="p">,:]</span> <span class="o">=</span> <span class="n">realizacjaAR</span><span class="p">(</span><span class="n">a</span><span class="p">,</span><span class="n">sigma</span><span class="p">,</span><span class="n">N</span><span class="p">)</span>

Wykreślmy te realizacje:

In [7]:
<span></span><span class="k">for</span> <span class="n">r</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span><span class="n">N_realizacji</span><span class="p">):</span>   <span class="c1">#rysujemy realizacje procesu</span>
    <span class="n">py</span><span class="o">.</span><span class="n">subplot</span><span class="p">(</span><span class="mi">5</span><span class="p">,</span><span class="mi">1</span><span class="p">,</span><span class="n">r</span><span class="o">+</span><span class="mi">1</span><span class="p">)</span>
    <span class="n">py</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span> <span class="n">realizacja</span><span class="p">[</span><span class="n">r</span><span class="p">,:])</span>
    <span class="n">py</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s1">'realizacja'</span><span class="o">+</span><span class="nb">str</span><span class="p">(</span><span class="n">r</span><span class="p">))</span>
<span class="n">py</span><span class="o">.</span><span class="n">show</span><span class="p">()</span>



<img src=" AAAPYQAAD2EBqD+naQAAIABJREFUeJzsnXm8D9X/x1/nXnvKGlmKpNAXyVJUimRpoSRkSQlp+5Ur LVK29FV2bXxRClFIKFJJkmS9Zb92sma79uXe6/P+/fH+nObMfGbmM/O5n8/nXjrPx2MeM3PmbHPm zDnv8z6bICJoNBqNRqPR+CEhqyOg0Wg0Go3m4kMLEBqNRqPRaHyjBQiNRqPRaDS+0QKERqPRaDQa 32gBQqPRaDQajW+0AKHRaDQajcY3WoDQaDQajUbjGy1AaDQajUaj8Y0WIDQajUaj0fhGCxAazb8E IUQZIURACNFBMesrhAhkcbx2CiE+yco4aDQa/2gBQqP5d0MAslSACIYf8Zr6QohOQogNQoizQojN Qojnoxg3jUbjgBYgNJp/N28ByJfFcagA4KlIHAohugIYC2AtgOcBLAHwnhDi5ehFT6PR2CH0Zloa TfZDCJGPiM5E2c8yAHYAeIKIJkTT76xACJEHwG4AS4joQcV8IoAHAVxNRMezKn4azaWO1kBoNFmM HIcghKgkhJgshDgK4Nfgs4pCiOlCiCNBFf0KIURTi/tCQoghQog1QoiTQojjQoi5QoiqXsNW7scH 42J39A7aySmE6C+EWCmEOCaEOCWEWCSEqGfjvxBCvBiM21khxEEhxHdCiOqKHdMYCB/vUx9AYQAf Wcw/BJAfwP3h3l+j0UROjqyOgEaj+af/fxqAzQB6guveGwH8BmAPgIEATgNoBWCmEOJhIpoVdFcO QLOg+x0AigPoCmChEOJGIjoQJmxVDTkawI8WO/cCaAvg7+D9FQCeBDAFwBgAlwPoBGCeEOIWIlqj uP0EwOMA5oC7GnIAqAugNoBky/tLvL7PzcHzKov7VeBxFTcDmOzy7hqNJhNoAUKjyT78QUSPyRsh xHwAOwHUIqKMoPEoIcRiAO8CkALEGiK6QfUoqMbfBK7Y3/YaASJaBmCZ4s914Bb9D2BhAQCOAiir xAlCiLHB8P4PQJegWX2w8DCCiLorwQwPEw2v71MCwAUiOmx5h3QhxBEAJcO+sEajiRjdhaHRZA8I wP/kjRCiEFhFPw1AASFEEXmAK/PrhRAlAK4wFXcJQojCAM6AK9zqiBAhRD4AMwEcAdCWggOmiMkI 2hHBuOYCsNISXguwJqC/n3B9vE9eAGkO3pwLPtdoNDFCayA0muzDDuW6PAABniUxwMYuASgGYL8Q QgDoBuAZANcCSFTsHLZx65VxQf/qEFGq+kAI8TiA7gAqAsipPNquXJcDsI+IjvkJ1Mf7nAULLnbk CT7XaDQxQgsQGk32Qa3wpHZwCIDvHexvDZ57gVv54wC8Ae5iCAAYiQi1jEKIFwG0BtCOiNZanrUH MB7ADACDABwEcAHA62ChIbN4fZ/9ABKFEEXVbgwhRE4ARQDsi0JcNBqNA1qA0GiyJ7Iln05EC8LY bQFgARGZ1lIQQhQEcMhvwEKIugAGAxhORF84hLeNiB6xuLN2VWwD0EgIUdCnFsLr+/wJ1tLUBDBP Ma8FFjT+9BGmRqPxiR4DodFkQ4joEICFALoKIa6yPhdCFFVuL4ArUvV5SwCl/IYbDOtLAIsAvOJg 7YKNu1sB1LEYfwUuY/r4jIbX91kA1k48YzF/BjxjZY7PcDUajQ+0BkKjyb48B14PYm1wlsN28JTG OuDKVE5j/BbAm8G1FJYAqAKgHVgD4Jf3ARQF8A2ANjwc4R/WBLszvgXwsBBiJriSLgeeZrkevP4C AICIFgZnT7wghLgBrCVIAE/jXEBE1vUbJJ7eh4jOCSHeBPCBEGIquKvnTvCU09f9jr3QaDT+0AKE RpNNIaKNQoia4Bb84+B+/YMA/gDQT7H6X/By1G3B60SsAnAfgHcQusaC3dKzqllR8KDFYTb2+gFY S0SfCiHk2gyNAGwAV/CtwBW4yhMAVoOnXw4CcBw8W2OJw2v7eh8iGiWESAPwEoCm4JUpuxHR+y7+ azSaKKCXstZoNFmKEOIvAPOsYx40Gk32JuZjIIQQJYUQE4UQh4UQZ4QQq9VlbDUazb8XIUQOsGYl M9NNNRpNFhDTLozgqOnfAPwEoDG4kLgeQKqbO41Gc+kjhGgEoA14zYafsjg6Go3GJzHtwhBCvANe hOaumAWi0WguSoQQCwBcB+AjIno3q+Oj0Wj8EWsBYj145PXVAO4CsBdcWIyLWaAajUaj0WhiTqwF iLPgUdNDAUwHcAt4NbmuRDTRxn4RcFfHTvBa9hqNRqPRaLyRB0BZAN8T0ZFYBxZrAeI8gOVEVFcx GwmgJhHdbmO/LYDPYxYhjUaj0WgufdoRUcy3so/1OhD7AWy0mG0E8LCD/Z0AMGnSJFSqVCmG0dKo JCUlYfjwcDssayQZGcDLLwPduwNXXx2ZHzrN449O8/ij0zy+bNy4Ee3btweCdWmsibUA8RuAChaz CgB2Odg/BwCVKlVC9ereZnp++y3QqBGQy2lPPk1YChQo4Dm9NcDGjcCiRUC5csD48ZH5odM8/ug0 jz86zbOMuAwBiPU6EMMB1BZC9BRCDBJCBMDL834QDc+3bweaNgX6W7fw0WhiiOz1M6/yrPk3MGkS sCDc1mYxYPp0YPXq+If7b2b3buDrr7M6FtmbmAoQRLQSQHMATwLoAeA8gJ8ddvjzzdng5scHDvh3 e+ECkDMnMCcbb7cTCBiVVXbj44//vQWa3Tc5ezayfBgpmzcDl10GpKS42zt5Mj7x+bfw2GNAgwbe 7NauDfzyS3TCbdkSqFYtOn5Fi7//BubOzepYmElNBdLTo+NXgwbAw06d7RoA8dmNcxGAAIB7ACwF b7jji2XLgNatzWalSwOVK0ceqXPnuC97mN2K/9mExESgZ8+sjoU9nTtHp0ALBDLvhx+IgDZtgFWr Mu+XEMArrwCzZgH33guUKJF5P72yYAFw5gyfnYTMrVuBK67I3kJyPDlxIn75jYjLrVec9jPNJMeO Ac88E16AjCX33gvcf3/8wvvxR2CJ2w4qAAoXBtq14+vVqzMnTBzOxNqoR48CzZpd+gJ8PASIDwF8 Q0QRK/66dAGmTjWb7d1rXGemlZ5dW/iSiSGTXaNPmzZtYh+IDfv3s5D07bfxCzMQAL74AujYMby9 v/6yf6bmmcGDgYceMlqaGRne4hGtNH/uOeB9h22jdgVHGi1dGpWgLmr27gV++aUNhgxxt9enD5A7 d+bDuxDc8Hz5cq7Qevc2P586FXjppcj9L1QIGD0aiPdY83ffNRpd+/aFt9+mTRscPcot+VOnMhd2 o0bA7SFz90L55hsWHKpVA/7v/yIPT3ZR1q4NvPACcOgQsGmTN7eff87x+OabyMO/GIipACGEeBRA NQCZakd7reQDgfi3aDPDhQvmCmfGDKBhQ7OdBJcvdOAAcPfdwHffZS4eWSlAAPFtIcv8sXatUcjb MWwYUKYMtySsuI2BeOEFb/GwS3MiHpzpBTXsH36wtyPzTmb+ie3bWVuXWT77jAvgrOL0aQBog7Vr 3e317w+kpWU+PDVvTZ4MvPWW+Xnr1rHRfqakAL//btyfPAl06+btnTZv5ny1cqWzndde8yf4tGnT BuPH81iCzJRTfsYiJCYa6b94sXd3R44Y3eIqy5axkF61KlCxoje/5P8ZzQbqjh0siGanRm/MBAgh RGkAI8DzUX0pkp5+OgnNmjVDs2bNcMstzbBuXTMAU8K6q1kTKFDAbLZjh32CZ4ePULmyOb4dOwLz 55vtuAkQHTsCP/8M3Hefs50WLbi7ITuSNy+fz5yJX5jqdz9+3Nme7OI4dszZjp0AMWoUMGYMkD8/ 5z0/fPEFcNddwMKF/tw5EU6ASEsLX7Fcdx3QqVPm4hEIAE88weMHMssnn0Q2eDVnTj5Hq388HFnV kKlUCbjtNuP+gw+AkSOBefPCu/3jDz6PGeNtoKiXMvS334AePULNx45l4dQLx46FjkX49lvurrCL Q2KiYU7EWkK7hoCVokWBevWMe2vZq45xeuqp+Gv2OnRgQbRVK2D9emDKlCn/1JPySEpKimucYqmB qAHgSgDJQoh0IUQ6eDnrF4UQaUI4FwMrVgzHhAmzMXv2bKxYMRvAbABtQMRqZWtmIAL+/JN/AFVN duAAT7V7773QMOQP7qUw6tkTaNKEr48eZbebNgF79oR360ZKirnytItLYqKzey8twxkzeMAjwJm+ Xz9/cYwl8t0mTIi+319+yelpFRImK0uruBWAdhXOuXNcuEozp7zTtSu3eGfPDn22bp1zuDI/Rdr3 mp4OFClidKfI+DlpWkqWBEqVCu+vtd95+nRgzRrv8dq9m8+HD3PrdvPmUDvr1rEmyk0r9PvvhjDj t4KWrfJIBIi0tNA4h6s83d4jK7DLq5MmmfOaFCbHjuUBhJ9+ynkkM6hLQKhxeOopoHFjd7cnTzoL 8P/9Lw+YtOsyTEgw8sdff/E4lG7dvMV3+XL7+FoZO9YYa2FHLDQQ0q/p0/md2rRpg9mzZ6NFi9lY uJDry3ivuRFLAWI+gPcApIBnXxwHcAwsDdxEYZbAtGuVErFa+T//CX2mfniJLCx+/TX0mcxgXj7w O+8A33/PdosUAdq3Z1VWJIsIEQEDBhjSvoqaYWX83DQQdsJF//5w7OcdOxbo29f+2c6dfADccvZa 0L7zjjd7dsRSCyRHh8tuEoDXb1DHPvgRINLTWWPStSu3aCJh3TqgShVW50vS040uHBkft28usRZu b7zBa6EcPWqoxl9+mc9Ole2RI+YKZPt24ODB8GG1bAncdBNfp6W5j/tYtgwoW5avMzKAWrWACsGV YaZONbo1qlQBHnjAfdCwfB+A4+1HiJCFfSSagZdf5jiPHGmYWTWFViLVQKSnR9YwEcK9wrPm9UCA NUJPPGGYdehgttOxo/n/URk+3MgrRDzWYMOGUHtueTncmIgyZXisx4svhj7LEVzBaOlSY6ySTPNj x4xrae/EiVA/Ro8GrrzSOfxwjUu38sNOgHjuOdYe+GXXLm642IV3+DDw6qtZN1gzZgIEEZ0GLxo1 GEAtAPXBszHuRoSrZMlMYZ0uR2SfUaWZXWUYSeUl3UwJ35viyLZtwJtvAta1Vfr0MUvbslB2+wFz 2CwD1qePUdA6zTSwUx1eey0fAGttcuXidMvI4ErJqZuhZ09/hSVRfDK7HAh3/rxhZtXYuOWBTz4x 36szfvxoCH76yUhvWeBu2WI8Hz6cK861a/1pxVTmzAHefjvUXArVRFwILVwIjBvHGjm7Sv+66zgP HDzIlYdste3YYWgRrOTOzUKBHfPn8wA0ifU/bN2aZ8SoqKr2qVPNLf/ffjOuixfnVqhfIun++PNP PqutWKtmq0MH9nvVKq4k1q0L9efgQW582I19IOJ3f/HF0IaJ14G5KhMnundPybwmtbnhBCKAW76S 7t2N67NnuavkySfN9qdN40OFyFD9q1qaFi04b6qkpvLZTkMpy7477zQLqBI1rwD2adGrl/2/zONl oiNAqHz0UWh62JGRwceyZawlevBBbrio4cly7coreTptVhHrdSDuI6KJRLSRiNaCl7G+Aty9EcZt qNkRh61B5s61r2hLl+azWsHt28cJHkkLwaubpUs5A6mDmSR2qs39+82LYV15pSEZb9niPNrZKkCo abZwIfD00/burrvOfK9WrGr8cuXicSVFijhXEoC7tmLSJHOX05AhPLUwLc0slMycGfrNJ0zgdExK 4n7djAz+Bp9+6l1FrP7I1tVK1fD27GG7K1aYzYn4mVqRybC9VEb33MP90qNGGV1JgwaxEJWezqPa AXOePHIkfF7z29qsVg2oX59nNL34YqgWRb7fmTOsVfr0U3OL227wmBxwJitYK1u3OsdLXlv/afW7 tm7tPlV71ix780CABSrZ6vQzY8uu5ehllVs5W6pmTa4k7FTmxYvz6Hy7QYhz5vC0yFGjjHeQvPaa e9jbtoWadejAwp21UgZ4eqNMZznw3Dp4246WLe3NZVytArpda3vCBKBOHb4+dAj/DGqdMYPzJsDC l1v+/u9/eeyXhIgPtRyS2g31Pa3IMKzl6y23mJ9nBiL+p6QwZMeIEWbNcMmS3IirXZu1RFKgUfnp J+dZYvEkHtM4VTqCtRBhh7RUqxY6or2Gg9hx8KD7KF2Zedav5z7fq67yVkDLDC3xOg1JFgLqYCY3 rP2Mhw+bVW5O/qhdGK1bm9chWLbMfZCgJCPDGMwIhI5ClotFbdjAdu0GBjoJEOfP8w+gDuKUI7HT 0riwlTRvbu5q2r0bePxxvh4xgoWxI0f4x+nYkVV6kjVruLBatswwk983LY1/4hkzgK++MsdPrazk e373ndk8EDBrMQCj8PJawKSlAc8+a4y/yMhgTdGYMYZwlZpqVFpduvBgqbNn7UeFr1vHfcheCQRC +5JV1fTrrxvdCoB9xSyFPbXCDzd2xW06pPp9Bg0yzHfu5DEc8r3dhNOVKw1t4O2383RagLsH33jD EMplQ8KOv/9mjZ21S1OteGV3lh+8lhXbtrEwaRWkzp0DHn0USE4OnZljFYLKl3f2X2q/pIC6ciWX rZ8HtywMBFgj6ka4slL+LzJev//uLKipwhzAMxvy5TObVaniHl6vXqFmPXua84qMs9RKqPGxCjql SpndbtjA38/r/33mjNnP3buNcUhEPFOucGFn90lJPDZt0SIuDw4dMmv81AGhKtZByVkxcDduAkRw 0OQIAIuJyKa3zMzhw6Hz262ZT8VtLQGZ8Gprxq5PLBDg1qYslKzSe6FCoW7spECnFsu6dZGp7+V8 fiuqADF1qlmV9dprZlW5FVmATJpkNndTz/fowZKxdfU5JxVro0Z8/vpro4CU3yI9PTTDyznWFy4A 11wT6t+SJUYl3KsX/+CBAPfHT5vGEvvWrTzVSfpdqxa3uFu04EpbRRUUpLB19qy5MLlwwXkgqxwz EgnWSqNVK7Og8v33rMouUiQ0zuEKWCt22hrVbOBA8zO30fHqGAX1+x04YI5/376sVVJRC0DpdsMG 7sOVnDnDI+HVVjqRIZRbkVNYlyxhwadkSUPIdcqXkyYZY5BefZW1YtY0UAfA2mk3Dx3iPnQn7AQ/ O8qX59a/tbI6c4YHAj/7rPnZ9u2RDdB86inWOknBcX1wOb9AIPw06nCzcGQ6BwLcbXbbbc7CpV23 q9e0cuPddw0NH2CkkfRb5rd587jBtG2bOf9aZz5dfrnz+A9rhV6smFlDe801/O0kasMG4LJGxksd jHzXXbw1gxVZV1nLS6vmJEsG7hJRXA4AowBsB1DCxU51AASsIkMx5f+QyPvGjYlWr7a3W6cOUSBA 9PXXfF+qlPn5uXPuYfXuTSHYxWXnTr6/+urMvZPKI4/4c6/eV6kSahbuqFbN3vzgQaJTp4hefpno /Hn7dGjSxGx24IC9X3PmECUlRf7t5dG8uXGdJ4+9nZ077eN6/LhxvXw50Y4dkcWhbVvnZ489RtSr l9lMzXs1ath/+337wofbtKn5nZ55JtROs2aR5cHHHzfuGzY0P8+Z0z49ndLe7fkDDxjXa9c623vi CaLffrN/1qULUXKy+/t06mTcT50a+vzCBS4/rG4TEvg8cybbsT6/5hp/aTthgr25Ne8uXRq+THJL 05kzzWY330xUtaq7OyGIhg1zfr54MZ9vvJHoxx+d7T31lLc8Fsm7hTsaNGC/33iD7+fMISpY0Hju Fm/rkZFhfOPBgw3z2rWJdu822x0/3tmfQoW4zIzWO773HtGqVauI61BUJ4pDvR6XQHjzrF0Arglj LyhA3ElAU8sx2XNCWgsxa0FnPapUMReMfo/Ro4k+/5wLIGvFSES0Zk3mM4cdrVv7c6/eX3UVUYkS mY8XQDRvnlHATJvGYX38sdnOTTcRnT5t3P/1V3TCdjrq1zeur7jC3k5KCsc7Pd1sfuSIcf3770Rb tkQ/fm3ahAoQRYu6f3trmrodavq6CTKxOFThx+kYMcK7fytWOD9r0IDonXcii6cqKNod5855E7Qm TQo1szZEwh1OAoT1WLbM/B/5Pbp0Md/fdBOXf9H47pUqES1YkDk/zpyJTlysR/36/A9VqmSYFShg XM+f792vU6ecn730kvl+3LjYvA8fk8laT9555510SQkQQeFhN4ByHuxGRQNx+DDRyZPG/T33xPIj uh8nTxLdemvm/UlMJBo0iOiGG4jKlyeaMcOfAPH55/F53ylTiNq1CzW/8UZzgb1tW2zjoaZ5kSLe 7QJcqMrr224zWpvRPFq1ImrRwptdSeHC8fmG8Thy5sz6OMybFx1/Ro+OX5zvuiu6/lWpQvSf/0TH rwoVMu9HgwaxSbd69Yg2bDCbqQ2LIUNiE64qpMTj+PLLS0gDAeAjAGcA7ANwFsAqAI0B5ImlAAEQ FStmXN99d3w/onpcdVXWhZ0Vx1tv2ZsXLBi7n/RiPPx2ZRERXXll1sf7UjoWLoyOP//7X9a/S6RH yZLRqfgBomuvzfr38XNcfnnWxyHaR+nS8RUgRLDijglCiAAAEXwhCl4LAM8R0Uc29quzkLEqKEto NBqAB/vJKZ+a6HDHHf72SnCiXr3oLT+u0WSGXLmSkZZWAwBqEFFyrMOL9SyM5QDeI6IEIkoEkAhg L4D8MQ5Xo7mk0MJD9ImG8ABo4UGTfYjGRnB+iOVmWjnBC0b9JM2I1R3zAdSJVbgajUaj0WhiTyw1 EEXBGgfrQpt/A7gqhuFqNBqNRqOJMTbLemQHkgBY9uVGm+Ch0Wg0Gs2/nSnBQ8XD8sNRJJYCxGEA FwAUt5gXB3Ag1LrKcOhBlBqNRqPROGHXqE6Gh62mokZMujCEEGXAK09eAPCVEGKLEKJvcFxEAwBL YhGuRqPRaDSa+BCrMRAVwdM1BwHIAPANgOcArACQD8CnMQo36vTrl9Ux0Gg0Go0m+xGTLgwi+h7A 9wAghDgA4BUABcHTN+sS0aFYhBsLrJsZZRVjxvjbgVGj0Wg0mlgS8904iegjIioL4F0Aa4loZazD jCZ2u8fFm9y5eYvn+fNj4/9ll7k/f+453nZXE1+s29lrNBr/TJhg3jJeEz3isp23EKI8gOcBuGyA Gzus26n6wWkrZzfCbX/rl1On+BztRUN//53P4fa9f/99YMEC5+dEzluYA+5brf9badky1GzIEPN9 vnzxiUussL7PxUSDBpG5a9w4vJ0OHSLz+2Igd+6sjkEojz0GvPwyUKFCVsfk0sOXACGEGCiECLgc F4QQN1jclALwHYAvieiTaEbeK1deGbnbcJWrHU8/HXl4dkgtSJUq0fOzbl2gdm2+vvded7tCcFeO FGBqKIN8X3qJz3YroFWuzOeyZYFatSKL53HLrKQNG7y7rV8/sjDt2Lgxen7ZccMNRlpKMrOqXGpq ZO6uvdb52SefhF91sUkT4/qll4CGDSOLhxfeeit2fs+fD/Tv799d4cLh7QQCoWbFivkPKxpEW0jt 3Dlz7gMBoEcP/+5uvhkoVcrdzvXXG9c33OBsD+C8Hk28arLvvtu4vvXW6MYhFvjVQAwBD5B0OioB 2C4tCyFKAlgAYDERdfUeTBKAZpbDOt/Vmc8+M98n2LxluXJ8/vJL4K67zM86dnR3a6VOHc7AknCa gjJlwvtpR3HrhFgfWH/Kvn35fOAAMGmSYV7DMgOoUSPz/R9/AD/9ZNzLVub06aFhyh+ACPjxRyAl Bdi61V+8r7jCfF+pkjd3s2ax1iTZw2rwXgrvSDRRmeGXX8wCxMcfA5Mne3dfsGBk4Vas6PzsiSdC 84cVWTk++SSfS5eOLB5eaNfO/N9JvvrK3d2NN3rzv1cvb40PKVT17s37a4RDCO4WVPFaweTKBbRo 4c2uF+z+23DkyeP8LNKGgkQIo+Hx11/cgPDiZ6lS4YX8Cxe8xWHvXq4DunSx1xSqyLrm3XfdB9yn p4eavfdeqFmzZsa103c2BKEpCK0nk9wjHG1iuBNnKQCbAEwCeNMuD27C7sbptDX2pEl8TkggCgTM z/76i8/lyhlmmzYRPfkk7+2ucvKkeU/68eNDwxo2zLhes4bo2DH2T5r9+SdR06Z8/fLLfK5cmWjH Dr4eOtTfDmsqvXvzlt5+d2nbv998v2CB2V9pXq+e2V7jxmTLsmVEM2eazZo0Mbvt3NlII8nevfbx s25T3KYNb5Osxk2mhbzOk8dbmkmzs2fNdmrW5POzz4ZPv61b/ae5W75dtMh8X6GCOa5ERF278vUf f9i/j9ORkOBs7/Rpd7fNmhm7FJYubd6a3Uv4cjvmAwfY7vHjRLVrR5ZmH33k/nzXLt4+3mo+Ywaf u3Thbz5unPn5nj3hw5Zs3+5ub/x487e5cMHd/hVXEP39N9GLL5rNr7/efF+8uHO8Rowwm3Xr5i09 p00LNZs717guXdre3ezZ5vvcuZ3DsJa9fg8i9mPfPiNNvfyfzZqx3fbtnb/lqFGGmbUMlfloxAjz 99y2LXx8jx/nOKv+A+Zt3u3+GyLjf0xIIBo+3Fw+nj9vtv/YY7zbcdu2fL94sV2cLoHtvAGUBLAF wA8AygBYByAAoF4YdyYBwu4nuv12TmzVbMsW4wPZFZ779xPt3Gl86P37KSwyM0yYEBqHkSNDMycR 0blzLMgQET3wAD/fu5cFiiNH2PzChfA/mRD2P4CK+vyGG4h+/pkLypIlQ/27+26igwfNZgsX2vtn 3fq8SZPwaSU5eNCcXlKAWL3abEc+79TJuN63jyhnTuNaZc0a+x9RFmSdO3MBULUqUXIy0ZIl9u9m TbdHHmEBMiPDMLv11tAKZt06Q/jzczRqZHxPiRQK/vyTqEwZY4vu114LjesTT/D1+vXO39569OrF FRQRUaFCoc+J3Cuc++7jrdcBoqVLQ+Ok3qv59Pbb+bvVrcv3J04Y9rt3d49zmTL25kRmod967NnD dtLSzOZff82F74ULRhzuucc5HziF7SW97XCz/8EHbEcKEHPncqVgFVBbtHAOT/0fpNk33xB9+qlz uDly2MdSeudJAAAgAElEQVRtzhzj2kmAsLrLlcve3rJlbNdue/OmTYmuuspfuku8CBDNmzunvyQQ 4DoA4DKzeXPDjpMAceCA9/ha35uI/wsp3Ejzxx/nrc/V+ObKxdcyfkCoMCo5dIjo3XfNZdKKFSyA DBhwaQgQj4MXkboQFBzkS10I484kQPTsSVSlijkR69Y1Ci5ZKBw7ZnwIOwHi4EHyzZkzRK+8wkKB NdOoZk40buwetlumtAoY4dxff71hXqKEYb52LZ/r12cBRnXzyy/2/skWpDzuvddfuhERDRhANGQI V2YAUUqK8UyVqqWAId/xrbeIEhPd35eI6NVXiaZONQSIcDgVhKmpoXYyMkLtBQLc2g1XiAFEgwcT 5cvH1/Pn8/n1141wnn6azf74g8NKTyc6fNio7NS4ypa0Gk9r3NwKtDp1nJ9/9RXfS6FN/jvJyYbG wC791HupqQBYWCIyNC3p6Yb9iRPZ7Lrr7ONs1Qyp4Z04wQKR3XMplKenm81nzQrNA24CxI8/uqej 1/T2Yv/DD9mOFCBUYVe1JwUIq2BhZ9dL2A8+aH7esyefv/vOMCtVyvkdU1NZQLTmGfVYscKIhyqY yPDthCKr0GLHM88Yz1u1MtsfO9ZIL6c0UJHa5QoVzALX5Ml8tgoQfr7/mDHu7yLjvnlzqP85cxr3 hQsb7j/4gK/VMkRl0iRzWb5qVXwFiJjMwiCiz4i3734AwEbw2AgCYNNj6czTT4f2ySYk8OexmrkR yVTMvHm5X0uOKn7wQe4bO3iQzXLmdHffsyf31xct6j9svwM31ZHPcnAQEVCypGFu7cO3pqscX2EN O5JBpL168QC6N9/k/mh19HOuXEY/n3WA3RtvABkZ4f1/5x3um7TmAydmzuSxG1bsxglY02n7dk4D r2MgrrkG+PNPYN48Y2yFHG8DAFdfzed8+djPHDl4gKpdHm7enN8x0vEMkl9+CTW7804+DxkC7NzJ sw5OneIxBXPmAL/9Ft5fNW+UL8/niRP5+6v/XLt2wL59xviX//4X+OEH43mePDwWRzJ5svG9Lr/c eYxK3rx8TkxkezVrhsZLIvPKddeZzSdONNLCL48+6t+NHOjn9b+K1tibzz/n84MP8rlECT7L/GjF Opi2YEHDDRHPzHIrK+67zzx+Sggea7Vjh9lN377AypU86PfIEfu4qGMXZPkwYgRPz5SzXryMVQPM 6dm6dehzu+8i8zYAbNrE7waETm1X3Xbv7hwHu7iqZZk6EPe55/jZ22/b+9WuXeT5NyrESjIB73mx Gyw0lAFrIqqGcfOPBqJ/f5aopNQ6ZAifFywwJDzZWj550pDk7DQQqjo1ElJTueWskiOHs8TsBRm3 O+5gSXj5crPkGk4ql60BgOi33wzzo0eNVs2xY/y8Xj1DNdaggb1/R4+ySvj//o/ttW7N5/vvj/wd veD2juHsSVVqJOFZ3fXrR/Trr87hWceQOB3Tppn9TU5mDYYkPZ3ohx/8vafbO7i1iKQ24NgxbqVY u3b27DHHzYn167lFaQ3/ppv4vGQJaxH8Yo2z27tb37N69dC49+/Pz775JtS9LCt27w4NS+3CsouD XTp37Bj+vazH778bcQ6ngXj4YSO+0mzMGHu7dmGr13PnGs/T0rg8zMgw8ru0p3Z/3nGHs/+yO+SL L8zxUDUQRKwJUt9HonZpffqpczpK1K7OqVP5fOYMP9u50yivJMePsybQLv5SW1WpEt8PGsRdJJ9/ zuYjR4aGL8enhOPjj9ne2LH2z2WZun272Rwwa15nzeIxc5EQbw1E7DwG5gLoGbwu40eAmD591T+q ZKlqPX3anOB+BAjVbbSIlgAhB5upZuq1Wxjhnp88yc/vustQEw8e7B6vc+dYmJH9ymrhEwu8ChDz 54cOWJOq1EjC81pJS5zU6Nbjq6/8xSdcuOHewa3iq1WLzawDhTOLDCslhSuRSLn/frOA6keAsGPf PhaW7RoMsgtD/m9Wfw4dMszatnUPG+D/wwkv38ZJgLj8cu56lF2gR4/yGByr0Gnt/pN07070/fd8 vWqVITC54VeAkJVdcjLfV67M5+XLQ/2WA9jVLoZ33jH8tv7TdsixQHbfXTaSPvnE+b1UZPfwjTea zT/5hM3lwG0VrwLEsWM83sHa5SiRAsSOHaHxlPVWZom3AOFLuS+EGAjgVTeFBri7ogl42ep3pVM/ 4Vx7raFqevhhzgYqdesCv/5qqILU59Ls++9ZfT5mTGym4NWuDSxenHl/nKZm9u1rTLV0YupUoIB1 13MF+d5ErCY+ejS8Ojx3bmPalDXdY4WXaa12C/tcdx1PDY0HXvOQV1VqZsif31hcDAAGD+aFcqxI 1W+0V1PNmZOnpVWokLnFeSJZYOzjj53zS4kSwM8/u7uX3yclxdz1p3Y1SnW/G+G6MFUuuww4fdps duedwMiR5mmup06xv7lycfdprlz8fxcqBPznP2b3Y8dyF+GuXWbzoUON6+o+NjS++Wbg77+Ne6mO f/zxULuyXLj5ZuDYMe56XLfOvryQ/41aTqmqfi9ljNv0ywIFgDNnjO6scDh1Hcn42a0l4bW7qUAB nj4ejniVq/HAb9EyBMD4MHZ2AKgPoA6A88Kc+iuFEJ8TUUdbl0GSkpJQwFIztmnTBm3a8Nalc+cC hw9z5vz4Yy5QJTLDNmrElU7PnrFZHW3uXGD//sjdr17NYyqc6NMnvAARbo6ytTIrVMhT1OLKli3e Ft+xY+FCYPPmqEbnH/bsMRccdmMzhg8HkizTrjMrQJQsySvnuXHsGFfc27bxfY8e7gKEn8rOC8uX 83eLNgULuq9oChjrS0SK/D5Ogk/PnuH96NPHX5h2eefhh1lgUJeRV69vugmYPdvd32uu4SOznDvH 5abql6zk/ve/UPvqQnkFChj/iV3FWLIkMG6cuayyjpUIR//+PFbFCSfhoUMH/o/tsC7f37w5j1uy rnsDAFddFZ1ypk0bXnfIurYNEJlQMWXKFEyZYl4f6bh15b1YEwu1BoDSAG5UjnvAMzIeAlDSxV11 ALRq1aqI1DcAj4C/WLGq3OrWNfrqIkFOA7JT7/1b8dqFYUXtJ1+xwujzt6qpFy+OfpztOHzY/B52 7yRnMF0snD/v3DUA8LTuSJFdGHLmhh9k2k6axOu9eLU/bx6P2VqyhOjNN/2HG2/kDK7nniN64QW+ VmfTOCFnSaxc6S2cQYPYvnW8kBvbtplnc2WG0aO5a8Urf//NM6Kigd2YI4DHK0WDbN2F4UMo2QMA Qoj7AbwJ4CbwqpfPE9E9sQhTEg8Vcqx45BGzSnPRosz5Zzdj5d9O4cLcleNXG5OYCFSrxjMsatQI VWuuX88apdtvj15c3ShSBHjgAaNld/XVwO7dZju1agFr18YnPtHATfuwfXvkmirA+F6RlA9ffgmc Pcsj3v2g7otRp47/cOONLCs++IBXQX32WW/dX3KVRa+aLrlcc7Vq3uOmzmTKLF19rIkM8Cyg5s2j E7Zdd0hKijHD5WIjZntNCiFaABgD4DUAKQAWggdWxpSLWYCYNi2rY3Dpc+QI95lGMj1VYuf2xhu9 L5EcLb75xrhesSK0S+yjj7yp5C8G3Pbo8EMk5UOrVv7sf/MNcP68/3CymubNgVGj+DpXLu/jW2R3 gNdxCDVq6IaNysW8yVdMBAghRCKAEQBeIqJPg8Yx302gUyfuZ9Jo3Ih0A6EePYD27aMbl2hRvHjo gNzcuc1z2DWZExy98sADsQ8jFrz/Pg/e9MuAAbzRn7pZlebfQaza69XBy1lDCJEshNgnhJgrhPhP GHeZYty4yLfh1WjC0a5daMupTZv4VErRYNeuXUhISMCECRP+Mevbty8SslhtV7ZsWTyZ2dGRmkwj F+TyS/783HjT/PuIVclRDjx1sw+A/gDuB5AKYKEQIpPr6mk02YfJk+23Z75YEEJkuQCRkJAAEaEU NmrUKLRq1QplypRBQkKCFkQ0mjgSq3UgZIk0gIhmBt12BLAHQEsAY93CCTeNU6PRRIc333wTPbN4 oMSmTZsiFmIGDRqEU6dO4ZZbbsEBdT1sC9dfz1vKx3tbdo0mVmSHaZyxWAdiO4LdF+B9MAAARJQm hNgOIOzM5eHDh6O6n1VQNJpLjDNnziBfpIM1fJCQkIBc4RZfiDE5M7FQxaJFi3B1cEOHy13070OH chdUHJJUo4kLdo3q5ORk1KhRI25x8CX2E9ERItoc5sgAsApAGoAPhBCHhBDHhRCLAdwAYJdrIJq4 Y5ViNbFHTXM5DmHjxo1o27YtChcujLp16wIAUlJS8Mgjj6BIkSLImzcvatWqhW/U6RcAUlNT0aNH D1StWhWXX345ChQogPvuuw9r1qwJGw/rGIiOHTsiISHB9ujfvz8AID09Hb1790bNmjVRsGBB5M+f H3feeScWLlwY4j8RYeTIkahatSry5s2LYsWK4d5770VycvI/dqxjIPy8z9VOu0FZyJMH2LVL5/N4 o8uWS5tY7cZ5EsBZABUB9ATwMIBCAAoCCLPYrCbe6J88/qhpLvv/W7ZsiXPnzmHgwIHo0qULNmzY gDp16mDTpk3o2bMnhg0bhvz58+Ohhx7CLGXN3O3bt2P27Nlo2rQphg8fjldeeQXr1q1DvXr1XNX6 Mmx1/MHTTz+NSZMmmY527dpBCIHiwWkeJ06cwCeffIL69etj0KBB6NevHw4fPowmTZqEVPJPPvkk kpKSUKZMGQwaNAg9e/ZE3rx5sXTp0pD3j8b7uKHzefzRaX6JE4vVqQAUAW+e9TmA/QCOAZgfNLvb xV2mVqLUREbTpk2zOgr/OtQ079u3LwkhqH379iY7DRo0oGrVqlG6ZTnA22+/nSpUqPDPfZrN8o27 du2iPHny0IABA/4x27lzJwkh6LPPPjOFneCyk8/WrVupYMGC1KRJEwoEl9ELBAIhcTp+/DhdddVV 1Llz53/MFixYQEIISkpKcvSfiKhs2bLUUdne0uv7WMmfP7/JHys6n8cfnebxJd4rUcZKA3EEvHjU KQDXASgK4HsAf4O7NzQajYIQAl2VJfJSU1Px888/o2XLljh+/DiOHDnyz9GoUSNs2bIF+4Obsahj CAKBAI4ePYp8+fKhQoUKpq4Cv5w5cwYPPfQQihQpgsmTJ/+jKRBCIEdwiUIiQmpqKtLS0lCzZk1T eF999RUSEhLQu3dvX+HG6n00Gk10idlKlAAaApgJ4CRY8/A3gCZEFOfdPjSai4NrleUWt27dCiLC m2++iTfeeCPErhACBw8eRIkSJUBEGDFiBEaNGoUdO3bgQnAXLSEEiqrbTPqkc+fO2LFjB37//XcU sqz9/dlnn2HYsGFISUlBulzLGEA5Zc3h7du3o2TJkigYbgtYC7F6H41GE11iMo2TiDYD+AgsNNwO 4ByAzgC+FULUJKK/HdznAYCNGzc6PNbEguPHj+uWXZxR01xqEjZv3oy/g3sqb9iwAQDw2GOPoXbt 2rZ+nDp1CsnJyRg3bhxGjx6Nhx56CE8++SQKFCgAIQSGDBliG87OnTtDzKzff/Lkyfjyyy8xYMAA pKenm57PnTsXvXv3xt13342WLVuicOHCSEhIwPjx47F3795/7J44cQJpaWlh81ZaWhqOHDnyjz2v 72MlEAiY/LGi83n80WkeX5S6M088whPkY1FyIUQR8PgGN7YDuAvAPAAFiei04n4zgHFENMjB/7bg cRMajUaj0Wgiox0RTY51IL40EMGxDUfC2RNC5AVrI6xr9AXgPvPjewDtAOwEay00mn8DTwHoAqAB gBOK+WgA1wNohdD/riB4cDIATAKPN3paeX4PgHcArFTMrwLwLXiF2DmWsGsF74sAmAxuCDwL/o+t DAJPyX5IMasMXiNmP4BmQbMaAP4HYAqAoTb+SL4JxrOfz/ex8it4sHY/h+cazaVOHgBlwXVpzInV GIjfwYXbBCHEW+ApnU+BX2yOk6OggBJzqUmjyU4IIfYHL9cQ0VHF/HFwpTgZvHrrdgDFAdQBUIqI bg7amwrgTQDPA1gCoApYEN8G4BQRJQftlQl6vUsx2w8Ayv00AAWCYVa0RHUNEa0VQkwC8AmA3uD/ uRyArgDWA8gv/QKQLIS4A0B7sMAzD9yAqAtgARF9FAwzDcARJQ6e3ido9wEAN4GXzk8EUBrAvcHH s4honVvaazSXIEviFVBMBAgiOiKEaALgbQA/AcgJLlyaEdHaWISp0VxqENFGIURNsMbgcbB24CCA P2BuZf8XQD4AbcHailUA7gO32K0aBDuNgmpWFFwRD7Ox1w/AWiL6VAhRHCw0NAKwAVzBtwJwp8XN EwBWA+gE1lwcB2sR3Ao5P+/TAkAH5b5a8ACA3QC0AKHRxAhfYyA0Go0m2ggh/gIwj4ieyuq4aDQa 78R8Gz4hREkhxEQhxGEhxBkhxGohhN7oQqPRQAiRA6xZOZzVcdFoNP6I5ToQCG7d/Ru4G6MxuJC4 Hry1t0aj+RcjhGgEoA144NdPWRwdjUbjk1hrIF4D8BcRdSaiVUS0i4jmE9EOq0UhxHNCiB1CiLNC iKVCiFo2/mlsEELUFULMFkLsFUIEhBDNbOz0F0LsC2qBfhRClLc8zy2E+DCoKTophJguhChmsVNI CPF5cHO0VCHEOCHEZbF+v+yGEKKnEGK5EOKEEOJvIcTXQogbbOzpNHfnNQB3A3idiFwFCCHE00Ht 5fHgsSQ4zkq1o9M7hgghXguWL8Ms5jrdo4QQok8wjdVjg8VO9knvWK6TDR44ORTAVPCiUskAOtvY aw2ettkBPPL7fwCOAigaj/W8L/YDQBMA/QE8COACeLCq+vzVYHo+AJ5uNxM8oj2XYmcUePrsXQBu Bg9y+9Xiz3fBb1gTwG0ANgOYlNXvnwXpPRfAYwAqgWcIfBtMu7w6zWOW5vcH8/l1AMoDGADgPHjh Op3esU//WuBZQH8AGKaY63SPbjr3AbAGwJUAigWPwtk1vWOdGGcBnAHwFniqVZfg/WMWe0sBjFTu BYA9AF7J6g96sR3gtTasAsQ+AEnK/RXBb9NKuT8PoLlip0LQr1uC95WC9zcrdhoDyABwVVa/dxan edFg2tyh0zyu6X4EQEed3jFP5/wANoG1RT/DLEDodI9uWvcBkOzyPFuld0zHQIC7SJYT0ZvB+9VC iMrghWAmAoAQIid4wZn/Cl7psjFYekoG0EQIMT/GcbwUKacMVC0JXkBon2Xw6noADwohtoJbFzkA HLbYOQCgpRAiA7w40AkAQrFzBDytro0Q4pfYvU62pzQ4HYoH00aneWwR4L12LgNwTPBaEDq9Y0c/ AMvAa/vkB1BM5/OYUQJABSHEQbAgsAbAB2ANvpf0vg2c3n/Ih0S0SfBMpzoAlgOoDSCViP5Q/JgP Tu9bAczyHNsYS1M7AYyxmD0NYLdyXwIsDd0KnvdN+tCHPvShD33oI+KjraXeXQZgYPC6J4CNNvX1 3wC6ZicNxG9g9YlKBQC7HOzvBIBJkyahUqVKMYyWRiUpKQnDhw8PMV+7FnjiCaBtW+Cll+Ifr4uF tDSgQwdgwACgfPnw9gHnNNfEDp3m8ScWaf7330CRIkCOWNdeFyEbN25E+/btgWBdGmti/QmGA/hN CNETQCEAPcD9LOrKcYfBA/+Kg8c9oFKlSqheXS8VES8KFChgm95paXwuXhzQn8OZjRuBLVuAuXOB Tz/15qZAgQIoU6Y6cucG8uePafQ0QZzyuSZ2xCLNhQCeegr43/+i6u2lRqLlvji42wjBs3VWRiKA woodT8R0GicRrQTQHMCTYOHhPICfiegLxU46eKnaBrGMi8Y/rNXShCMh+Bf5Ta+iRYEbb4x+fDSa S52ffzauU1OBCxeyLi6ZZd064Nix8PZ8cou8EEJUAHANeI8qBM8FhRA3K/YbgMcWLfMTSMxXogSw CDzG4R7wbIv1NnaGgWdo3B+H+MQcIYAePbI6FppIWb8eaNECCFj3knVACD57ta+ye7d/N5rICASA PXtiH056emR5QeOd9HTjunBh4JVXsi4umaVKFaCBTfM5IwP48ceIve0uhKgnhKgB3vjuNyJaDgBE lALerXOsEKKWEOJ2AO8DmEJE2UcDEeRDAN8Q0QInC0Q0FayheMb67MQJYMeOGMYuRgx127z4IkNW kNmFGTOAWHZl9+jBYRw/7s2+TB+tsck8aWnA1q2Ruz940PnZmjXA1VdH7rdXcuUC7rRuKRaG8+eB u+7K3Lv/m8jIMN/Pm8fC4blzWROfzJKcHGo2ZAjQqBGQkuLsrnFjgIc8hPArgOkAFoKnfrawPG8L IAU8++JbcEO/q994x1SAEEI8Ct4Zr2c4u8Rb+z4AcN/WmTNsXr8+UK6cYW/dJb633t69nGnk+8eD Nm3a2JrLCjGrKsbly4HcuYFTp/i+SROgWzegVSuge/fYhLl/PxdGfvAqQLz8MvDdd3ztlObxpEMH 4LHHsjoWZv7v/4Drr/dmd/VqTvt9+/h+3ToerzNnjr39c+e8p3kgkDm1+G+/Ab//Ht6eJCUFWLQo Ng0Poqz7h2OVz1UNhOTqqx0r02yPXSNNastOn3Z298MPwOef2z4aRERFiehyImpJRCbRmoiOEVF7 IipARIWIqAsR+a51YiZACCFKAxgBoF1wnINnxoxJQs2azdCsWTMkJzcD0AxTpkzBL7+wuuebbyKP V79+XHBmVz78kNVWS5fGL8xIfvI9e4AFjjole7ZuBRYv9m5/zBhukUoN1PffAyNHOhfsqanAn3/6 i5OVjh39u5E/v7VVZGXIEOC++/g6WgVrr16cZyJh4kRg0iT/7g4eBDZsCG8vEpb56IGV5cCqVXyW +WT1anv7+fN7T/OHH/Y/yj85GTh61Lj3qk3o1g2oVs3dzooVhhBw4QLw8cfeu0kSEng2VSyYMYP/ SSfUfN6nD1DBOidPIRBgAd4Na6PGmgYLF7q7dyMjA+jUyRBI7QgEeBaIE+vWhX8HvzhpgKdMmQJe QoPrymbNmiEpKSm6gYcjhmtAyGWV0wCkB4+AYiZs3FQHQMAqGjiQiEjKznw9aRJfv/ce+WbvXqKM DLN/Bw8SnT7t369wqGGE48IFou7difbt4/tevdjtjz+6uzt8mOjECftnCxYQff45XwcCRBs3ho/H li1EffsSnTxpmC1ezHHp2DHUfqlS3t9R4iddiIiefJLt9+hhdu/kT/Xq4f1PSXF/fuedhv+HD7vb ffFFomrViLZv9/ZuVjvh3KSmEpUoQbRpk3c/7cjIIDp1KjK3dhQrFt5dpUpESUn+/a5Shf0OBMLb fftttjtrFt9/8w3fDxhgb79sWX4+bVp4v+3SJhAgGjKE6MgRdzfymDCBzS9ccH6ftDSzm6efDrWz fj0/+/BDvh8/nu8nT3Z/h0CAaPPmyL+zF/z47WZ31Cjj+dmznGZ16hAtWcLPx40jqlqVzQGiK69k c5l+N97I56JFI3+XNWvYj86d+T4jI/S7DRzIduz+J/mO+fMb7rdt47MbAJEQoebPPsvPVq2yd6fm HcmqVavkOhDVKUZ1u3rEsgtjPoD3wP0s5wEcB69kNhvATZxw/ohUDTd3LlCqFGsfJMeOAcWKAbff zi0qIcwtl4MHgRde8K7G/PVX/y1yANi2DRg2jNXbgDd1+Isv8gh+J2n+7ruBdu34+rPPgEqVwrcY b7kF6NsXsGsYjx8farZ3r70/DRsCX31l3J86Bbz7buYGlQ0Z4v78+++573PNGnd7c+cCFSvyt/JC uDiPHMkaj0cf9eafEz162H/v5GRuzUyYEPqMiKeO2rF4sdEa37QJqFcvelNFv/jCPM5A9jkvWmT+ VzZuzNw4lSVLgJ073e1YB6+6/Ts//mj417JlZHH66y/+VklJrBn744/wbgAgMRF4802z2aZNnF65 coV3nxrcu3jbNj6fPcvntm3dNTaTJwM3hGzxlj1R15lJT+cxIb//DvQMdn4//zz/3/Jby7NV43D4 sPexS1Zy5+bzuHH8fXPkAD76yGxHlh3yG9ghu1z79AGuuw7o3Jk1NQMHOrshMtzZPbPTbn7xhXFd sCCPh4g3MRMgiOg0eNGoweDlTOuDNRB3w8MiF1a1zeOPA717G89SUviHVlm1yn46zP3BuR0//GCY FSrE5z//BD75hK+nTzee9+kDvP8+L6aUlMSDok6f5gVM7AqOO+8MHUm7dCnHVVVrWsmZk89SLeZl RP977/E5nKrs+uuBJ580+++ELKSkOjhS5s9nNaBk8GDgtde4QvDKoEEcDy8C46FDPDaip8som9mz OV/ISnWXsozZyZPGuIQdO8z5zqvwuHy587N69bgAcWPoUPsCQk4PtYvH1KnOlUPdujxuaMgQFpjs uo3CVc5WNm3itFIFTCGAvHn5fNddwDvvsLma1+Q4hc2bnWcnHTvGBSxgfPM77gCuvdZs74svzPnI On3WTYAYPNjbe1qx62s/e5YF/urVvQ/a++wz4zojg7/LMyFDxu3V1fI9ZZmQqMzwtw6+S042/LUO vjt1iv2XDZ3nnze61KLFoUPcYFC/QenSnF8lP/0UKuwnWlYtsH5D67clAlau5PFiVmR3UHq6exmy aBE3rmS6qsKc7MaYOdM5HjI9nQSDRYv4PHEiz+p6/XXnuACcdnZ07GjUEypqHXH8uLl+ixexXgfi PiKaSEQbiWgtgI3gzT5q+PVrwgSjAiDiD1+mjNlOzZrAAw8Y94MGmfuznPqSZOUjP8hbbwGjR/P1 +fPAiBEseW7ZwsLAmDHe4jxxIp83buQ4BwI8qwRgoeWvv4wfZ35wx49I1xQAuJ9UfcetW819hRs3 mitPO/bvB/7zH/Zn7lzDXB1YuN5uIq7C+fP8s5w8aYRvNyh0/HgORw6MPXuWNRuvvgrcdlv4NEhJ MSqZ7duNdz9/ns9C8OqQDz7IAuMLL7C56u9TT3EhOm0aV7pqgSwr7r17WTtDxAXfvfcai2xZOXmS zyFO9bMAACAASURBVAsWAM2aAb/8wv3V4ZBxBliY2749tOKQZGR403pIrZaV9PTQylmyfTunRWoq MGUK/2dHj3KFV7mye3jS3S23GGayMF+xgs92gwS7duUC1q7AP3zYuG7ThjWG3boBZcuyYAp400CE y0szZ7JAZh2wlisXcOQIX6v/psyzMuxp00L9VP9FNXwplIQbZPndd+yHtG8nQOzcyRWypF07LrsO Hw4V2mWDQ2oUP/zQEJ737OH/YOhQoH9/w82RI+a4Fy9un/cCAc4vzz/P30Vt3OzdC7zxhnF/zz3A TTeZ3avvpA5gtQqHMg2OHgVq1QqNB8Bpkp7O3+6DD+ztANwgTUkx/mWnf1pFjcfmzXxtJxhMnmzE 1WtDxFpGyndfu9ZsPn8+x+Prr735G0viMY1TpSNYC+HSJme8Th20/oSyG+LsWa6IZAvcC4EAkCeP oekAzJnKmpkB/sHUQWyq+l4WfidP8o+VmAgUKGAM1nnggdCCzanSsMbBDimw2BEI8KJFZcvyQFRV sra2smR3x3//a5jde69xHa71eu4cS+WDBxtqQauq8dgx49vIgY+tW3NrRcY3XKFfqZJR4Kt28+Qx uqvUylumaYcOrBVYtswQqOQ7SwFAtf/00+xfaip3W8yb56z9ueIKPjdo4G+w7+WXG4JZrVqs+pR5 YcsWLoTXreP4qapLldWrnQcQSvbscVeb33MPz3Jp3pxV5CkpxqI9Vo2fXfg1aoS3Z51qKe/fey80 369ezfnkF2U7pZEjzYKwnQCxfj3nvy5dWLvhptGbMoXfd8sW+3n38n1UYVxeDxnC961a2futtpgl Utvklr/HjAHefpuvpUpe2lcr20GD+JtJ5LMrrwztUnXSaP3wA89g+O471hD16cPmBw9yV6nU0I4f z2Zffsn3ajkwcybnF6lpSExkAUYKDuH+5XAChKxcnfyxdtFKgdyqQVCReUL6qU69DVfp22kM1Yq+ XTv7uFasyBpCO9TvaMdXX3E5IOubWTZbXsV7GmvcBAghhADPylhMRJkaw61W4LfdZn5m/TnVgiac UBIImFuCgLllIf08cYK7B7ZtA557joUDySOPGNfyp7j3XkOjARiZ88SJ0Iwq4zhhgn0mtWZKGd+z Z7nLxQk1nHXruMUnBGtX1Pi7cfw4CxXqz+6mvl++3ChArJWeuraHfGd1dTmrAOEmHAFcWauCUN++ fHYqcD7+GKhd20gXu5HX11/PAor8DikphiDUrZtzXLqGmU3t1G8tKy/Z1y0L/K+/ZsGqShUWUJym XlarFn40f7h1EGRBrVbYdmp8J5zWbFG/Q82axnVKitGvbDcWJCODKy43jYtV8yAEq7ZfeYX7s1u0 cK8Q1C6m5s1Dn6elsd/Sj0DAaN336WN03Vg5dSq0kgIMf+zSlYj/6a5deSqoav/99/nd3Na6sHYF qMixRIGAuSx0WmdAqtRlPKyNMXXZdmvrXQjWFkkhKFx3qxrvCxecBT63NRFUpCZ6wYLwizHJsNSu N6c8L9PNqi0jCi1H7bptN21ynol2ILiE0/nzrGGx/guPPMLdtW7CcCSzqjJFPEZqBsdLjgKwHUAJ Fzv/zMIYNIhnSFhHNgNEDRua79XRrDlz8vWJE6HubrvN3j959Ojh/nzlSjKN+H3gAXf7TseZM0Zc hTDMZ8822xsxInTkrV2aZGQQtW/vHuacOfbmhQsTlSvnLd6PPsrnoUPN5jNmmL9BuOORR8z3csZI 4cJm87x5I0vfaB6rVhE1aZJ5f/74w3xvHX0PEA0ebE7DpCTv/h89Gt6OOsNEPVJTeWaBnPVhfV6/ fubf/7PPzPcXLtjnl4oV7d1fcYW7/xs3Gnm8VCmihAR3+yqXXWZ+Jmc9qMdrrxE1bcrXzZp5f+9z 54zrr77i7z5zprubH38030+fHj4c+Q/dfHN4uy1bmu9Hjgy1M3Uq0Xff8XWnTqHfynr/3nvm+337 wsdjzx6iRo2Ivv7abL5/P8+QA+zzo9/DbmYLEdEddxjhqd8JIMqXj88NG5rdyG+/ZQvRihWG/fR0 orp1vcdpxQr7MpOIqHFjvs6VK9RdsWJGPrQ7cuSI7yyMmAdARADvZ74LwDVh7AUFiDupUqWmdMMN TQmQx2THRJs+3fwTHD1K9Ouv/jNa9+7uz6UAUbOmf7+9HNYKs18/ntJ07px9ZpPHwoWRh5kvn3cB wimdhg1jwcauUvRyNGzI7osWNcwSE2OTxn6PJk2MHzqaR6tWoWZyumwk/m3dGnlcpPCZkEBUsmRs 0rF371CzSN/V7pgwgah4ce/2Dx0iOnCA/zHrs3Bp4KfhcOqU+f6JJ2KTvoAxxTHcYRUyrJW/9ejS JfRbnT3r7iYz+REwppBH6zh/3ihDV60ieuqp8A1KgKeG16nDeeXMGXPaLV9uXJ8+bQgkXo5HH2Uh KTXVbO7vn5hMRv0ojzvpkhIggsLDbgDlPNj9RwMxeDDRK69ENxOFO8K1+L78Mr7x6dfPLIWqEq96 qBVvVhyyALrnnsj96N49VAPxbzx++ikyd3PnRh5mpJq0zB5yPYOsOq6+OjJ399/v3e6xY/F7ny1b InP31lvuz7t2DdXKdOyYtd/O7zF0qCFAVK7MZnXqeHffqVOoWbduxvWePUS33+4/XlLTIY/MC9WX kAYCwEcAzoDX4j4L3nWzMYA84QSIrMhkaoa4mI6CBbM2/A8/zLwfHToQFSqU9WmZ1UeklZo+4neo 3Y7hjkg0oZEe6oJm0TyeeSbr0zxaR2oq0U038XWNGlkfH+txsQkQsR5E+TSAvACuApALwM0A5oG3 9852jBiR1TGIjBhsBesLu9HAfvn6a2Mtin8zenfO7A+Rd7vDhsUuHlb8rLXih1GjYuNvVtC1q7FE eXbceEtOd75Y8Lnau2+WA1hGRC8C/8zE2A0gSuviabID0VjARJ0+qdFcKmzcGL+wLtaNpOKJuqCV 38XU4oG6hsrFQCw308oJXjDqn2VOWD2D+QDqxCpcjUajyS54nXaoiT9uu1xqvBHLLoyiABIBWBdR /hvcpaHRaDQajeYiJdZdGBGSBKCAxaxN8NBoNBqN5t/OlOChEuFOYhESSwHiMHjr7uIW8+IADrg7 HQ6ekKHRaDQajSYUu0Z1MiLYaipiYrkbZzp42uY/e1QGB1E2ABCj8cIajUaj0WjiQUw0EEKIMgDe BHAtgFuFEK0BTAeQG0A+AJ/GIlyNRqPRaC4Gcub0t89MdiRWGoiKAASAtmBBQgB4DsB9ABoTkcPO 5/8O7r/fu93quifnkkLuNmpHVs8Bf/XVrA1fc3HQoEF4Oxp3Dhxw3lX3YiImAgQRfU9EnYjoJyIa QETFAbwM4CwRrYxFmJEid22LJ1WqeLfrdVtzlVtv9e8mEo4ciU84lxKXXeb8TN2lMhIyU7APH66n tWnCc9llwJtvZnUs/CN3mc0uJCYau29ezMRtO28ABQEcjWN4nnBbVe7FF+MXDyfC7Utvh5+V8gDn /emtvPKK2e8cOYDkZH9hZRXjxmV1DJhnngGKFOGzypVXZs7fnDmB+fMjd08EPP44UKxY6LNSpYzr eAmn8eCWWzj/zp4d3u5NN8U+Ppnh4Yej61+TJvbmQngrL664wvlZjjAd507b1fvBmk/z5gUKF3Z3 U7as87NixfgfycjIdNQAsAARLh0AoGHD6IQXK+IiQAghygN4HsDoaPkpV11r1Ai4667I/XHbW/2d d7igv+660Gc9e5rvy5XzvhS2H61CWpr78xIlvPul8uyzfF65EmjjcXZsYiKf//wTGDiQC4mbb7a3 G88Ke9Gi8HaKFo19PFScKpwSJYDDh4GkJLN5y5Z8/v13e3fhVvv8z3/8xc9KIMAakL+tq7aAlxmX +BFO+/QJNXvhhVCzEyeAzp29++sFdcVBJ265hfNvgodS0It/Vq6/3vlZzpz+/XOjcmV7berAgaFm dt9AIoXFfPnsnwvhLb1uvBEoXx4oVCj02ZQp3F2nCqYqw4eH9z8cdv9fOI1puXKhZo0asfDw8st8 L8tAyT338IqWhw/7i19iYvh6YNMm83+fK5e/MOKBLwFCCDFQCBFwOS4IIW6wuCkF4DsAXxLRJ95C SgLQzHQ0a2ae7/rpp8BrrwFffgksXAjMmOG8J8SsWUD//vbP3ArEnDmBjz4COnUymw8cGKoS+/hj d/W0ihDA9One7Hbrxj9stWqhrYK6dYEtW0LduL3Te+9xXD/8kO3VqAEUt060dUBKzDfdxGlvRe3f 96OOz2zlcccdQN++7na8SPt+6NXL/flVDkulNWrEZ2sFIscf1K4dWXxk3nvjDWc7bi3HRx81rj/6 iM+JiUDz5v4E3pIljWs7rUqjRsCYMXzdti23sC6/nPdbcCvgly0DPnEpPcaO5cJc4tYwkC3NOsH1 cNVKYdcuYO/eUDfWykUta7Zvtw8nPd1+H4nEROCDD5zj54adoFi5Mncr2P331nEtpUsDI0ca91dc Ybx/9eqGAOv0zb3+R3nzctl0332hz/Ln5/KhbVvDbN063geGiDV05ct7C8cvDRty489OIFcFo+bN Wdvw3XfA/v1Ajx6h9nfuBH78EShThuMcDlVg8iJA3HCD+X7sWOu+Q1Og1pHlyjVDvnyWlkms8bm7 ZhEAN4Q5cij2SwLYBGC8R/8dd+Ps1St01zI77Ha/kxQoEPqscWPz/cmTRCVKmN0NHGi2EwgQTZvG 1xs38l7xRETjxrnvlDZ2LJ9ff53tr1rF93nyEGVkmO0mJhr2JF9/bbZz3332u7fVquW+25uVQIDo jz+Ipkxxj3/fvvbu5fP69Y3r1au9pcXatUQnTrjb9bKDnV06yKNyZaK9eyPzW275O3RoaJhu7mbP DjU7csSI665dzt8lf37zszVriH780T28devCp4PbdvUqcuvmTp34Xt1G3i1vAbwt+4QJfP3hh5yP 5bM9e9i/jz/m+//9zzkvyUPuTrp2LdHOne7xT0837v/6i8/TpxPt2EE0YIDx7LnniA4dMsL84Qf3 vFSxYqi507V6vPYa/1sHDxpm3boZfj30UPj89+ij5vvWrYmqVjWbtW/P/t13n2G2cSOnl/o9AaKy Zc3xvflmooQEvj56lMs/gMsC61bT8jvYva+1bKpXj+21axdq94cf+FkgQFS8OJsFAuZ8EC5tbrvN /bm1/LFDPitWjM9NmhhmLVrYu3Ej3Le89lrj+vx5olmzzM+XLiXq0iU0zu+9x/cTJ/L9qFH2/j/3 HNENN2Tj3TiJ6AgRbQ5zZAD/aB5+Bq8FcXNQQ1HVSzh26uaKFb3F8Y47zKNbVVXczz8b1zNnyncC qiqxyp8fmDfPXc0nBPDII8DZsxyvcC34zz9nNbCUquW4BjnDonx5lkjVzV0yMoC33zb7I9393//x Wbay0tPNGg0i9/jYvU+1aix1u2FV30kOHQLmzOE+dInaV9i1a6ibTp2A48e59eSkEt20yT0+X33l ba+BtWvD938C3ELIyADOn+f7mjU5XUeMALp3D+9epWFD7ss9dIi/4w8/mOOgfqMdO8xurRuL3Xij e4u6fHlvXRh33OFt2phsKcluQrWl5Ja3uncH3nrLsCME/08At+ylv02bshbroYdC/VD/xe7djT7g xETn/CdRW8dXX83xaNGCNQ5qn3iOHOYyxotKPhIGDuQ0UDUxqnp+yJDwfkyxLDQ4ZozxPfLmBerX N7Rhl19u2KtYkVvGgHEGQlu9339vXBcqxN+LiDVS69ezdlelcmXjunBhoFkzHkciv6XsUm3Vis92 +UWmtxCGWt4aL79lmBU1H4XLNykpwNChwLXXGmaRDF530h7Kd0lIMLRfOXPyf/Cksi/1rbca2jkV WZbK/H3NNfbhpKfHLi87EZPghBAlASwEsAvAaQAHwVKRh2IceP11Pt99t2FWuDBQsKC38Fu3BurV 4+vNmw1ztb9ePrcrmKtWNav5VFR1e5485mdOma5tW/7BpH1ZQQH8g8rBb2XKOKu+AUOAyJ3bHPcc OcyVUyQDLwH+mXv3dn7u1EVTtCirKtu1M8zUmSajRwNbt5rdCGEMtHL6wcOpBS+/HKhQwbi3FnYA sGEDn/PkMeJ03Ga112HDgD17OC65cvGP+NJLrJKPZDBtnjzAhAmcNq+/HjoYSu0bdhu8BXBcVIHM OujPTbiw+mNVQZcuHTrOpkABLvTkPyK/e7jBbc8+ywK7KkAsXQp89pm50LvySh5HYzdgU+2CIQIe fJCvS5RwzidNm7rHS/olkf+PJFwFo3LHHe7PK1WyN+/ePXSsUcmS/E3U7iPAnKdVVqwwD07MnRtY sMBoXMmuJyvq+1nLqCuvdB6rUbaseXyZOv388GH+X2bNMsrVmTO5q+n0aWOQsJo3a9QIjY/1W0jk dz91CujQwTCXXX8tWnA+9UK42UmFCvH3USvfSCriL78Mb0emgRB8eNnuXf778t0bNuQxVIMHm+2l p0cm+GSGWMkrDQGUA6862Tl4ToCyM6cbUnrMk8fc9+QncWSBYa3ku3Xjn05mEKkAApx/XEmhQtwP 5USzZsa13UAg+aNL6RzgH1TVYIwe7dxXbRUgnKR0tbJ5912War0UkkIA/frZPxs61Bh46YRaOVn7 +O0GokqsP+vo0VypqeZ2gpU1P8j7l1/mfstjx8wFuvQvf/7QQttasV64EGrHrnJwey833EapA1zx SoQwC4XWCtOPAAEAjRub/Q43oK9iRdagjRvHLXs7tmwx0kIVICpWNFcA4XjkEeM6EOB/iogbD055 2MssCvVfqWrRg/qpLH7+2WgAzJrF5YkaB+vgasnQocDkyWazvHn5u06ebBZ+nQYgy3FFMr7WeDtp 2fLkMQR4+Y+0b2+k5y+/AIsX27sFWLs4ezbw7beGWZEiHH+VBx/k/KFqfWXe3LXL0Kiq/8ycOfaa mCeeYOHhssvM304K3rfcAmzbZh9fqZWcMYPHe6mDgN1Qy5NIKuJrrjG/S82awB9/8HXO/2fvyuN9 qN7/+7mW7K59aSEV+VYISZaKJCVCqUSFKC3f6n61UNlKPyV7abWWKKJIUipFqQhZciPZsu9X1nvd +/z+eD7HnJnPzHzm87mf+dyLeb9e85qZM2fOOfPMWZ7znOd5Tj6ZSLz/vlmy6oUJUlJD1UflyyeM h1Uv44yRQDDzRIj+w3aIXkMViATCQWffjKJFpZI995whAgViYyCsA8Pw4SL2sxPL/v67fVoq7tix 7nmWLi2V4++/jY5FR3Ky5HWNy2bmt93mbFWgBhHV8HXmSB+QdAaiShWge3dR2rJ2nJGgNI83bBAO 3Wm2kF1YK33evNJI1Hc2aiQMgRVqhmwFszAc1sap/iORMRtUCrJeGKyGDc33aWmyPKIUIxW8msW6 zZyvvtpYqgJkiUnHxImGeNtarpkz7ZU81ffPnQscPy7XXkXFbdqIZGb8eCNMWVlcf71Z6U1nIKKF 23KJXVnd2pIONZC1bWtW3gOi63Tz5jXE7q1bGxOFW2+VpUpdCucVROaZfiQph6JRNOVWyxjq3Q8+ MPqJcuXC65COW27xJuWxgy6+v+km+Q86E1q1qkj6rCAyJF86o9Kpk0wAGzUSJsbOckJNBNu2lSUC J4sSuzztrqOB/m1NmhjtNj3dKItVOdKKBQvMTIaamNar5/5evnxnCAMRwngAbzLz8mhfzJtXOGa9 Uns1H1JQHYbTwKAGwzvvNCp5PAbIqlXtK3U8oBgINTCqNWrAEI0BZjopOvToAaxY4S2f77+XuIMH C230tUE/YP1H1hmWOltFn1bmUInEnfRllJUIkTGzvflmCbMzN7PCOoAVKxY+C2vZ0ptZKSD6FW6W B8OHA7t3y/X55wOTJhla7ffdJxKSzZvDGdvWrYGBA+Va92Sq1wtFy2jXmnWmrH9/MfucM8ccp2VL 6cR1iVwsiFS2Y8eARR531VEMU7164YODUx/hZGZoByJhTBLRgeuMcLTv6HoSiYDqf3S9h2jx6qtm PxdNmhjXusSUKLrlxpUrzUvcetni8R9jHU8aNzYzGZdfLm3BzWR/2DCRfuTqJQyvZpxE9DiAIgBe Va/GWkDF0ZUqZR4kI0F1Pk6dQ758EufBB40wJ+Kr2b11sEg0lE7ARRdJ2fWlEABYuFDEn0pBFIhN Gem666KXVniBmmnoUiXAeSnCykBEmiFceimQmmpWTNLxwQciMtXRtq2IkO+6K3L5FS11pTQrollP z5/fXbkzTx6zAl7HjuHlv+AC545q3TqZrdmVLVYGAhD9ICVyL1s2vF2ULStiZDd9Hi+wKq6WKydS lwoVZKnAujwJyHq3ncmdEps3aBD+zG7pct067wx3vJCUZEizOnY09026VCsaT7Z62t26ifl7IvH0 0zKhyo6jtORkoy5Y62unTrKk1KWLMNteffEAQkdd/0NNJgCz/l000PslJwmpFY8+6i4BcsO4cVJX U1KkL0m0BCIqkw14M+PMB+BTABmWIwtAOlxMOhEy47z22mu5VatWp46GDVvx5MmTT5kYOZnl6FBm PunpkeNedpl7mhkZzOPHh5saRcKtt3orq1dkZTF/8423cig6/f13/PL3Av3/LF7M/NFH5ucHDtj/ E90caepUCTtyRO6bNpV7Zc4EiOlrotG5s+SdmmoOb97cKFebNokvVySoss2bFx5+wQU5UyY3/P13 OI3jgcOHnZ9VrmzfVgGzGacXeO2jrMjMlMOKXbuYjx417o8eFZPNJUvil3dux7p18l12pr/xxqFD 0ff1Cnv3Ml90EfOGDfEtkx0mT55sGidbtWrFxYpdm1AzTn8SBc4D8B/taAYgE0AbABVd3qsNgJcu XepINMCwMXZD/foS165BWrFuHfNLL0WOFy0yM70xMGcSihaNrQMDmLt0Ef8Q6p+dOCHhuv+JUqVy joFYvJg5OVkYGx26L5F27RJfrkhQZZs/Pzy8WrUcKVKuw969zGvXhocDzK1aRZdWTg7iCxcy//hj zuTtN9asiX1gP1tQp05i/UD4sp03M28FACJqCdmNsyZkueQxZm7m9m4kbNhgb/5lxejR4orai0jn kkvcPfjFiqSkHBAp5TC2bo3NX/yGDbLmrLtrzZ9fNpzRxZ+cTfvw7OCqq4ADB8LD47126hesOiP9 +oVbmpytKFXK3mx40SKz74PcjkgKmKcznExkAxhIdP/jCwMBAER0O4B3AfQC8CfEL8Qct3e8wKtC X+3asfmvD5A9RDJPdILTf7U66cpJBsILIpm65iSsHXAk998BvFt5BAiQG3DJJeIvJFHwhYEgojwA RgDoycwTQsFRqJcFCGCPEiXspQC5AQcPenduk0isXi0Kh1789QcIEOD0Rc+e4f5G/IRfAo/aED8Q IKJlRLSdiOYQUTb3DAxwtkO3KgjgDZddJlYImzdvRlJSEt5///1Tz/r374+kHF53qVy5Mro6mc4E CBAg18KvnqMKxHSzH4AXAbQEcADA90Tk0SF1gADhcDOhzCkoZ1ReHdbkJhBRjjMQSUlJoBgM2Ldu 3YoBAwbg6quvRsmSJVGmTBk0adIE337ryeFtgAABsomoljCIaBCAZ12iMIDqMBiTgcz8WejdLgC2 AmgPwMUhNJCSkoLiFllwhw4d0MHqTD7AWQvdQVJO4447cr9uhhP69OmD3k7+lxOEtWvXxsTEzJw5 E6+99hratGmDzp074+TJk3j//fdx4403Yvz48bhf390tQIAzDFOmTMEUy25raXYb/fgI4ih6PiIq BfEF4YYNABoB+A5AI2Y+5SuOiH4BMI+Z+zikXxvA0qVLl6J2bhohAuQq/PGHeJXMjfoG8cLRo0dR KM4ijc2bN+PCCy/EhAkTcF80G1TkUqSmpqJcuXIoqXnjSk9PR61atXDkyBFs3rw5R8qlhCmnK1MZ 4PTFsmXLUEc8LtZh5mV+5+fXdt5LAZwAcMrHGxHlA1AZskNngFwEKxeb23HZZac/86DTXOkhpKam 4p577kHJkiXROOR68M8//8Qdd9yBUqVKoWDBgrjqqqvw+eefm9I6cOAAnnrqKdSoUQNFixZF8eLF ccstt2DlypURy2HVgejSpQuSkpJsjxdffBEAkJGRgb59+6Ju3bpITk5GkSJFcO211+J7m+1QmRkj R45EjRo1ULBgQZQtWxY333wzli0z+jarDoTX76levbqJeQCA/Pnz45ZbbsHWrVtx5MgRR5oHSAwC mp/Z8GszrX8BfARgNBEdJKJ/AfwD8VI5zY88A8SOoJEnHjrN1fp/+/btcfz4cQwaNAjdu3fHmjVr cM0112Dt2rXo3bs3hg0bhiJFiqBNmzaYOXPmqfc3bNiAWbNmoVWrVhg+fDieeeYZrF69Gtdffz12 7tzpWg4iMukf9OjRA5MmTTIdHTt2BBGhXMim9tChQxg3bhyaNGmCwYMHY8CAAdi7dy9atGgRNsh3 7doVKSkpqFSpEgYPHozevXujYMGC+EXbbtSq/5Cd7wGAHTt2oFChQmESnKCeJx4Bzc9w+OWhCsA6 AOsB7AFwCMAWAEcAlHV5J6InygDxR6toXe0FyDZ0mvfv35+JiDt16mSKc8MNN3CtWrU4IyPDFN6w YUOuprmQTLdxd7p582YuUKAADxw48FTYpk2bmIh44sSJpryTkpIcy7l+/XpOTk7mFi1acFbIDWBW VlZYmdLS0rh8+fLcrVu3U2HfffcdExGnpKQ4ps/MXLlyZe7SpUvU32OHv/76iwsWLMidO3cOe5ao er5wIfOECQnJKtcj6FsSi6VLE+uJ0hcJREhX4mIA9zNzGWYuBnFpXRDAaeTXLUCAxICI8NBDD526 P3DgAObPn4/27dsjLS0N+/btO3U0b94cf/31F3aE9jjPly/fqfeysrKwf/9+FCpUCNWqVTMtFUSL o0ePok2bNihVqhQmT558SlJARMgbcmvJzDhw4ADS09NRt25dU37Tp09HUlIS+vbtG1W+sX7P6JBQ 4QAAIABJREFUsWPH0L59exQqVAiDBg2KKs94olEjINDfDHA2wC9X1vuI6E8A9xHRcsgmWg8D2AXR jwgQIIAFF2ruONevXw9mRp8+ffCCjZ91IsLu3btRoUIFMDNGjBiBt956Cxs3bkRmaN93IkLp0qVj Lk+3bt2wceNG/Pzzzyhh2e984sSJGDZsGP78809kZGScCq+i7WW/YcMGVKxYEcnJ0Vlux/I9WVlZ uOuuu/Dnn39i7ty5KJ/drUADBAgQEb65sgZwI4DPAPwL2YlzF4AWzOxmZ1IAEO3qAIlDWlpatmaq AaKHTnMlSVi3bh127doFAFizZg0A4N5770X9+vVt0zh8+DCWLVuGMWPG4O2330abNm3QtWtXFC9e HESEIUOG2OazadOmsDDr/588eTI+/vhjDBw4EBkZGabnc+bMQd++fdG0aVO0b98eJUuWRFJSEsaP H49t27adinvo0CGkp6dHrFvp6enYt2/fqXhev0fHgAEDMGfOHAwcOBBFixa1jRPU88QjoHlioY2d Npvdxx/RmnF68gPBzOuIaCbEffVAAMcBdANwG4C6zLzLIf17AHzouUABAgQIECBAACs6MrPvTq39 8gNxHYC5AJKZ+ZQtFRGtAzCGmQe7pH8TgE0QpiNAgLMBDwLoDuAGiMKxwtsALgFwJ4B9lneSARwM XU8CcBhAD+15MwCvAPhNCy8PYDbEQ+wXlryvCt2XAjAZ0o4fgUwKrBgMoCqANlrY5QDGA9gBoHUo rA6AdwBMATDUJh2Fz0PlHBDl9wDAfQAeBzAGQq8AAc5mFIC4S/iKma19RtwR1RJGqEARC0VEBSEd T5blURZcTEdD6SdwK5AAAXIeRLQjdLmSmfdr4fcDWAhpE+9BBvVyAK4BcC4zXxmKNxVAHwCPAVgE 4AoAHQH8DeAwhxzKEJFyBL5ZC9sBANr9NADFQ3leainqSmZeRUSTAIwD0BfCiFQB8BCAPwAUYcOB zTIiagSgE4ThmQtp/40BfMfMb4byTAewTyuD1+9pC2Ee1gH4AeIFV8fXzLzHkfABApyZWBQ5Snzg lw7Ez5DZ0ftE9BKAY5CZTmUYM58AAQK4gJlTiaguRGJwP0Q6sBvAchizdQD4PwCFANwDkVYsBXAL ZMZulSDYSRT0sNKQpcdhNvEGAFjFzBOIqByEaWgOYA1kgL8TwLWWdzoDWAHgAYjkIg0iRXDr5Lx+ T43Q/SUA3kc4mkDMyAMECOADolrCiCphcUv9MoC6EAdSfwAYwMxf+5JhgAABTksQ0RYAc5n5wZwu S4AAAbzDt234QmLGlpB1yf0ArgTwJhGF26QFCBDgrAQR5YVIVvbmdFkCBAgQHfw04wSAXhAx530Q MWddABOI6CAzv+Fz3gECBMjFIKLmADpAFL+CPbgDBDjN4JsEIoRrAMxk5rnMvIWZZwD4GkA9a0Qi epSINhLRMSL6hYiuCkstgC2IqDERzSKibUSURUStbeK8SETbiegoEc0joostz88hotFEtJeI/iWi T4iorCVOCSL6kIjSiOgAEY0hosJ+f19uAxH1JqLFRHSIiHYR0adEVNUmXkBzd/QC0BTAc8zsykAQ UQ8iWhGiQxoRLSKiFpY4Ab19BBH1CvUvwyzhAd3jBCLqF6KxfqyxxMk99PbTTzaA3hDN8UtC9zUh Zl53W+LdBTHbvA+i+f0OZNmjdCL8eZ/uB4AWAF6E+NnIBNDa8vzZED1vhZjbfQbRaM+vxXkLYj57 HWS5aRGAhZZ0vgSwDCJJagDRfp+U09+fA/SeA+BeiNb/FRDTyE0ACgY0943mLUP1/CKIm/yBkB1/ qwf0Tgj9rwr15csBDNPCA7rHl879AKwEUAZA2dBRMrfS229iEIBBkEEtHcBJAM/axPsFwEjLe1sB PJPTP/R0OyCmslYGYjuAFO2+GMQy5k7t/gSAtlqcaqG06oXuq4fur9Ti3BT6p+Vz+rtzmOalQ7Rp FNA8oXTfB6BLQG/f6VwEwFqItGg+zAxEQPf40rofgGUuz3MVvf3WgbgLYop1N0QHohaAkUS0nZk/ AAAiygdxOPN/ZHYktQxACyL6xucynomoErKCAYCKEAdC27UwQKxibiOi9ZDZRV4Aey1xdgJoT0Qn Ic6BDgEgLc4+iBldByL6wb/PyfU4D0KHciHaBDT3FwRxlV8YwEEiuhUBvf3EAAC/QkzziwAoG9Rz 31ABQDUi2g1hBFYCeAOyFYQXejeA0Hu5esjMa0ksna4BsBhAfQAHmHm5lsY3EHpfDWCm59L6zE1t AfCwJex5AGu0+woQbuhqCLPBwREcwREcwREcwRHzcY9l3P0VwKDQdW8AqTbj9S4AD+UmCUQhyPKF DjdvlJsAYNKkSahe3epULoBfSElJwfDhw3O6GGcVAponHgHNE4+A5olFamoqOnXqBITGUr/hNwPx OYB+RHQXRJmjMIR50L3G7YUwGeUgeg+oXr06ateujQCJQfHixQN6JxgBzROPM4HmzMDKlUDNmjld Em84E2h+miKP5b4cZNkIobPVKiMPgJJaHE/w24zzeciaWT0ABSEKIFMgipUAAGbOgLiqvcHnsgQI ECDAaY2pU4FatYBff83pkgTI5TjlKoGIqgG4ALLFBELnZCK6Uot/A0S3KKqa5bcE4nEAvzPzdRHi DQMwAYE3ugABAgRwxIYNct6xwz1egLMe/yOipQD+BTAKwE/MvBgAmPlPIvoKwHtE9DCA/ABeBzCF mXOVBKIVgN+IaCqJw51lRNTNGomZpwJ4CsDDPpcnQIAAAU5bEOV0CQKcJlgI4BMA30Mk/7dbnt8D 4E+I9cVsAAsgXqOjgt8SiCoQpmAoZGOtegBGEdEJZcapwMxvEtEvkOWMAAlEhw4dcroIZx0Cmice ZxLNRWk+9+NMovlphsHMfLfTQ2Y+CKBTdjPxbTdOACCiEwAWM3NjLWwkgLrM3NAmfm0AS6+99loU L17c9KxDhw65ojJ++ilQqRIQ6AUFCBAg0Xj1VaBXL2D6dKBdu5wuTYCcxJQpUzBlyhRTWFpaGhYs WAAAdVg2tPQVfksgdgBItYSlAnCt+sOHD8+1mruq0Z4uM4AAAQKcOQiWMAIo2E2qly1bhjp16iSs DH7rQPwEcaN5aiMWAN0BbPY53wABAuQw9u4Fvvgip0sRIKeQkQH8+Wf0723YAJw4Ef/yZBcZGcDn n+d0KXIX/GYghgOoT0RvAHgE4pnyCohrzgABci2OH5cBMLdh714gJQXI1Nyzbd2ac+VxQ/v2wK23 5nQpziwoCYSdBHTZMlneyC149VWgenXgwIHo3rvoIqBHD3/KlB289hrQujWwalXkuEuWADujsmc4 PeErA8HMvwHoAKAbxHFFGQDzmfkjP/MNED26dQOGDMnpUsSOTZukc124MD7p3XYbUKZMfNKKJ/r2 BUaMMDqx774Dzj8f+OmnnC2XHQJTw/jDjYFo1UoG7dyCtWvlvG9f9O8uXuz+vEYN4K67ok83O9i1 S85Hj0aOW6+eHH5i+nTg5EnjPisL+Oorf/O0wm8JBCBbTL/BzAUgG3n8Ee8Mli4F/v473qme+Zg9 G/j4Y7keOxZ4+unElyErKz76JKkhTZvvvst+WgDw9dfxSSfeUANIVpacVSe9fn3OlMcNSYnoXRKI 8eOBAQNyuhTOSKR+RGZmZKZVtetYyhXpnVWrxKnWX39Fn3ai8M8//qW9ZAlwxx3AyJFG2LRpwHPP +ZenHXxt4kR0N2QHzt5+5lO3LnDxxX7mcGaiVSvgbkdDn+jw2Wf2g1iZMsBbbzm/lyePNITTCQcO AIcOAenpic9bDcrMUoaMjOjenz0bWLQo/uWyg9tsObfilVeAChXsn3XtCvTvn9DihMFtYE0kAzFs GNCoEbBunXOcaP57Sgpw6aX2TMeePcAttwD//hv+XtWq3vPILnJTfT52TM579hhhaWmJL4dvDAQR nQdgBICOIXfVOYYbbwTGjQN+/NEgfHYR7fr4v/9KA8nNHHMkVKvmPANr2xa48kpzWEaG0OmFF4yw PXuANWvM8WbMMK779cteRxivxp3H6kleQ8mSQPHiwDnnAGPGxCc/r1C0GT9eyvDEE/bxvv5a4lqV 0Vq1AhqGGVD7A8XsZFq308vF6N3b29r1kSM5s8btNojZtZv33/dnKWnTJjnbDepWeGmTI0aINE1J 1lavNp5NmAB8+aUhnldx/MBvvwH799s/y00WMFZJZE7BTwlEHYjOwzIiyiCiDADXAXiCiNKJnH9H SkoKWrdubTqs9q7R4JtvgAceABo3Bh5/POZkTIi2U1y+XBpIogecWPDMM8AHH4SHr1tnzMB27Ajv GA4fNt/nzy9n/U/XqAFcdplz3q+/7q2MixaZGY94N243BkKHXgaFP/7wTzqhBuXRo83h1n+hnh88 6E85AOCTT5xn60B4JzdkiPhRiRfWrDGWcGLBgAHelfWsjNi119p/+9Spwti5Yc8e4MMP3eN8+aU7 g2L93z/+aC8yv/9+UWaNN7zMxtUztzgZGWYmxK5fteb12mvm5w89JP1KtJg1y8i7cWNJ56qrZMLp Bv17jh4VGvvZzuwg/cAUzJhhjJGjR7cGkJLYgkSz93c0B2Tnzf9YjsUAJgKo7vBObQC8dOlSZmY+ epR5/37mtDR2hfzSyM8B5qZN3dNSmDOHefdu57S2b/eWjsL338t7zz4b3XtOOHiQ+aabmLdtYx46 lLlcOaGXV0ydaqab07UOFb5vn5xHjAh/Zhe/VCnneNb7EiXc/6XTe19+Kfd9+zJ/9x1zVpbxLDOT ecGCyGmuX29c589vpL97N/PIkXK9apW5Pl1/vTmNkycl/LHHIucXC5580py/OsaPlzqZmirxWreW 8J07ze9b6TZxInO9erGVRaWl05qZ+YsvmBcuZK5RQ56rehmpncaaf3bf//TTyGlOmmQ827bNOd5l l0l4RobUSYWvvmKeN0+e1aljT7eNGyV8+XI516gRnv7QofLs44/tv8WaLiBlUjh2jHnQIKmn2cEj j0jaS5Y4x7n7bomzdq0RlpXF3KuX1FVFB/04diycttZv7tjRvg04IT2d+YknpM9UUPl07Cj3ejoF C4anoT9ftMgIV/3osGH28WNBx47MXbowHz8u3/733+Fx6taV9P/3PyPsnXeYgaUMgAHUZp/Gdv3w TQLBzEcgCpQTAPwCYD6ACwFkMrPVuZQtqlUzxMV+YeNG4XBbtjSH33ILcIPL/qBs4arffNN+NmqN H8tMOSsr3J7+669FpPfRR0DPnqIhXKiQt/Ruvx24887I8WrVsg8fMULOv/wiHPjx4+7pRPPNVrpG ixdfBJo2FQ1lhTFjZMa4VHOSnpYGvP02sHu3zEKXLhU9mmnTwtN86CFZKjh4UEScdnj6aZF0qRnU 778b75YrF7ncAwcaGyW5wU0xsVIlMZuLBo88Ymi8L1kCXHCB+X+uWCH/76WXgJkz7dOw/v+WLWVG p8pq1dP4+efsiV5//z37koxUrQfyYvqol9fJQmDGDGMdetQo4OabjXpw003GzFbVQ+tse1nIb+C8 eXLevj08Dy9tSZVVtSW97K+/Lss0btr648aJfsO8ebG3x8xM6Zus+W/dKnom3bqZ26P+nsLmkLeg 8ePlHG1ZZs8WKdW334qy4bBhxjNVJjtJaqL6q4MHzVLbnTulXB9+KN98zz3StzduHP6u6ofO5CUM AGgM2eXragDNINuF3k5EBb287EWL9bPPoiuQ9YerRjtnjpz1CuymIGQdXB99VAbmSPnGwkCMHSv2 9ESGTbWqOLFoursxOjpWrJD1QKveyEsvyZkZKFwYKGjzN3/80bgmAr7/3vztR45EVWQTlDkV4Cw6 nDTJ6IDVefdu43nPnsDDD8sA/847xv+/804Z4PR6osr60kuiuKiDWTqhIUNkgFD1R/2fd98152uH 9u2BPn2Ae+91jwc4159nn41eoRIw/7sRI6TN6X4lXn5Zzn37Am3a2KfhxECqsv73v+bwBg2cFWu7 dzczf3a48srY3Dh36CAd73//C/znP0a4+lduW2TrdG/b1rjW6/Httxu0U3oHf/5pDKRWTJpkztMq qrcbnFR+bgOXGoQefti4V1Bt2W0J9oEHxMKieXPRoVBpEBkM9ptvGvEzMuTZ5ZcbYXpd1suaL5+c VXuzYuNG47pyZTkrfYhvvpHv99LnXXaZ6PtcdhmwbZuE2bWdw4fD04uFgXB7R9ft0FGiBHDhhXK9 bp0siemm9KqfPnBAlkR1k02FM5qBYOZbmPkDZk5l5lUALgVQFKIfERfojdkL5s8H3tDcWOmVe88e IG9eWdu1PrNCab8ePQoUKBA537Fj7cOZ7SvBwYNGI9fXQvv3l5lzNGjQQGYVKj83LFlivi9VCrju Ou9rfIMHy9mq6W/V/dAVKwFpQJMnG/moBrl3L1CzppkGuraxk07LzJmGsqDi8jMypDOaMcPoiBUD qjo2QOilD8aKZsOGhSstMgMVKxr3jRqZ31E4elRmpV26hJdV1Tdd70JnkrzAyqTMmhVeDjUYKKhB QUHlr9dHO4kMYDaXdapTf/xhny9gKOFZMWaMYZWzc2d42kWL2r8XCcwykPfoYW7/gPG99eub43sx De/eXd4fNMgcrgalDh3ksEOXLpIns0gYVRr6N3fsKP/ol1/kvk+f8DhWZGYCnToJY2yN269f5G/S oQZfNXjpZoMKqm/5QzPQ11XW9Pwj9T9ujOGYMUCRIt4GeF1RW1mHjRtn0E/9czs9E5X+kiXG90eC U5k2bBDleScfO0oZv1o1Odvpnp08KQrbDRq4lyEnHMol2lI7GbI+46DnKpg7NzysRAkRQwNCZKvC HuDd/ak+I9IrtJo1KO7Yi3hq2zbnfJmlYk2daihNWSva3XdLx330qAxmKs8SJWRQW7vWXI5Ro2Rm 4cb5MsvMZuRIsZf++WeZVfz1l2g028VXsHN+smSJlMcKOw3sZ58NpwdReDmtM/n166WztGLuXGDl SmNW+u+/xqwYMJgJOzqoQWroUDl/8glwxRUyU7TOOvI67AqjVjO9Qkm0fv5ZGB+FHj2E+dDp/957 ZvNjxcRMmACUL++983KDPtMcNcr8rGlTgxEmMjovLwrC+vKeHl/28RHoiqRWZUcr0zxyJPDUU8b9 7t0yI1ODoIJdu9cxYIB5eUJh9mw529UTOwb+kkvk3zz1lCFKt8OPP8ogYbW/j2ZmOH26SBgV866/ O3mynKdONdNW4fvvgeefd8/brv4yCxMYiZ6KXk51IiMj3HzbSuOsLGl7RPazaB1+WKmpPP/5R5YK AZlIAsCWLeHxVfnr1bNfEly9WpYVMjIM2j75pL0Tu4sukvMyj9ta6dYnCmoys2SJu58HJRlOKBKh aMFCZYLsO/6DS5zaABgQJUo7RZlKleRcpgyHxXnnHQl78UXm5GRDucRN4ebjj40wpfTVqZOc8+Zl /vBD5vvus0/rt98kL2u606YxHzpkhFWubFw/+qjEee89US6yluuzz0TpTw977rnweFOmyHnECPvv szvat2d+5pnw8IkTvafh5ZgwgXnwYOO+XDmhoR7nvvtEMdEtHev/SUsLL3+rVhJv7lz7NPT/oB9W RSwnOmZmMt9wg3MZGzeOnj4K5cqFp8XMfM89cv/XXxyGe++NLq8tW0SJUacjwLx1q/M7K1c6t50h Q0RRVQ9Tipp79zqn2aKFMx3s8klNlXPnzvJ81izm5s3d6anSKVRI/juzKO3p316vXvj7lSoZ+dkd tWqZlSj149xzRcnNGv7EE97/0SuvRI7z8MPm+8mTDWVm62EXruhhDVdKhMzM3bszV6tmfj5okCgc fvSREda/v3M59+8PD1MK5IAoKkdTf/PlCw9r2NBbPXD6FwsWuOdZuDDzHXc4P8+TR85//x3erznV 53btzOVTyuJAeNuMdOjp//e/1jwTq0TpewanMgLeArABQAWXOKcYiFdfjUzI6tXN923bMp9zTuSf qT/TG4ZTRQGYZ8xwTsvu6NbN+ZldI/P6rjomT/ZeFnXccYc9A9G2bfRpRTp69jSuy5cPf67/J6cj K0s05NX9a6/ZWyE89xzz9On2aXTtah+umER1vPGGczmaNnV+ZjcgRToUSpe2f9a+vVyvXy8MzLRp hmZ9tHlNmsR8zTXh4ePHO7+ja9Z7yWP7dhlkVq50jtOsmTMdlEa5figGuW1bwzohEj318tasyfz7 7zIJ0OPWrx/+/vnnu6dfpQrz++87P581Kzzsscei/1dux0MPhYc51Xm747ff7P9no0YyCC1ZYv/e K68wv/6693xKlnR/3rlzfOmiH5MnC7Nw5Ig5XFmMxPtYty48bOdO+7puZSCyk6/+fps21jTPQAYC snnWZgAXRIgXYiCuZaCV5ZgcNaEPHnRu+BkZQnTVUXk5Lr7Ye1y3QWfPnuxVIMC+kkY6KlTwxpzE +7BjILwc27ebZzuvvOJsxuh02A0YQPhM/u23ndOIRcrgdiiUKhX+rG9f6RQA6aA++STx/0svo5e4 L77IfN117nGaNAkP++QT5zyef964Jopc1qyscMmI3eE0e410VKni/MxultyjR3z/x0UXhYfNnOn9 /d9+Yy5ePLbv+9//4vstfh/Wtty9uz/52EnV7KTF+pGZmX0GYvNmdT2ZgVZcq1YrrlBBjZPX8hnF QISYh38AVPEQ95QEIh4/WImC7Y7ChZlPnIhtJp/d45ZbEp9nTh4VKsQnHTVbikda999vvh82LHH0 GDNGBrxIs7UffojcIfl11KrF3KBB/NJr1Mjbf4jl+P575scfzxk6OR1ug3W8jrfeil9abkx+bqNt tEeXLonL68473Z/ffLP7ZCX7R2IlEBQauH0BEb0JoDOAgwBKAFgD4LmQHkSY8RcR1QawFFga4iX8 x4cf2ivvBYgfSpSIfktfJ5xzjndlWTe0bBnuWyNAgAABsoOc71eWIWTkWIeZPapuxg6/rTB6ACgI oDyA/ACuBDAXQFef8/WM77/P6RKc+YgX8wDEh3kAcrqRBwgQ4EyEm5v+MxF+MxCLAYxi5iRmzgMg D4BtAIr4nK9nvPdeTpcgQIAAAQKcCVB+cM4W+LkbZz6ILOVbFSbKI/gGwDV+5RsgQIAAAQIE8B9+ SiBKQyQOVp96uyBLGgECBAgQIECA0xQO/vdyGikArDtodQgdAQIECBAgwNmOKaFDR5pdRN/gJwOx F0AmAOtehOUAuOx0DwDDkSgrjAABAgQIEOD0g92k+pQVRkLgyxIGEVWCeJ7MBDCdiP4iov4hvYgb ACxyTSBAgAABIuDtt4Hk5JwuRYAAZy/80oG4FLL3xWAAJwF8DuBRAEsAFAIwwad8AwQIcJbgoou8 bYEeIEAAf+ALA8HMXzHzA8zcF0BPAO0gO3FWA3ATM+/xI98AAQJkH6+9BuTPn9OliIw8ecT3nkKk 7Y4D+IO6dXO6BAFyCr5v583MbzJzZQCvAljFzL/5nWd2cdNNOV2C+KFHD6BrrnHbdXbjf//L6RJ4 Q8+e4vEzt8O6bbTTluwAcOGF/pblTISi76uvusebOtV8n+T7qHL2IRJDP2cOkC9fYsqiIyG/mogu BvAYgLcTkZ8T1qyJHKdXL+Daa437r74C5s3zr0xu+OAD8/3NN0efxltvAYUKxac8icQllzg/sw4c 8UaLFv6km90G7kaTeIIo/p1RxYrxTc8OWVnOz9au9T//RKNoUX/Tb9JEzsUtBnFXXWW+L1AAuPxy 494Lo3z//dkrm46cWMay0sRvuNVtQMYGv/tFO0TFQBDRICLKcjkyiaiq5Z1zAXwJ4GNmHhfPwjvh 4ovtw71u+6H/iObNgWbNvOddtiwwZIhc9+8f7uny9tvl7DbDO/dcOVsraaycfefO5vtevaJ7v3// 6OLHMgDv32+eQT72mH28efP8G+AVop19e+3I8+SJHOepp4DbbrN/dt113suUXbjN5mOBdQY1apSc 9br4+OPRpckMnDxp3LstYcT7e3ID9Pp0113xT//uu4EBA8wTl2rVpI7qyJ/fPMmqWTNy2kU8+iJe ty5ynKFDvaUVL1x9NXDwoD3NW7b0J89IDARwGjAQAIZAFCSdjuoANqjIRFQRwHcAfmTmh7xnkwKi 1mjVqjUAdVjtXZ2xbp10TPXrA+U0I1IrA5GRES7azMoyd0oKX34JTJ8eOe+mTYUDT08H+vUDihUz Px8/Xs52eSg4LaHYDUBEQNWq4eE66tQxxylQwD2+FddcA7z8svf4sYiLS5Qwz3qdGkOzZrE1lAsu 8B432tmF19m1FwY2b17g9dftn73wgrd8vv02chzAYCzLlJFzs2bGf9alcAr6LDNaWCUaahZbW7PW dqrHbm0lPd24rl8//LliVPzuXPPnD2fUvWDkyNjd6etMUYUKxnXz5sCgQea4kb5fT0sx0EWLAn37 mhnkDz4ASpUyv5ucDJTXXAN62a/GCzMNeGtbbsxhq1b24Xff7S1/ALjhBvO9omXr1uFxp03znm40 uO8+OZcvDxw6pJi0KVDjY+vWrZGR0RriQymB8HEb73MBrAUwCZBdP6Pdzps5ti1NdUybZoSvWmWO l5UVnsfTTzNffLF9WmlpRniBAvZ5Hzlifufjj83PMzLs38uf38gvNVWud+40x2nTJvy9AgWYq1b1 Ros//mCeO5e5f3/vdFy2TM5ffWUf55lnmP/zn/Awa7waNcz3+jbO06ZJHoUKGWFvvMGntr+1lqll S+91YcAA2Y64cmVz+LffOn/zvfdGV9/0+uJ2DB8eOU6fPsxbtzqXzUs+e/dGjvN//8d89CjzJ58w t2ghYf/8Y9SVY8eY1683v3PFFc7pNWvGXLo084QJ9s/Vu88+a+SxZo35m44di+67v/2WecUK497a 1tS7Cips3z7mJUuYO3Qwx3300fD3jxxhnjTJPV56engeXg+399y2Or/qKuZy5Yx7fctL3wReAAAg AElEQVRtuzQnTGDu2tU5vWnTmOfMkeu+feU8ZYqkc/CgEW/FCuZvvjHu69ULz+/1153zadRI8vK6 Rfjx4+Z71U/q/W9amrTvYsVkG3q9/bZqZX7/wQelDx45Uu6HDDE/f/dd5ocfNocdO8bcr59xX7++ 8c0VK0pYqVJyzsw0vzt+PHPv3sb9okWyDfsPP0RXT1S6DRtKvjVryv2vvzIvXChhhQszJ3o7b38S BSoC+AvA1wAqAVgNIAvA9RHeqw2ACxRYyi+8YN+wfv2V+dAhd2Lr0BmIlSvt4+lhPXvKYZeWHrdd O+b33jPuFy82OkQdU6eG56mur7vO/P4rr4S/v28f8/LlRp47dxoNHWBu25b5kku80UJBMRBujIf1 XScGYtgw82A8dCjz4cP2aT3/vHzL0qXyrQBz585GHgULGvFHj5ZOXmfaVDq33moOu/56529RqFLF CGvQwAhfvVrCmjRhHjVKwpwYiKFDmcuXDw9/+WV3OgLMF10kA41eZ+yOF19k3r49PHzDhvC66vbf 9Hs7ZlfHTTdJ2O7d4XVFH6RUp2U9RoxgPnHCeCdPnvA4zz4r5169wvNQcbKymF96iblaNffvUce3 38qz+vXlftYs49lzz5kZIj0NhbvvDs9nxAh7Oulh1kHNLg8vx6RJxnt29Xf06PAyquPkSXP/MXeu e5mZwydQ+jFrlvGeooEdA5GVZW7v+mCqwpwYYID5t98k7n//K/fz5xuDMMDctKk5vj4gL1jAvHYt 88yZBgMAyHiQkWEwcjoT27q1cV2kiFFWxeS8/z7z5s2RaccszADAfM01Rpgqe7Fi9nVV4aefhFFX cKOR3cEsTMe+fXKt2mJGhpHm778znykMxP0QJ1KZIcZBfVRmhPdqA+ClS5eafmTevAYhlyyR8H37 pMNzIrbCJ5+YG91jj7lXlq++ks7QLi09bvv25sFAn4XocGMgrNdOyMhgvvZa4f6ZDe710UeFO9Zn wAMGGNcffWSfnoqjv/faa0YDAYRR06EzEHfcYXzX4MHMs2e70/Tvv8PLkJYmnP7x40aYGujKlmXe ssUIr1PHnP6mTcb95ZcLU6I64Esvte9M1bfu2yc0U1BMZbduRlinTubyqxno8uUyI7XWt7VrjW/W 66p+WOn599/MJUow33671MsdO5iTkkT6ZNe52NFVPypVCi8LwFy8uOTl1kZuvFHCDh4M/086A3Hl lczz5jFv3CjfY6WbQokS5ryysmSgAOwZiJEjpU4rZGUZ786d6/zd339vxJ81y/yeHazP7rpL7j/8 UMrHHC4lUli8WO6TkuzTsubhdpx7rkjbdBw4EB7vrbecGQhm5v375ZrIvkx63WA2mGV13HOP9GOA NwaiXTu51xkInRnX82/UyLnczEY/vHixpK8mNXofVLWqxFWSGCdaHz1qDh83znj211/SBlS/onD4 sDAxx44ZDHudOuFp79xphKWnS5jOQKSkSJia/OjvOtVDZmnvVtoULepcZ6xQDERmppUmiWUg/PID MZFl++5bAaRCdCMYwJXZTVutP5UsaazdKvz0E7BsmfO7efLI+rLTeuzcubJ+mD8/0K2beV3PCqtC o9M6nFVjWSGaNdm8eYEffgBq1JD7xo2BMWOA4cPD9Rnat5fz/fdHVqxSijm//SaKUbpmdL16zu9N nQoULizXx48b2tp2qFwZqFIlPLxYMeDNN80Ki8xy3rULOP/88HeaN5dzpUqGnsCCBUCtWgY9ly+3 1yEZOhS47DKpNzrNMjPlrP9PVQ5A1v07dpSwWrXMFi1t24qCqW4dYVduIPx/V6kiiqOffCL1snx5 Kcull4oS7dixwI4dkS1o/vkH+OILI32lR/D226KotmmTPf11qG+3q8N6ufPkET2JypWlXg8ebL99 8Y8/hqehaGpX7x9/3KxzQQQ8+aRcu5lUq/ISyVp3tHoOqkwNGwLXX28OA4ApmtqVascqj0WLpK7F gg0bgAMHzGHJycB558n1W2/JOZLpXokSwOrVwJYt7vEmTpSzTp9x44D33/em8Fi8ODB6NPDOO+HP vCh233yzHD16GGF6fShe3L6vVZYz48aJvpoTChY03yvvpCNGiEL9wYNCywEDjDiFC4t+TIECxjco 5XUdug6d3bcOGQIcO+ZePjvYpaX67mhgrfNO+lN+wc/tvMsBeBdAJwDHspNW5cp6us7xGjQArrSw KHbx1aChsGiRVFI1QAGi2LRjh3NeSUnmtJ3KVbmymZcEpDEuXeqcdiQQAQ88YDBCd95pPLv4YlHu 6dMncjp1Qi7Ty5Y10vWav1J+u/lmGeT+/RfYo7kHm+Jd5/UUrP/OCl1B6dFHhdEoUcIoE+CsINq6 tXS2VigmSlfqUkpgGzcCq1Y5l2fGDFGU1el2zjnAzJmilX7PPUa4VfEsErp2lU61Z0/75yVKSH06 7zzglluENv/9r/H8oYfkn6jOVOi0GdLk3z8Vr3///vj66yS89FJkZkXv9IiAp5826K+jWrXwMDcG onLlyuhqcVYybFh4OwWMugrYMzzPPGNT8BD69TMrA6sy6d+l08BN0e6aa4ShjBZz58pgZsccfPSR tOuLLpJ7q9muHaN+2WUG42GF1dpK0f7qq4EuXaTOq2/Q+1g7PPIIULq0OR3A2RxTZ8SIxE+BYoys zwGD8bWzoEtKsv/XxYrZD5ht2kif/sQTRtiJE2YGRof6nkj9n6onHTqYwwoUkP+q2p/T/9Bhp0Sq K9NWrQosXiwTCjs4tadEO1Pz0w/EeABvMnOMfLpg/nyZZSrEasrYpo1xbTWJyZtXGlQ0MxidgVCz F6945JHIg2U0GDjQuM6XTwYw1Qm5oUsXYOtW51mzDittypeXSqy80BUpYnQwgNH5WjsKN3z5JbBi hfNz6wCmDyYjRthr4UdCtWoy89A7FyVdcTLPbNgQmDw5PHzYMODzz4VZadYM+PBDqWtr1kSWAjjh xRe90bBuXcPiwA4rVgjjCpgHeCJCUlISXnghcv136oCtsGujbt+QlJQEsmROFJ5O7dpAaqphtle6 9HE88MADuOKKK5CcnIyiRYviq69qYeTIUThpY7rRvz/w3HPh+etZZ9fp2j33mBl6heRkkWS5SVQa NhTJ4o03AuvXi6RRza6/+krqVixQtFfWRe3aGc9athRG/Iorok8PEEmtwpNPmvtZL2ko2jdpAmze DDRq5L0caWn25t5EwuDFG0qSpjPqCjfcYLS/f/6RydT69c5pWet2x47msFGjROr1yy8ykbGibdvo y+8HorKOJqJBAJ51icKQ5YoWAIpAvE8Csi9GTLAOzl5EbjpUBdUHl2LFxBQmO3j1VeDrr+W6QzZ2 GX/55ew7hIlWdKvM8c47z15sFy/Urg08/7z3+MnJ9psjVa4sEhs3/ww33RSbB9HChYWJ0jFihDAA TlIDq4heIcXGgooIqF49+nLFG+efb4jh9Vl2nz590Lt3b8f3lJlkNIwgEbBwoQyACm4SiLVr1yIp wsxg3z6Z6RUqJGbSDz4IZGQcQ2pqKlq2bInKlSsjKSkJixYtQkpKChYvXoxJkya5pmn3TfnyydKS nfTDCz78UM4DB8osslYt4N13hcGLpp2qCcDQobJ0eeON0bdza/yKFUUKZ62POiMOGFIJp9mv1TRd Yfhwb+UAjHauSwyjMbXO7Shd2jyhskKnydGjhkSKWfojJcUoXtzerLxfP+BZt5E4QYjWvcoQiGTB DRsBNAFwDYATlpnFb0T0ITN3cUsgJSUFxcOoJluXRtuImjWTpYkuWo5LlgArV0aXjkKTJiIVOfdc 46d7tWm2g92MKFZ49e7Wrp2sjVeq5D3tWOzos7NMo+Pdd4XrT5Sr1uRkoFOnxOTlhKNHj6KQy5pC NAO6glpuuPVWIywpKQn5XRbbY6W5dSapBAJ2ouh8HjIpWdJ8L46ISmDRIvPGvg8++CCKFSuG0aNH Y9iwYShrHR01ODE1dssyCl7bgfKFkpTkrAflBSVKGPogkdC0qT0DrteVyy6LnM5118ns3olR8LL3 hZ6nrkeg0KePMCheynMmQtWj5s3DdTi8LIEQAZ99NgVTLGvFaWlpcSqhR/ihmQngPAD/0Y5mEIuM NgAqurwXZoVhaJfaa6Nu2yammm+/Hf7MDxw/LtrPzKKV++KLZhO2nEJmpuHXIlpMnjz51LUTnefN i6xZnJuwaBHzjBk5XQpn6DTv168fExGvWbOGO3TowCVKlODatWszM3NqairffvvtXLJkSS5QoAAD dRmYxcnJRlr79+/nnj178hVXXMFFihThYsWK8c0338wrlNlOCJs2bWIi4okTJ4blrdC5c2cmIttj wIABzMycnp7Offr04Tp16nDx4sW5cOHC3LhxY56vTBlCkPqSxSNGjOBKla5goAAXLlyGW7RoYWrj lSpV4i5dukT9PU4YMmQIJyUl8VplkmJDc2axKgCkD/ECQKxsvODkyXDN/nggmjao/A989118y8As FmGLFzs/b9BA8u7YcTKnpUWXdqL7GeVv57bbElcGZereo0d80126NLFWGL44eGXmrQBARC0B9AFQ E6Jv8RgzR+EY2sCtt9qvI1esCNxxR+xljRbnnGOI0vPl86asmAhkZwObKVOmoENoHeaLL8I1xE9H +LEGGk/oNFdSuvbt26Nq1aoYNGgQmBlr1qxBw4YNcd5556F3794oXLgwHnlkKoA2yMiYAUB8Xm/Y sAGzZs1C+/btceGFF2LXrl145513cP3112PNmjUo72JOREQm/YMePXrgxhtvNMX58ssvMXnyZJQL TSUPHTqEcePGoUOHDnjwwQfx77//YuzYsWjRogUWL16MGiFzoQ0bgGee6YqUlImoU6clNm/ujqZN TyJv3oX45ZdfUDukiWvVf4j2ezIyMnDo0CEcO3YMS5YswdChQ1G5cmVcbNHI02kOyNLAjBnR7RXj VQKh2mNOuBdW8DNvZRHmBPWL0tKmoFixbKzxJgDKrba+BFqokKFk7gcKFxbLuuxIp3IF/OJMANwO YB+A7gAaQyQQ/4vwjqMEIoB/aNWqVcQ4ym753XcTUKCzADrN+/fvz0TEnTp1MsW54YYbuFatWpyh eYtZuJAZaMhJSdVOhaXbOCHZvHkzFyhQgAcOHHgqzE4C0b9/f05Szg1ssH79ek5OTuYWLVpwVkjE lZWVZSoTM3NaWhqXL1+eu2mOIb777jsmIk5JSeETJ8Rm/t9/w/OoXLmySQLh9XsUPvroI5OkpF69 erx69eqweNZ6fvKkvfM3JwDM+fJFF793b+/xvUD5RPGC6dMl7rp18S2DFxw4wPzpp976FiuipXM8 cORI7BLc3IQzQgJBRHkAjADQk5knhIKzoSkQIKehrC4C+AMiwkMPGdvFHDhwAPPnz8dLL71kWtcU BbjmyMoagB07dqBChQomHYKsrCwcPHgQhQoVQrVq1bDMzTFKBBw9ehRt2rRBqVKlMHny5FOSAiJC 3pAyAzPj4MGDyMzMRN26dU35TZ8+HUlJSejbty/y5xcrFS+I9nuaNm2Kb775BgcPHsS3336LFStW 4PDhwxHzyZPHXwXXPXvc9Sliwc8/e1fwbNdOyuCmzOcXkpPFImNcDNsnrl/vfbOteOF03LE4N8Av M87aEHfWIKJlRLSdiOYQ0VmqMhMgQGRcqO1Ctn79ejAz+vTpgzJlypgOoD+SkoDdu3cDkEF8+PDh qFq1Ks455xyULl0aZcuWxapVq7KlVNWtWzds3LgRn376KUpYRsKJEyeiZs2aKFCgAEqVKoWyZcvi iy++MOW3YcMGVKxYEcl2mn0uiPZ7ypQpg6ZNm6Jdu3YYPXo0WrZsiRtvvPEUfXIKpUtnT8HaDvny RbcZXk4wD9nFRRfZK14GyH3wa5PbKhDTzX6Q7cE2A3gKwPdEdAkzH3R4rwAApKam+lSsAHZIS0vL 1kw1QPTQab4j5LFs3bp12LVrFwBgzZo1AIB7770X9R0cXBw+fBjLli3DmDFj8Pbbb6NNmzbo2rUr ihcvDiLCkCFDbPPZtGlTWJj1/0+ePBkff/wxBg4ciIyMDNPzOXPmoG/fvmjatCnat2+PkiVLIikp CePHj8e2bdtOxT106BDS09Mj1q309HTs27fvVDyv3+OE6tWr4/Dhwxg1ahTaaU4P4lHPy5Z193Yb wIygb0kstLEzyj2XYwNxFHLpKPxA1AHwIYDuzDw29G5+AFsBPM/MthvYEtE9ofcCBAgQIECAALGh IzPbuLuLL/zwA7EBoeULyD4YAABmTieiDQDc3IV8BaAjgE0AjkdZtgABTlc8CFE2vgGA7uLsbQCX ALgTopCsIxmAkuRNAnAYgO4rshmAVwD8poWXBzAbIhn8wpK30gcvBWAypB0/ApkUWDEYQFWIWbbC 5ZC+YQeA1qGwOgDeATAFwFCbdBQ+D5VT7Vbg9XuKA7Bbo3kGQPtQvDh5IwkQ4LRAAQCVIWOp74iK gWDmfQjvyMJAREsBnABQDcCiUFg+yIdtjpC+71xTgAC5CUSkdl1Zycz7tfD7ASyEtIn3IIN6OYiT tnOZ+cpQvKkQc+nHIO3tCggj/jeAw8y8LBRPuQ7brIXtAADtfhpkYJ4MwOqLcCUzryKiSQDGAegL YUSqAHgIwB8Aiqi0ACwjokaQ/XCSAcyF6F01BvAdM78ZyjMdwD6tDF6/5wkIk/BZiDZFAdwEYTZm OUk6AwQ4w7EocpT4wC8/EP8S0dsABhDRVgjT8AxkNjPN9eUAAQIAAJg5lYjqQiQG90OkA7sBLIcx WweA/wNQCMA9EGnFUgC3QGbsVgmCnURBDysNsZiys5kYAGAVM08IbZb3EIDmANZABvg7AVxreacz gBUAHoBILtIgUgS3Ts7r9/wIYabuhjBWJwGshehdveGSfoAAAeKAqHQgokpYTDkHAbgXQEEAvwJ4 kpkDDckAAQKcAhFtATCXmR/M6bIECBDAO3zbjZOZM5n5Gcg66Oeh81IiWkFEtf3KN0CAAKcPiCgv RLKyN6fLEiBAgOjglxknAICIkgH8BOBbyNrkXohS2BngLDlAgADZARE1h+ySVwDSRwQIEOA0gm8S iBB6AdjCzN2YeSkzb2bmb5g5bIdzInqUiDYS0TEi+oWITncv4QkDETUmollEtI2IsoiotU2cF0MO vY4S0Twiutjy/BwiGk1Ee4noXyL6hIjKWuKUIKIPiSiNiA4Q0RgiKuz39+U2EFFvIlpMRIeIaBcR fUpEVW3iBTR3Ry8ATQE8x8yuDAQR9QhJL9NCxyIiamGJE9DbRxBRr1D/MswSHtA9TiCifiEa68ca S5zcQ28//WRDtLKHApgKYBeAZQC62cS7C2K2eR9E8/sdAPsBlE6EP+/T/QDQAsCLkN2VMgG0tjx/ NkTPWyHmdp9BNNrza3HegpjPXgfgSoiS20JLOl+G/mFdAA0ArAMwKae/PwfoPQei21MdYiEwO0S7 ggHNfaN5y1A9vwjAxQAGQiy9qgf0Tgj9r4JYuiwHMEwLD+geXzr3A7ASQBkAZUNHydxKb7+JcQzA UQAvQXbk7B66v9cS7xcAI7V7gjideianf+jpdgDIQjgDsR1AinZfLPRv7tTuTwBoq8WpFkqrXui+ euj+Si3OTRDN9/I5/d05TPPSIdo0CmieULrvA9AloLfvdC4CsW5pCmA+zAxEQPf40rofgGUuz3MV vX3VgYAskSxmZrXp9Qoiuhxiu/0BcMo/RB0A/0dEpUIfsgnCHbUgom98LuOZiCqaompFiAOh7Rbl 1T8A3EZE6yGzi7wA9lri7ATQnohOQpwDHQJAWpx9ELO6DkT0g3+fk+txHoQO5UK0CWjuLwjAjQAK AzhIRLcioLefGACxojsIYSbKBvXcN1QAUI2IdkMYgZUQk+Rd8EbvBhB6L1cPmXktiaXTNQAWA6gP 4AAzL9fS+AZC76sBzPRcWp+5qU0A3rWE9QDwj3ZfAcINXQ2x++bgCI7gCI7gCI7giPm4xzLu/gpg UOi6N4BUm/F6F4CHcpME4ieI+ERHNTh7o9wEAJMmTUJ1P/fZzWEwA/v3A6VK5XRJBCkpKRg+fHhO F+OsQkDzxCOgeeIR0DyxSE1NRadOnYDQWOo3/GYghgP4iYh6QxQprwbQDaILobAXovhXDqL3gOrV q6N27dPLVcSrrwK//AJ8+mnkuCNHAk8+KUyEZZfkHEHx4sVzjN7MwMqVQM2aOZJ9jiEnaX62IqB5 4hHQPMdg3Ui+HGTZCKGz1SojD4CSWhxP8NWMk5l/A9AWYuudCtlpcxEzf6TFyYC4qr3Bz7L4jV69 gM8+8xb3p5/kfOiQe7yzAe+8A9SqBfz5Z06XJEBuQJs2wIQJOZP3woUiFUxPz5n8cwKzZwNEwNGj OV2SAHFGPXVBRNUgm1j+HAr6GUAyEV2pxb8Bolv0azSZ+O0HAsw8B+IHfyuA3yEKH1YMg0glWvpd ntwAIn/TV0skpwP++kvOp0t5A/iLmTOBLl1yJu9hw6Qe7j2LfGJOnCjnfRG3SIwPjh8HChUSZi2A r/gfEV1PRHUgG9/9xMyLAYCZ/4Ts1vkeEV1FRA0BvA5gCjPnHgkEABBREcj2vN1gbD9sAjNPBfAU gIf9Lk88sWaNDNbRIpZ3vOLIESApSWZSaXYbHQeIiPR0YGmwCfRZB8XY+9k+/cSttwJVqkT3TqK/ ddcu4Ngx4M03E5tvbseqVcCjj8Y1yYUAPgHwPcT083bL83sA/AmxvpgNYAFkc7yo4DsDAWA0gM+Z +Tu3SCxb+94ar0wzM4H33pOzGzIygPHjvTekWbOko1m5ErjsMmDs2NjL6Ick4p9/jGu7JZJ584Cd Fh6zQ4cO8S+IR+TGTvvZZ4G6dYHDh7OXzqpVwDcORsg5SXMdR44AGzfGJ63WrYEff4zt3ZMnpS36 iUg0z4110Q21a0vfpfDFF7H/S7+kok40P11onCjcd1/cmarBzFyamYsyc3tm3q0/ZOaDzNyJmYsz cwlm7s7MUS9k+cpAENHdAGpBzEbiisOHgddft6+IzEDXrsCDDwJTpwIrVshhh9dfl7heRWpjxshZ id7XrYu+7H4iSfujdrRp3hxo1swclhsGs2g7lMmTgcI+ObpV+hjZHdBq1ABuvFGuf/tNOumRI+U+ WpozhzN+8cBtt0U/a7XDd98Bn38OPPJIbO/Xrg3kz5/9crghEs1V2/FzcDtwQJi27EAxtsuXZ3/W 6vdAbqV5NIzKvn25r3/1C4ouWVk5W45o4RsDQUTnARgBoGNIUTJqpKXJgGe3JtmvH/D448Dq1XKf ng68/LJ0+pMmAe+/L+H794uSXq1a9nmoWfrx43rZgcGDnb5LztlpeH42Wr2BOlVGXUrhhK+/FlEj APz+u6S7Y0f2yxcvvPRSuOLXqlVSVivWrAFuv9174/RjJnpVaGeXUaNie3/YMKBChfgr3ka7Fv3v v0C1auEd+w0hFehYabZqVXgYEfD8887vbNokcX75xQgrUCB2JUz9v588CXTuDGzdGltaOjIzgXPP FWlUyZLOfZEXzJwJFC0q367KGg+4DezHj+eMwnft2lLXvGDbNv8lWIlAJIl5JDz+eHzK4RV+SiDq QPx5LyOiDCLKgPjmfoKI0omcq2xKSgpat26NJk1aY948OU+ZMsUUR3HxiuAffgi88ALw8cfAnj1G vMce81ZYa0N8/XX7eGqWEg9O8d57nZ/FWpF0CYRTGSPNAtauBW66CbjiCmnAM0N+yZYvD4+7bVts nVhGhnTO8RSd1qgBXHllePjTTwMzZsjszwu8MBA//STxohUZx9rJ/RzSn85py53ffxfm4b337J8z C8Mfr878//5PzgMGGPVQYeVKOX+rbcN14oRMJGKB/t/XrhUFw/79Y0tLR3o6sH07MHCg3K9f7/3d rCwZFDaHPOfMny9nJY2Kph/asSO2JY5GjYDixeV62TJnaW408NJnbNliH75/P/Daa+Y0zjsPuP/+ 7JcrVmRlZa/Oq7oXTb//2mtTQNQaTZu2RuvWcqxenRJ7IWKAnwzEN5CNhmpB9sGoCeA3iEJlTWbn KjR8+HDMmjULPXvOAjAL3bvPiih+7NpVzunp5kHUK6yl0SUSOlTaCxbI2esAmJkpHZLe4FUaVixY AOTNK51YtNC//cAB6bSs36bKPHOmMF5WKOXLv/+WwcLpGzdskIb7wQfeypaVZUgIHn8cOP/82Gf7 0TAesc7S3N77/ns5r1njHMcOJ0+Gh/39d7g0JT1d9GuYgbZtgenTJTy7MxRrWdxMFg8dch6gTp6U Qd3aTpiBMmWM9hgv9O8vJp52sDJVsTL3X30lZ2Z/pFCx/Lvdu2UyU7ky8L//hdf7aMpXsWL4cpV6 3+1/6QrFdepkT4ISy4TB2mZeeAF45hmjfxw9Ws6qjbhh9Ghg7tzo8vdC4x49jCW4f/6R71y8WO6z sgwG0IqxY8UXkBMDwezMcCYndwAwC82azcKwYbMwa9YsVKmSWKddvjEQzHyEmdfoB4AjAPYxc6rb u7fcIh1bLI2YOTYG4uhRs9KcmklZxfYqbVVp3RrEkSNG5/bxxyISnT498vcokaxanrHi5Eng5puB P+wMYjX06SOHnVgfkA5ZnJYJV69Mubw2ckUblb7bd73xBpAnj0gINmwAfoiTd3s/loPU98+YAdx1 l3vcW6NU+92xQ9JXuhEAcPHFwB13mOO98QbQrZvoTOj+RewYkFjh9G2XXCLKecWLA889Zx/n889l UH/7bXO4+h92jKlfsC43ZmVJOx00KDzu0qUyKNtBMc56H5Kd+vXHH1I/1Mw0ln+n92W6Q0dVrljK pyYFev/x9dfRpxMLYimvrlfzzjvAW2/JteqvlfKhl37rscek77TD6tXh/+iKK+ylmlaoJXPAkNAo hnTUKGEA7co3YABwULNNzMyUvnjbNrn/4ANpj0raZofnn5c4QOKVU/1WouxNRKRNM1oAACAASURB VIuJ6BAR7YJsP5oc6b1du2TwtiN4VpZUdiW2tM7S3RiITz4xro8fFwVLlcftt8va4rJlRj5lygjX rlC/vjkN+Ubn77jgAumEu3UzZmpjx0bmlM85R85OXi337RMu2q5z12dfKk8vlapUKaB0abn2ykCo dJOSpJG7MW6q0QPyf63QlxcGDwaWLAmPs2ABcM015jIqa5vbbjPHzcgAevYUBi5WHxMPPSR1pECB +Cs3Wa0zlHMxBdWpWGf42ZFA7NoldFMd3IwZ9vHWr5fZLiCa/XZQ5cjIMGZagHlgszIX8YZTvc7M lGd9+4Y/q1sXaNjQuM/KAl55xSwBysqKXalt9Ghjtvncc0I/xbDE8u+sbco6qYqlXiq9gmisz6xg Fn2O2bOjf08/K6SnOy8BvPeeobTeo4cRbseQff21WSK1ZQuQ6jJd3bpV2tqePcIsPPGE+fnq1UZ7 2bLFWTJtpwCs/pXOqJ04YY6j+nr1HzMzgUqVRLK7YYOxLFOzZvhY5zQ+JhJ+m3E2hjiouBpAM4iX q6ZEVDDSi06EeO89WZ9XYp277w5/L4/ViWcIyoICkNnJXXeFr3HWqeOc/68efHT16mXoZ6iBa+xY 4IEH5FpxpTr++cdcyVRldJrF5csn51mzhPE591xxvjNqlMxmFdQ3WCtatGJEa6eVliZSEj39d9+V 682bIytbKuVMHYoBGDtWzCjr1QtnkJ5+WvI9edLcwT/4oNBCx7x5ong4aJDx3/ROq149YUIPHhT6 z54tjXf79vC11xMn7EWL8cShQ+aOT9G2dxztl5SkyI5xOHxY6KGYVrW0sXateXal6K7rAulOiPRO 7mHNq0tmpnmW2727mal0g5XhTksLV7p89lnjWtHOacavi4QXLBAav/aa+f1YJRCPPSZLTvq7qjz6 QOaVmbBatVjbYnYkEVb6ROMN9uRJYfpV/8ksjNgllxiTuwkTZCJ44IBRn5z69XPOcZ/p2y3nHj4s OjLq20+ckLFB9bWADMb/+Y8wJ1bfLsyyjFqzJqC2XnIzpaxUCejY0f6Z6pN1TJsmkgP9mdU0PG9o MwlFn8xMI86IEea4Vkaoe3eE4YxiIJj5Fmb+gJlTmXkVgM4Ql5p1Ir3rRAi7wUkfkJidG5O+3hvJ lEpP49gx53V+fUYHyJ4Y1ap5H6QHDBBJxeWXG+WKZM6ml23GDBn0JkyQ5Qod+gB/9Kgxy7eW7aOP zPfWiql3WvPnA8nJIglQnWBSkszSARHV6VIbaxrWb7By9L16GddWEbRqbDoX71RPVPgrrxhhmZli RfDSSyLheP55oGxZoX+rVrK2e+659hYB1nx0Wi9fHh+RfY0azvkpeB0oDh9270ys6RQtKua97drJ vfovGRn2ymlOy4vW+02bpE28+6507kqyNGaMu8mn3j6tyzutWwut9HY/eLChYGj33Vu2GIqoOtSs V5e0rF0bnQRi9myzVM06y1Q00QcPJ8mOFdOmme/t2tGOHYZHyWhgXR6LZv9CxXyoerJ8uTBi69fL OSNDJjWdO4ukQjFVip529VhNopYtA66+2vwsPd2wPFEYOFDasHVgtRsjXnxR9CZ0qAF6yxYzE+wk ZQDs/bqMG2cv5VR7/OhLZuvXm5ePrAxgmTJGXOu/1hlwp37gjGIgbJAM2Wo0olA5K8uYFejEsiOc PtPJynJnIPbtk0Eikk29/iMKFRJHH06wKhWp9Ssv0CUghw4BRYrIkocbnPzWW8WdaoAnEtFtyZL2 71ktTqw6E2qwZAaaNjWXV6XvxDBlZEhDd1LWs+ZttwzCLJ2E4uR79TIaoFODsZvhZWUJ86BE24UL m8WmTjonbvkAYm6mdEmU+NurYqkOXdHKKb+0NHtaHj1qHlCLFpVvVdi50yyJcVLqipS/VU9GWSw4 4a675H8py6g9e4Avv3TPG3C3FlDrwVa9ajWQ2JW9Zk2gQYPwcNVX6EtmrVqZ67wT/vpLvqdVK5md KjpY24JdeWLV2Ldj3NasCbeQSkszT2yiVfaNhEKFzOXRvzFfPqN8ailuzhw5R/ruESNECqwvi6n3 rFZUVkZNwc5KZN688P9iJw0G3KVDdnnqEg/m8HLqEjSlfG1ldu3+j7W8b71lMMFO/WSiXJIrJIyB CJltjgDwY0ih0hWHDhmNQhft2jVo3YwLcDbdZJZ1/u3bw3UZ7OJ6gZ2iVqxQplI6tm0L1xlw0oK2 VirVWGvVMnPpROY0Fy0yP3OC9ZnyaZCU5G7p0aePsYap4OQgxq5hTJokYkjVyN54w3jm1NjtOu2s LPMsJhplW5XPBReIboQTlAKsvlzmBKLwfxlJJH311faKm0WKSKfeqZPxrlrW2bFDfEj06yf3R44A F14YuXx2UJYQ+kCW4mI5pmaqivlLTw+ffduJzt0YNqclStVx29UJXVEtkrM1wJDKWZ9v3GjoSVWt augTnDgBXHqpXHvRU1DSPKuEwSus5dL9iyxcKFIaVbeWLhWvubFAby9O7t2XLjUcpAEiKVTfbNXt UYq7el+i9z9OdSkzM5yOTv/u8GHz/waEeba2d6V/YIXd/1K+iE6cMC/9WMvw+OPuk00lWVNSZrdx RqepQoMGwNCh9vE/+MBev8xP+L2dt443AfwHQMNIEQHgqaeM6379gBYtZPDXXbcq6M5e3GzA9VlG pCWG3OIR7Lzz5KwqmptSoLVjdVoD3rcP/9/eeYdZUXN//JtdegeRIqL0ooJKsaGIYAEVRBB0EVF8 FbDLTwRFsaCvWBBEeRFEFFBYRUAFRClSpIrsiiBVem/LsgtSlmXP749zw2Tmzsyde/fOvQvk8zx5 ZiaTSTKZTHJy0lChQvhxsabZnMDi5AkJzullV9ivX2/v/rvv7DVDUvhR1/eQhOrCsNqpBbbTMtNu /u3YYYz3sKOJp9xtYG0tffcdFzLW/k+VWbNYbb54MQuw+/ebZz/I7hT5/a2tEqswFwkyPULtQCsr W1l4nzpl/jbTpnEL3srXXzuHm8+h1Hr1VXPcnJBxycxkFbsbavdDQoIxDVKqpb2sLWL3H548aWjz iPg6f/7QQq1duWXtt2/alLsZJY0ahY6jlRYteHqxqqmy80dqN1V++83+G6xaZWiPJk7k63r1vP0z OTnBfrp95+HDg8uLWbOM8+3bnfPRnj38TVStjtq1kD8/a06ffjpYWFUbN3ZIQaR0aT6GsyaIRK0b Vaxam1gQEwFCCDEUwJ0AbiIiD+sZ9sSsWebm+LXXJqFs2aSQO+W5dR+o6rNQGga7gX7xZssW92WH rT+M3cJPuWHCBHt7IezT85lnjFkTKk593x07Bttt3Oj+rZxU8XYqwRdfdPYnFLkRKMNZwbNPn+C+ XjvUStepy0tWXNZKSapPw0WtCDdt4qPdbBk7ZMWXnW1OS6cCVB3UqJKYaD/GRsXuW6l5NCGBBZuG IUdiAcnJXCH36WOucMqVc35GCNZUyRVf7QQI2eUlKVSI/5dQK5XK8TlqWWY3KFa2wL0unia5+WbW YHjVwMp8YMXuG6hjfIj42utgUjsNhNtmgaEGH196qfO92rX5+zktZAXwt3r66fAX1ZJ5IScnGt1K yQHDsGYvxjsoEpGvBsBQADsAVPPgtgEAAlLIGA7pjylQwF//o22IiKpWjX88nNIyf377e1demXv/ +/QJz/2SJdF/x4MHiU6fDv2N4pH+TZo43+vaNTphbN9O9MADkT//3nt8HDuW6LHHDPtSpcL36+KL vbvt2ZNowACiwoUNO6e8Gi1Tv775+uefvT1XqhTRH38QffIJnSG3cWnVyt93dTKbNnlzN29efOIX DZOTE/4zjz7qX3yqVSPiuhMEoIHfdXsge/oqPAwDkA6ezlleMYXiLUCcbUYtAM8mc9llufejUaPw 3E+YEP33mDOH6IMP3N3ES4CIhbn0UqJChXLvz9ChRDffHN93yZcv/ukZylxxRfzjoI27+eqr+Mch 2MRWgPC7C0Mu+6Eu2pwDoCuAscHONU7kxS4VL9jNjw6X5ctz70duad7cfXAUkLsukrxOqFkbXvG6 N42fRHM1T79wmxGkyRs4dbOdT/g9CyMJQBaAhwHUBfAZuJNmus/has5jIt2NMRRjQ4i8Awf6E65G o8l7uC0vfb7gtwDRE8AIIhpLROvAGoljAKK81Y4mrxKNnfvCZboWTzUajcZ3fBMghBD5wStOnlml gfuIMRuAzdh8jUaj0Wg0Zwt+aiDKAkgEYF3aYh+ACFYh0Gg0Go1Gk1eI9VLWGo1Go9FozgH8nIVx EMBp8LRNlfIAQuxE0ROAdV3npIDRaDQajeZ8x7yQFBPbhaR8EyCI6JQQIgVACwBTgDP7YbQAEGK9 tcHgJSE0Go1Go9EEY9eoToWHza6jht/rQAwCMDogSCwDqxaKABjtc7gajUaj0Wh8xJcxEEKIS4UQ nwN4FyykjAKwCsCVAO4gIpttkTSavM1zz8U7BprcYrfjrUajiQy/BlHWASAAPA6gFoB7AaQB+I2I 8sC6ghpNeFSrBvToEdqdJm/jtANjJITa0VdzdvLQQ7wbqSY0vggQRDSDiP5DRL8S0VYimgZgIIB2 foQXDuoudppzg/LlgcqV/Q3jq6/styaPNU5bH6en80r40SIaS5B7xW1nxGijfsPHH8+dX//+m7vn vaBuIx0JH34YnXhEizJl4h2D0MQy75/txHIaZykAh8J5wG7L3P/7PwfPS3nz09oCSbYMYv3sM/vn nLZMzg316gFdu3p3/8IL0Y9DbrjqqtiF5VbJCOF/a/CGG6LbegWAbt3Cf6ZwYXt7r/nfCxddFNsW 2LXX+ud3gQLm6yJFjHOnbeXtULdEX7IEWLSIvwURb8UNAGPGRB7PUOG+805kzxco4Jxn4kGsu5Bm zw7/mcqV7bcZf/VVb89b81wsaNUq9mECMRIghBA1ADwNYHg4z/33v8F2dvvMA+FtkLNrl3H+wAPm e3YV0ahRwJVXevffK+XLA088YVy/9567+4EDgR9/jH48IiE7G0hJiV14JUq434+FOtmLBqJYMe/+ Va0afhwSwvhja9Uyzr//nvP9mDFAjRruG3/t2mVOz6VL3cOpWTN0XNwq6wpRXlbuvvuMc2th3r27 cS4rfi80a2acX3cdC5RWQm22ZmXYsNBu5Hfo3Dk8vyWJid7Lxg0bjPNGjSILLxR16vjjrxORCMKv vGIWIC69FNi/H7jrLrO7DIcZk5E0DHJL0aKxDxMIU4AQQgwQQuS4mNNCiFqWZyoB+BnAt0T0hbeQ egJogylT2gCQhlUFTi3RcHb5K29dmUJBFtDvvmvY3XILULCgd//DQRWIbrwx+P7//gdMmgQMGcLX bdoAjzzize9oZ6rSpY3zxMTwKjOVSAonJ9U9wK1AtcJ75pnw/fdCKA1Et27AihX2gy3tNtqKJP1C CUotWxrnaiVXvjxrFrp0Af75B3j/fW/h3H135BoCNa4ff2z/706fbv7XooH6naxCQqFCRtdFOP90 lSrO90IJt3ZUrx5c0ezYEexOCq2R/mtVq5obKW6oguCSJUCHDt7LGq+EI7TFi/z5zUKXENyVZP33 nL77J5+Yr3/6KdiNVZCSQnTTpuHENBmyflyyRNaTPcPxINeEmy0HggdIOpm6ADZLx0KIiwDMAbCQ iLoH+ebIYABTMGXKFOzdOwX79k2BnO/a3cGXAQO8+25tSS5aZJzLH1VVtSUmev+RbrrJ/b61IFAF CLsW7k03Ae3aAc8+a9h5abn27g1MnmxcV68ONHBYWuPWW43ziy5y9jPSQqxxY/O1m4rPbsfLTz5x b92pAsRbb0W+K+bEie735fe5/HL7+/fcw+n80Udm+0WL7Ct+mZ5vvuk9jgkJwNSpzvfHjgXWrGHt UL16wWE58dxzwIQJwMKFfC2FbKta/o8/vMfVmrelQDt+vGHfqpWzir2nTVm4erW92+HDgZdfNsKS qEIvwN/h44+B1NTw8vMnnwDFiwPffRd8b+FCHiMDcHoNGWLWWNixcaM5nuXLAxdfbFw//7wR30jp 3ZsFyiFDgEMhOo/btjXHJV8+zg9feGzy5Ra7LgPJb79xnlYbBk4NimuuMc5TU/nopL2RAq1duavG 56WX+BhOfvn8c+O8fn0+qt0M1sZd+/Z8dCsbly2z2iSBl1iagu7dpwTOB3uPZBQIq0ogojQi2hDC ZANnNA9zAfyBXOy+Wb68eSxEbvqhf/jB3l5tqckfVh2QlpjofWDNiBHu962ZUC08K1YMdm8nsVsH DNqpzV95Bbj5ZuN6wwbWXtghW2TNmpm7d6yEM4jwjjuAhg25W2bpUmC5MvfGLi3r1AHS0oLt33zT WWiUPPig8d369uWfMDUVOHzYe3wB+/RXkXnPqVB3Sp9q1eztrw9sKVe3rtl+3Dhgb2CtVqtAmpDA WgEVWekD3FKqW5eFRTUPhyr8hOAWpyyYP/6YK0s56K1LFy6c7bRHXis5KVDIQr5diCHVduOdLrvM 3m2jRlzBA0BWlmF/yy3mQlkI/qeuvtr8vFXItVKkCJCZae4ekdSsaVRSXbqwsD93rnH/ttvc/XZD LY/+/ju0ezUPy4oLYEFKajHz5WOhdtas4Oe3b+fK2hq+JLcDde3yyp49ofNn3bqcJyW1awODbepK qYnu2NH4xk5x/v57Pj5qUzv16WOcy/JHjXuoPK+WydKtEJx/6tfnfw0Afg1sNSnz6DXXOGtp3PJo 377csAyVj6ONX+tAXARgHoBtAHoDKCeEKC+EcOk88Ea4I+ELFzZ+bmvL0a4PUmZktfUUjuQZqo/P 6lfduqy2WrwYuOQS3v5arRDs+pdVbcj27fajyYmMsG68kc+d+kKtaWrXvwu4qx+lBA0AM2cCP//M QkPv3hx2zZpcud11F7fSrFtuFy3KlZX1Z+/Xz114+/JL1jioPynAhYfdgK1ly4B58+z9ClU4ynQ6 edL+vlM+cUq3Jk24srOrFKVf1oLKLoxatYLtAPP7hCrwrIJ5sWLmynLMGOD330OH44bs2jl2jI+q duB6m/15pUDghcRE1v4ARktv4kTWHFxyieHOTgAAvKv5I8FtEOPbb/NRfp+ZM80Vu1oeOWm+VNRZ G9aBtU89xcL8gQP8j6uaRxl+5crOMyVyO4hbfh8AeOMN4zycMTBSCCpRwshPateY7AZW87tT/pT/ sxDc4FGxE26ln4UKATt3usfTTngXgoXyv/7icvH0acNd0aLctdi/v3NDT2XlyuB32byZNXGxxK9B lLcBqAZetnoHeO+LvQB2R+rh2LHAp596a+2oqlsh7DMQkbnQkP2hdgJEKKHlnnvM4bmRmGiooog4 3PnzjQK0fn2uWMaPB1atsvdDDaNyZbP6UZKQYMRbtuTUHzgx0ZCy5bs6DQCUfbV2wtHatcCRI4bK 9quvuMVl11+4fz8wbRr/8F5Hhls1QtZW6cMP87taBQgnGjc2a2ZUnAboSmQcLrjA/r5TPilePDhe sq/TSThS30dVh0r7QYO4m2LPHuepfl4FiFde8T7C3A6rRiQpyZi1VLOm0R3SowfHqXp1FpzVLgqr sPfRR2a7UAM1ExO5Vbd2Lc9syslhobZAAbPAqHbRObUoa9RwDytcEhLMAxRV+vY13AD879x6q3Fd tiwfrXlLtjQ//dRsX7gwV0yTJwN33mm+l5jI41lUwSKcsWOya3DxYuCbb4AFC1go8cJ//8vdNrLl /eKLnH+dhHkV9ds8+yzw7bfsnxCGYLtqFVegds/IcUHTpnHDRiL/DyGMLiiVRx4x/5+yi+nrr927 ep3ib81vCQlGmSME57vERG8C+RVX+DfWKyyIyFcD4CMA08Aba9UP4bYBAPrllxTas4cc4SQ2G2mf mEiUlmbYFytG9OCDfP7PP85+FijAbsaN4+OQIYYfBw44h6uGbT1Xze7dfCxenGjfPj6//Xbn+IRC DY+I31vaTZtm/0xODtHmzUY69erF5/Pncxpt2MDuOnUyx/2DD4jmziVKTw8OVyLTa9w4b/HPySEa Ppxo2DB+rlEjth89OjhtiYh++42vZZyt92vWtI/X998bbpcsMeyt3ychgeiPP8x2d95pDufECT4f PpwoKyvYD5lPiIh69DA/O3iw2W3TpobbtWvN98aPN/Jws2ZEo0YZ99q29Za+ROb/YPny4PtO3zIU 1vc+fdr+mxDxvezs0H6OHWvvh7w+dMj4f+3+r7//9hZnlZwcov/+l7/bl18abmrXJpo3j2jLlsjT SA2zXbvgeFvdVapktktPJ3rpJaLMTM4PVj/lf7xhg9nf994LL467dvFz994b+j3sWL/euVyU5q67 uMwLhdPzCxZ4f59Nm/iZBx4w22dlBYezYgUfe/QI/Z6SkydDx5mIKDmZzz/6iGjvXj5v3TrYv59+ 4nv9+xt233zj7K/T/yFJSUkhAASgAZG/dTsR+TuNUwjRCqyN6AVemdITF14Y+dSuxESzCi7cQUhu Ggi1a8GN1at54I+KlGTV2QvRXJho2zbj3DrdSCKEeQCmHCiUPz9L1bKV99lnrGqTA8aEYA1DqVKs xrSbky7Ty2t3jxDctyhbqvI7OU27knHNl89QgXtB1c5cd529m3Ll2P9GjXjg2OWX83u88orZXcGC 3A3UrZv5PceO5d9YthYBo2Woqs8BQ1ug5svatbnFLQdTCmGkp3WmQDj5uUwZ/1TzDRrwoMXRo92/ uaoJc+Ohh+zt332X/6XSpd01A5HMOBKCNQBly5rTtWRJ1lK5zbwINxwgvIWrSpXigeHFi7NGx0rV qpzn5D9bpgxw4oT79Fw/qFULOH7cPMgb4K5VybRp9mv6OJGbPEvER+t/YtX03Xsv/+dduoSnfbMO cvw4xLaQoZDdymr87r+f3+PHHw2tsapVr13b7Ec8l2f3TYAIjHf4DEBnAMf9CseKtS/XqQvDCVWA kH2EsgBs0sR+qpWVyy5zno2hxi/SWQ12VKrEhbnbCH0rspKyFvBFi3JfsV26DRxojHa38yvcd7K6 v/hisyrSLq523R/hCoqVKhkFs/pshw7cR3nypH2/fGKieeGqGjWcKz/pXkWqgdW0FYL7c2UXkhBc cZQuzRWcGr9w09epQM0Ne/dypf7OO9yFBBizZwYNil44AHezhZrZBESvsgeMwXUA8PrrwV0B4SK/ mdMidYD377N+PU+xVJk/n6cPFywY+XfOTf4oVIjHJsiugrS03K0MO2xYeGW2ihxE6rbwX0YGd4Pk y8ddIJUqRRYWwN0IJ04E28sGj1r/2KWxFCDsJge0acPdPkTGmIddu8wzoVatAtatizz+ucXP3Ti/ BDCMiP4UQlwaTY+JnDO89UOoBa7bT/L111wBSzc5OcaHV/0I1U/uRlISj/iNtLINhSzMvUBkZHIv I/S9klsBQqVTJ+NcxtWpNauuMOgFOQjKuhKpWxgqXtNEaiDsZvdYUQuaggWNqXeqQBXtPBMJduuo yHhFe7VON3bvDq8v2iuqn+pgv0jx8s285ie7AbPhrR0QWbhe6NmThZlI1sUAeOZEbt4F4HIglPAR afycKFiQB4yrM5TkN69QwV2AkJp2r+NurPn9iivCi2u0Cet3F0IMANDHxQmB14JoCaAYALm2YljZ tGfPnihp0cskJSUhyUaXN3q0MTq5ffvgpaFLlzYGv7jNIujQgY2U7mrXNgbc5FaAaNmS4yHnv8sp ernpwrjhBufZAF65/35g6FDz4EqVcFoB3bsD+/Z5G0GsIn8qddSzXbiNG/PgS6f1IL7/3n7BFi/0 6hX+M14K3unTzfPSAVZVXnyxvdpUVg7Wbg+V3Gggtm3bhqpVq2L06NHo0qULliwBxo17AwkJ/ZGT G8kY3gQkJ6pUqYLmzZsDCG/RgVDTbsPBz5VMvXTHxmtjrkhb+nbcfru5e3Hy5PC6lr79NnpxiTUN G5qvO3ZkzcR99xnlvd03vuEG1iJEIggkJycj2dICynBaHtMnwm0vDARrFtzYAuAWANcDOCnMqbZc CDGOiLraPhlg8ODBaOC06pEFtdVttxDQnDkstd16qzdVVePG3OKrWtVYEMhuSlC7djz6N1QfWLly 5pG/gNFnFY7GwIq6+FUkPPggT3ny2iIORdGioZfidiIry9xytQu3VClg61bjulEjc2VapYr3EeEq oQrQ9esjF9TUhWNkOImJzt1grVvzaH3rjAP1PcMdee32Da+7DpgxQyAhCmqN3AgQCQkJUMuJcKcL 3n8/HxcuXIimTZtCCIEDBw6gjGU+onW9DRUZvHUVwdzQrh1PyfSyyF28d/b0I/x7783d8507s2Y4 3mnjlZQUYNMmPk9MDG7MOr1HpFoEu0Z1amoqGlqlGR8JS4AgojTwttyuCCGeAaAOQbsIwAwAHQEE raflF5UqGX2j4SzmIgcavvsut07VgWxVqgCvvcbTn7zslGe3PLXchCdeHDvmbcMXuy4cP7AOcJLT JNVlma2EsyJibnBaYyFcQnXBSOymK8qCZ9gw9yW9I6Ffv3542W5QS5jkRoBYv349EhISzqx6GGrH xrvvNrQ0J0+y8ElEeOaZZ1CsWDH8a7NN5u7d7vuU+FFJTZrkzV27dpEJv9HA6/dyGpjtJ9HeI8Vv GjSwX+1XrmeSmwXF8ip+bee9k4jWSAPgH3A3xmYiingtiHDJbcXXuDH36VnHUbz5pjfhYcsWlqDz GoULmysyqxpM4rXSizalSrFWItINhPIi1nEvTmkuOWYz1SSSylkOBHZS9yckJKBAFLYPVMcOhUv+ /PmRGEYmmzqV94gBWBBOSABGjBiBXbt24TGH0XMVKwLTprmneSywG+w5aRLQvHnMo2LCTYA6fNi8 LH44hMrnbnTsyMdYbcDVvbt5TZ9oUbw4cPQor4NyruH3NM67hBBLAawDCxBRHqPtzFVX2S91Gkuq VMlbW+k64fSTyxHCsRYgAO9Lh8cbr9voWoUxNc3feOMNJCQkYO3atejUsqMhFwAAIABJREFUqRPK lCmDmwJTD9atW4dPPrkPwAV4/vnCaNy4MaZaptqkp6ejV69eqF+/PooXL46SJUvizjvvxMqVK9Gh AwtjThvIybAlXbt2RUJCgq3p378/AODUqVN47bXX0KhRI5QqVQrFihXDgAFNAcwL2jCLiDBkyBDU r18fhQsXRrly5dCqVSukyo0KwGMgHlXWEz5+3Pl97EhPT0e/fv3w1ltvBY2dUvFSmfmtGVy5khdU yytIbY+bsF6yZORbVOdGgGjcmL+H08Jt0Wb4cOftDnJL0aJnT1dMOPg2ZloI0R48jfMl8IZa+QFE bcxo9+7uex38+We0QvKO29Shs5F4aSCizY4d/swOOHTI+4hupymzAM70/3fo0AG1atXCgAEDQERY s2YNmjRpgooVL0aZMi+jV6+imDlzAtq2bYvJkyfjnkBzafPmzZgyZQo6dOiAqlWrYt++fRgxYgSa NWuGNWvWoIKLLlgIYRp/0KNHD9xm0bX+/PPPGD9+PMoHpJDMzEx88cUXSEpKQrdu3XDkyBGMGjUK BQq0RI0aywAYmzA8+uijGDNmDO666y48/vjjyM7OxoIFC7B06dIz45xk+C++CHzwAXDo0GbMmuX9 fV599VVUrFgR3bp1OyPkhMttt7FW0Y8WqErx4uEt0e038e5O1Zzl+LE6FYBE8BLWj4T5XAMAlJKS Erxkl8Y3WtstkUZEI0bwKmeffx7jCJ2DTJzIafnnn3ytpvkbb7xBQgjq3Lmz6ZkWLVrQVVddRadO nTLZN2nShGrXrn3mOktdZi/Atm3bqFChQvT222+fsdu6dSsJIWjMmDGmsBMSEhzjvXHjRipVqhS1 bNmScnJyiIgoJycnKE4ZGRlUoUIFeuyxx87YzZkzh4QQ1LNnT0f/iYiqVKlCXbt2palTOY3efNPb +xAR/fXXX5QvXz6aPXu26X3S0tKC/HDK5xr/0GkeW86VlSgbgAdOQgiRKoTYLYSYLoTwsB2MJq9w //08NVauX6+JnPbtebOcq66yvy+EQHdl29H09HTMnTsXHTp0QEZGBtLS0s6Y22+/Hf/88w/27NkD gMcQSHJycnDo0CEUKVIEtWvXNnUVhMuxY8fQtm1bXHDBBRg/fvwZTYEQAvkCKh0iQnp6OrKystCo USNTeJMmTUJCQgJee+21sMJNTPT+Ps8++yzuuusutHBawlSj0fiGX10Y1cBjHl4H0BO8K2cvAPOE EDWJyKnzoRAArF271qdoaezIyMhwrGj69uXV0DTRQSazmuZSEDh69OgZu9WrV4OI0K9fP7xqs2iE EALz589HrVq1QEQYP348Jk6ciF27dp1Z00EIgYIFCwaFs3Xr1iA7u+/ft29fbNq0CV9++SW2bNmC LVu2nLk3depUjBs3Dlu3bkW2ss1rpUqVzvi1YsUKlC1bFpvtlhZVyMrKQlpaGtLT+bmcHMILL4R+ n5kzZ2LJkiWYMGFC0Pv89ddfQeMh3PK5xh90mscWpe50WfUoeggKowMsjIWkGgIYB+BxIhoVeLYA gJ0AXiGikQ7+dwo8p9FoNBqNJjIeJKLxfgfix0JSmxHovgBwRhwioiwhxGYALuvsYQaABwFsBWCz wrhGc07SDcDjAFoAyAzYlQIwG7w847AQz48HkAHAug3RdADbAcgJZBXAO+O+DkCu2ynDbqw8dzWA 4QCSwbvpWhkIoAYA60byowBcCECuR9obwH0AmgM46hL/qQCWA3gzzPdZDm60OI1vXw8uTzSa84VC AKqA61Lf8WshqRQAJwHUBrA4YJcf/GLbnJ4L+O+71KTR5CWEEHsCpyuJ6JBiPw/APQBeJaK9lmfK EtHBwPlRAEeJKFW53wFAOQBrpL2yJ802xW4PACjXUsiYDx4EHbSygxDiEICTlvCuBU+/UP0eDl48 7l4i6uny/lkA0pTnvL6PVYABgKRAmA8B2KX6odGcJyyOVUC+jIEgoiOBwuNNIcROsNDQG9xa+M6P MDWac5CnACwAsEoIMRKs3SsPXia+ElhTAHCF308I8QW48KgHbnlviiDMTwCUBWsFkixL0a8kolWB 8NoJIX4AazKqAegOYDV4DxwAABHNE0J8BeBZIUQtAL+A1565CcAcInLSrHh6HyKaYn1QCCHT5BdV GNNoNNHHz73zegE4BWAsgMIAfgfQnIhiu9uHRnOWQkRrhRCNwF0ODwO4AMB+AH/CUPcDwDsAigDo BG59pwC4E8C7YKHd5K1dUMp5WfA0bLtF394EsIqIRgshyoOFhtsBrAFX8B0BWPdTfATAXwD+A+B9 cNfEcri3ksJ5H41GEyfCGkQZtudCJIALnQfB/a+7AYwmord9C1Sj0ZxVCCG2gzUG3eIdF41G4x0/ NRAAr0LZHUAXcCulEYDRQojDRDTU57A1Gk0eRwiRD6xZORjvuGg0mvDweZ9FXA/gRyL6hYi2E9Fk ADMBXGN1KIR4SgixRQhxXAixVAjROMg3jS1CiJuEEFOEELuEEDlCiDY2bvoHFvQ6JoSYJYSoYblf UAjxPyHEQSHEESHERCFEOYub0kKIcUKIDCFEuhDicyFEUb/fL68hhHhZCLFMCJEphNgnhPg+0Mdv dafT3AUhxO0ARoJHjv8awm0PIcRfgXTIEEIsFkK0tLjR6e0jQoiXAuXLIIu9TvcoIYR4PZDGqllj cZN30tvPZS4BvAwe+FUzcH0lgD0AHrC4ux88bbMLgDoARgA4BKBsLJbjPNsNgJYA+oNH7J8G0MZy v08gPe8G70fyA3hAWgHFzafg6bM3gwfnLQawwOLPzwBSwZqkGwBsAPB1vN8/Duk9HTzKvy54gN+0 QNoV1mkeVjrOAQ+w7uPB7V2BfF4dPIX0bfBMr7o6vWPyrRoHyvI/AQxS7HW6RzedXwewEjwdulzA lMmr6e13YggAA8CVWhaAbLvCAsBSAEMsz+0E0DveH/RsMwByECxA7AbQU7kuAeA4gI7K9UnwdDvp pnbAr2sC13UD11crbu4IfNMK8X7vOKd52UDa3KjTPKbpngagq05v39O5GHhNjeYA5sIsQOh0j25a vw4g1eV+nkpvv8dA3A8eSf0AeAzEVQCGCCF2E9FXwJn1IRoCeEcIcUHgRbaCpaOWQojZPsfxXKSa EKJB4PwiBAawKnYAT7m7RwixEdy6yAfgoMXNXgAdhBDZ4MWBMgEIxU0aeFR8khBivn+vk+e5GJwO 5QNpo9PcXwSA2wAUBXBYCHE3dHr7yZvgWXSHwcJEOZ3PfaMigNpCiP1gQWAlgKEA9sFbet8ATu8z +1ET0XrBA5WvB7AMwHUA0olI3bN6Nji9rwXwo+fY+ixNbQfwhMXuFfBiMPK6IlgauhYsbJA22mij jTbaaBOx6WSpd38HMCBw/jKAtTb19T4A3fOSBqIIgGKCF5NpFbjOgPMy1VsB4Ouvv0bdunV9jppG 0rNnTwwePDje0Tiv0Gkee3Saxx6d5rFl7dq16Ny5MxCoS/3GbwFiBngMxGzwQjiVALwHYLLi5iB4 jER58LgH1K1bFw0aNIAmNpQsWVKnd4zRaR57dJrHHp3mcSPRcl0e3G2EwNE6KyMRQBnFjSf8nsa5 FzzrojaACQBeBPAxgOekAyI6BV5proXPcdFoNBqN5nzgzFIJQoja4E0slwSslgAoJYxl3wGufwW4 q8MzfmsgWoIFh8rgKSVHAOwgomyLu0EARkMvJqPRaDQaTW75P8GbWh4BN9oXEdEyACCidUKIGQBG CiGeAFAAvAdOMlk27QuF3xqIauAtedeD18z/FMDHQoiHVEdENAG8d4Z1+16N5rxkxAigb994x0Kj 0ZylLAAwEcA88NTP9pb7nQCsAw8vmAbgN/Cq0WHhtwYiAcAyIuoXuP5LCHEFgB4AvlIdEtEwIcRS cHeGJoYkJSXFOwrnHaHSvEcPPr7zTgwic56g83ns0WkeN94nogecbhLRYQCdcxuI35tpbQUwk5RN coQQPQC8QkSVbdw3AJDStGlTlCxZ0nQvKSlJZ0bNeYPcRdvH31Oj0ZzFJCcnIzk52WSXkZGB3377 DQAaElGq33HwW4AYB+BiIrpZCPESeJvePwEcJ6Ibbdw3AJCSkpISk5G7p08DJ08CRYr4HlTMWbUK yMkBrrwy3jHRRIIWIDRnO2vWADVqAAUKxDsm5w+pqalo2LAhECMBwu8xEIMBXCeEGArgSfDCUvXA K2vFnWeeAYqeo9u11K8PXHVVvGORe95/H5g5M96x0Gg04XDqFHD55UCvXvGOicZPfBUgiGg5gCQA j4HnnV4IYC4RfeNnuF6ZMCH2YWZnAx07Aps3A3/8oVuYoejTB7jjDuP65Eng1ls5/fxk8WJg3z5/ w/BC06bR9e/UKWDWrOj6qTl7GD6cG05+c/o0H1eu9D8sTfzwWwMB8A6RQ4moEHgd7tUxCBMAcPSo +/1E61IbMWDLFuC771iIuOYa/qHPNv78k1Xsu3fHPuw1a4Bff2XNhJ80aQLcGNTJZiY72ygo/WLB guj6N2AAcPvtwKZN0fX3bCUlBZg61T//V60CDh3yz39JcjKwbRuwbBlwySUsaNvxxBPA0Bjof3Ny +Ci74vISGRnAsGHujbfnnwc++ih2cTpb8VWAEEI8AN5A62U/w7Fj3z6geHH+sZyIZeYuVAh44QUj zPR0Pp6NBflPP/Hxzz/d3flBbscG7NwZWnuxcaP56ET+/CxonC0cPAisXcvnx4/HNy55hUaNgDZt /PO/fn3gpptyL2ju2gW8+67z/U6dWDM3cCCwY0f8tWdSgMiL9OkDPPUU/99O8RwyBOjZE0j1fRRB eHzzDcctr+DbNE4hxMUAPgJwa2C1Sc/07NnT8yyMI0eA9eu5IFCR2oepUwGnyRsJsdC/BDh5Ehg0 CHjySXPYfrdgvUAETJkCtG7tLU3y5+fjqbC+anisWGFf0edWgKhcOfTzapfJpk1A9erObn+3rNu2 Zw9rlpYtAypWjCyOU6aEdjNpEjBjBvDZZ978/PtvoF69yOITipQU4Ngxriid+M9/gBIlgLNpW4Tu 3Tl91byycydQuLBhvDRC1qwB8uXLXXflI48As2dzpVawoL2bgwedW/45OfZx3b8fuPDC3DWmjh/n tLCGB8S2jPWK1M7UqsXC448ue08mJwPhjudfsYL/if/8x5v7e+7hcmSvhyWcZF323HPOszBiio87 cd4D3uMiC8CpgMlR7ITNMw0AUEpKCnnlzjuJgGD7TZvYvlMn52cvuojdnD7tObiImDKFwwGINm7k Y82afHz2Wftnjh8nWr068jBleF78mDuX3dar583vgQPZ/XffRR6/48ed7338sRF/aSR//cXXjz0W WbjSv0WLDLsnnyTKn9+4rljRPmwnv1RGjGC7zz+PLH6qv27hh4obEb/jokXG91XNqlWGu7//Jpo5 kygnx/z8gQNEXn5FL3Hx4sYPdu3i75udbX8/3DQGiIoW5eP774cO30s+cmP/fqLMTKKbbmI/Tpxg +wMHiH77jc9Xrzbi1a4dn+/cGRyP++4zx2X//tx/l/Xr+flZs8z2hw6xfYsW9s8tXsz3Dx0KL7yc HI63V/78MziMbt28/1+9eoUXP/XZcN3v3EmUmhqZ3/PmEa1cSZSSkiJ342xAPtXtqvFTPpwNXkJz HXhf8wzwfvJTAFzJieHMiy+y+i8Ua9bY26u+Hz/OLTbJ6dOsepZ9+OG0pI8dA6ZPD7bftAlo3hzI zAy+95WyZJaU9OXRToU2YABL9JdfHpkq8J9/jPMhQzisH35wdi/jvGqVu79ZWazxkSOr3dJtzx7g pZc47EsvNd9bt47fb+5c+2effdbZX1UDQQQcOMB5JVtZHH31anMaSFRtT5Mm7NeWLdwfeuoU++ek 2p85k93L7hsnZL4TgtXIarwyM+39HzQIGDnS2c8DB9zDVNm/n9MvO5vfsUkTVmlb6d3bOL/iCh4X MWyY2U2TJgDPCIse69fHVuvWty+/V6juKDes3+zff/k4dSowZgxrBsKldevgGWD79wePXShXjjVH Ml/JtGvVigfYCmF8I5mHAXuNwsSJ5utIx2Zs28b/zcKFwOTAtoi89AAzY4Z91+zy5cDYsXwuy+My ZYCff+bzXbs43m5djIMGcZqEGt8mufpqs0YRYG2QE2lp5rFdssvPDvlvnz7Nz1l58UU+/vsvayVC ccUVhrZj3jxOC6/jVZo181ZfRh0/pRMA0wE8BKAuePrmQbAgUdjB/RkNhKwijh4luvdeljpTU7lF oVKlir1E9s8/dEYD8fzzfL59O987eNAsgcrW8KlTfExJIfrf/8z+ydaZlF7T0833X3uN7WfPDo5L hw5GWJs387F2bT4+8YTZ7a5d5rgdPRrsnxvWlmbr1nzs2tX5GVVD4kROTrDf48YFu9u3j2joUOO7 SHP//Yab6dPZrn17ouXL2W7VKqJff7V/B1VLtGoVXz/6KFH37sb9IUOC0+Cjj8xx69Mn2N8BA4zz t9/mo50Gon1743rPHnM4KsOHs90XX/CxRw+2l/mxShWi3buNluTOncH+2L2/FSf7Z59l+99/N9y8 9JK7n/L68cftw/j33+BwJD/+aLh77z3jPzlwgDVJdu/05pv2fk2cSDRsmHNYp08TPf000ZYtfJ2T w/+yGzJMqYnLzCQ6doyfO3bMPh1PnOBvLO/VqWP/Htdfb5y/8457+NYwpJ2qGQG4rLNz16QJHzt3 ZvtSpYK/Z4ECRPfcw+fWctLqdvBgLqvs4jZ+PNGRI1wOXnutUW46+QUQvfii/f3rrjP+XTWsfv2C 06ZGDT4fOpTL1x9/DE7PVq3YzciR3OoOBUCUL5/Z7sknzWGvW0c0YQJ/d7t3AzgNduxgzTYR0dKl bL9yJdEzzzj/vytWGGWHWxytaXHlle75xvpPGs/HVgPhewCmwHh9bgJwo8P9IAHCWtCXLMkJtnkz H6tWZfvEREMtm53NHw5gASIpic83biQ6eZLogQfMfh89yoWXteCV3HEHUUKCcQ5wAany6qtsP2sW 0eHD3B2wdSvfUwUIqW6sU4fOVDCzZ7NgkpNj2Euzbx+FJDubC461a4MzoxQgHnkk+LlTp/jnnjrV PrNKjh8n6t072O+vv+b78+cTFSvGP6BUobpVWFaV+vjxxvnKlc7PP/+8cb9aNXv/ZReHNCNGGOE2 bOjsN8CFJUBUunSwv6oAkZzMdnZp9umnbNe3Lx9r1LAXvmRFYQ1n7173tNu2jdNZCLafP5/tV69m weTll9n+11/d3xUgWrjQHAdVgGjWzOx20yauVMaMMb/vRx+Z3ckKXarL09KC31O+e758/N9I1HfN ySF6911D/SyFToDzGkD01luG3Ycfki1qvpLX8h9T88PUqSwAlSlD1LZtcFpJtblq16iR+Tojg92k p7Mwav3udvFSu/IAosKF+SgFfqe8ULJksH3+/ERt2vD5l19yJWcNz8lIgVZ2azz2GJepAAsBBw9y +enk14svEmVlcUVsdy8jwxz/118Pfid5PnQo5xEguHv51lud03TUKO4asUtngOibbzjcxx4z2xcq xMfUVOf0mTTJHObQofbf5dQpZz8kmZnm+sPOXf367vmmUyf+HjLPGc+f2wJEDfAYiMsc7jcAQO+8 EyxA9OhhnMuW4rJl5ork5Zc5MTt3Nuzy5TP7Y/fjvfOOcS4LfvXDqde33cbnVk2DlKhnzCCaNo3P u3Sxr+gAQwOhtqK3bQt2Z+3LJOJ+bcBoiVm1FqqRBcrNN3MFkJVlfq8bbjCnrR1Sg2M1V13Fgpwq IMkxKXbmiSeIatUi+u9/nd3kxhw5Yp/e3brxezRu7P5806Z8zJ/fbE9kFozGj2ehU70/ciQX2Jdd Zn62enXncK0VTHa2kb+sxk07I1vCRYsaafvDD97SbPly41yOK8nODnY3cCB/P4BbYpIPPzS7O3jQ /F5SoFDdtG1rthszhmjNGnN6yrFCxYoR9e9vny5yHBHAWiMiop9+MlqJ1nC7dvWWJgULBttNnBjs 31VXBbvbtMnQAs2cGZyPiAwhU+ZZu7jKe3bxIyIqUSLYPn9+orvvtg8z1Du3bMnupObF6o/qn529 VePoZipUCNZAzJtnnA8dauRptbwi4nLM7v3UeBFxQ0KWw16+L+AuQFjDVDUE0pw+bTQk7czYsfzs 1Ve7f5u33jILEFYtlTXvmYWqc1SAAO81Pg3AfBc3DfjlgwUIOzNhQnCFQRQsNIQyUnVml1GsGfP2 243r7783VLayC+O22wxthhfzyCPG+bZtrOmw/liSnBwWUN54g+/9/DPb79vn7L/UQMgfF+BWY7ly 7u+8fj1L6zk57loFq5Eq1LxmiIiuucbdjbXVrT6rXiclmb+bXSEgTfXqzvektkCa/v3d4+gWjjRy AOrDD3tLl6++Ms4fe4y1eC1aBLtr0MDQ3EnBlSi4e2T/fnMr7OBBom+/Dc4jbu9irXidjCroVahg +FmiBMfDqz9ezKRJ3tLfqpGxfj+r9nPNGtYEWbtV3QyRvQDh5NZuEK2dWbGC6IMP+Fx2FUSSB3Nr VAFi924WMGX38g03BMeHiLWhXuPoJEB4NarG1mqkRtzJXHed+dpJU6gKEMuX80Bn9b3q1XMK49wV ID4FsBlARRc3AQGiKQGtLWZ8UGJ99llwAhIRFS+euwyimueeM/vdsqV9mKpKzq4A9mLmzLG3l1hV pjNnsr3bD+HUknAyhw8Ha2nU0duhjJ36Ny8YouCf12qcBIinnnJ/Th0HkBsTSvjyUnjL0fqRmP/8 x/2+VGnLuNjF55dfiB580LiWY36s7+nUOgSIXngh/LirAoQfZvLk3Ptv97wUBIoU8e6P7Ab1Yn76 Kbrp4GcaS2NXng0dStSxY7D9kiVEf/xhtsvK8jd+gwdHzy+n8Umh0v7yy4m4TrTWk03pnBIgADwF IBM8hTMVQOPQAoQ3DYTaVaEmctmy/mSc9HR7e7UbAjBUVNEyr77KA32s9k884S4NA+ELEOeqOXiQ qHJldzdyel5eNbNmxT8O0owebV+ZROPfCyWwOZndu/1738mT7ceyhGNk1+PZbNz6+P00bl0D54tR NWp16zq5i60Gwu/dOO8HMA488+J+AB0CphYRHbRx3wBACpASkCXceeQRYPToKEY4StSvr9eAz2sU L85TUDXRIycnby4U5AcTJnD+8bo4kEbjJ3Xq8HT4YFIBxG43Tt9WogwwBEA2gLYANgBYBaA1gG7g rb1zRV4UHoC8vYzr+YoWHqKP28qT5xodO8Y7BhqNQV5YwRjwcS8MIUR+AOUB5AcwD8DugKkAoJ1f 4eYF8srH1Wj8ZNGieMdAozk/ySuNVD8VkGXBfTE3EFGiNAA+AC9rfc7itnqZRqPRaDS5Ia9swnie 9GBqNBqNRqOJJn6OgTgIXjSqvMW+PIAQ+471BFDSYpcUMBqNRqPRnO8kB4xKbHfj9EWAEEJcCqAf WICYJITYCp6N8V8ALcCbbLkwGF5mYWg0Go1Gc35i16g+MwsjJvjVhVEHvPLk++BZGFPB60H8AaAI gNE+havRaDQajSYG+CJAENEMIvoPEb0G4AXwrItSAGoDuIOIwtigWKPRaDQa4Lrr4h0DM9Z1UDp1 ik884oXvgyiJaBgRVQHwHoBVRLTcr7DatPHL5/ObO+6Idww0KkLEOwb+UaOG8/t9/nls43K+07Rp sF2s1sOwfuvWrfnYpElswlfp0AFo3tz+nlWAeCfXqxt5o3jx2IQTipjMwhBC1ADwNIDhkTz/ww/e 3A0fzit0haK8dVinR5Kt41XiyJ13xi6shmF0qQ0b5l88IuWSS6LvZ6tW0ffTjXvuMc5Xr45t2OHQ wGbokix869cP/TwRkD+//b1rrok8XpJI//1oMGKEvf3MmcC2bc7PvfCC+fqyy6IXJzfsGg633BId vzMz3e+XVMbQjxkDTJwIvPWW+T/46SegWjXj+ocfgA8+AD76KDpxlEyYAJw8aX8vnzKKsFo1oGLF 6IbtxOTJQGJibMJyIywBQggxQAiR42JOCyFqWZ6pBOBnAN8S0RfeQuoJoM0ZM2pUG6ijTZ0K0AIF gGLFnH2tUIHXaLj1Vm+xGDPGfF2jRuhnMjLsC9Fo89NP5utvv42Ov5UrG+dypUEvi5a88QZw4oSz pB5PFi3iH+7DD0O73bEj2O7OO4E5c8x2b7wRlah5ZvRoYOdOYP9+oG7d6Pj57LO5e37jxmC7Fi2A ffvMdhMm8FHVLDz0kL2fRM7/T7167vGZP9/9PgB89x23Zr//3v5+SgoLzM89F3xvwYLQ/rtRtqy9 fd269kKuk+A+bZpzGI0ahR8vJ7Kzg+0KFHB236GDd79DtaALFwZGjuTzrCwO99VXuYwBgFde4f9y 9WqgZ0/g7bdZuOjVy/7bhcNHHwULsV26GOfbtxsCX2IicOgQm3XrzAJFbujWzXytlssA/0sffpiM Jk2MepJNz+hEwCthbox1AYBaIUw+xf1FANYD+NKj/7abaVk37SEi2rWL6OhRs316OtHzzztvRnLR RfysdWOqVq2Ctxz+4Qd2+8svht3+/cH+AUSlSxNdey27JSI6ciSyzVLsdi784guiY8eC7a1psnWr 93Dcdu/84gvjfNIkPvbuze/0yiv2z0yfbmxrvmED29WqRbRxo/c4WbdUv/DC8NJu2zZ7+88+ozPs 3RvaH7sNk+66K/jbLF3qPW59+vBRbsMerpk7l4KwuvnwQ6LZs4PtN2yw33inXLlgf0Ltxsk7ABrm 9Gnj/OqreVfS48fN/jZuTJSZyef16xPt3Mnnf/xBlJZGtGNHcD44dIioUiW+3rWLqHBhPrfGV91c 6Ikn7NPFalSsu/bed59zGleo4O0fu/hie/srriA6eTLY/pJLnL9p8+Z87NXLbJ+W5hx+OPnSuptx 6dLma3UDK7kj72+/8bFYMT7KbyPTNjOTaMECsz/duwfv0hvqW2X2KfSUAAATQUlEQVRmEk2cyOdj xxppdOgQly2bNwf/E07frls372ki49awYXCeufNOvj5xwgijRInQ/6aTKVDA+d7Qoebre+7h+u7l l/l69myn8M6R7bwBVAoID+MBrADvxlk/xDMmAaJtW96f3ppIKiNHmjOd21aun3xiPLdkiVEhDh/O dqNGcQEmdxokMiqOVq2C41GpEtFXX3EhHUkmWrCA45+ZycKJ3XOqf+pWzURE+fIRlS9PNGwYV3zv vuscltwqmoiob19nd+vWGT+7/IFffJGfU7csd/oeUoDo3Nn8Pi+9xBW4aif9kz+DtK9e3by1trUA VcOVlZr6fGYm0ZNP8vnIkUbcrAKg1Rw6ZP8Ntm0LFlDUgtq6zbo0sjLZsIHfMSuLaNUq9zh88kmw 3bx5zvlLhjFmDNGBA/ZplJ0dbN+0qdmfN97ga1nYrlgR/IxVACIiSk7m8wYN7OP38MOGANywYfB7 WNP7ssvYTu4iu28fCxkpKcFu1etvvgm+36YN0fLlxvWNN5rDte6+6hYvgGj79mC7AQOM848/Nm/t 3rq1cX74MPs5b55h9/vvLIRZwzt8mKh9e8Mva/7PyHDOPydP8rN296zbUI8aZZynphLt2WO+/+uv xnlWFgsPREQTJhjbhMv/TE0/666o8+cHv6Nd+kojBN8/fZobNNnZ9vnGDfUdcnLshWsnQ2ROG8ne vUT/+585jNKlQ+cbJzNlCgtHW7YE/89q+ACX30SGAPHrr8Hh1apFdE4IEAHNwz8AZgIYGTieBtAs xHNnBIgePZw/ihXZev33X75euZLotdecM7Hk5EmuTGWryY6sLKI77uCKlYioYkXzx3ZCDXv6dD5K Kd7pPazPWTOvqomQ8T91yv35hQuJunZlqfnoUXbTr5/ZjWxVAETr13P63XwzpxlA9MIL/NyhQ8Hp an0Pqd156CEjPmXK2McxK4sLItW+Vy/WJDVtarhTC9AbbzSHm5nJBZZ8vl49Pv/0U77+4gvD/4MH 3X9ouzSsUYPt1Mpj6VKiv//m8y+/DG5xSTNhAtHbbxvaGav/ffsS3XYbn0+dyoWG3Te0y7sAV8iy IJ8922jph3ongL+vai95/HG+DiVASMFMVmZW4WDKFLbv0sXYAvraa4Pfg4gr8muuIapdm2jaNLaT rb2DB81u1bRW479rl/l69GizNsTuX1Vbz3b/o/X97QQIuzTMyuKyaMIEtm/f3t5fp/AkUkh9801z mEePEg0ZQtSjh/P3tmpXvvyS7XfvJho0yLCzPjdhAjfapObOKa5//MH2Tz8d7MYqqK9aZdwbOZLz PRGXC9KNWiZNnhwcXriUK8d+SQFNCkNt2riXAQsXGn5MmsRloRMAb19vZw+wIPTEE85hybyuPrN0 KQvL33zD192781EKEC+9xNdz5gQ/W6sW0axZ54YA8XBAYDgdeJkzxxDPNQBAH3+c4vhR7DJzzZps L1VLkvR0tps5M/iZSMnJMVqJlSs7u/v5ZyND7tplFCTPPOP8HkTm97RT07k9a32+Th17N3YtyT17 uPtHbREtXsz3e/a0D2POHG65qKxdy/cefthwK1u36vOJic7vQGRUrAALEH//zUYN38rx41x4E3Fr EOBCQJKe7vwzFy5suFOlfzsBQrJ6tSEcvPIK0ddfm/2000yp8c/KMtTUUvuh3pdGtvxUjhwx8vuK FcHPbtjArW8nP1u0MOxVNexjj7HdX38FPzNsGNEtt/D5jh1GPAAWAFSkmn30aE6jatWIZsywT4/T p4OFrJYt+fm0NOf0k+cXXGDcGzOGhUere9l9qZKQ4F6uqPduvTW4C2PWrOD4qHz3HdsPHGi2l40Q t/ci4pb34MHBXZhqOVevnmGflGTYv/++87tJ9fiYMd7KE6kRUJHdk6qqXaIK6oMGOft9+LDh7vhx Pt50k7P7cJg8mahQIeN67lz2X3YnAkYjQJpx48ILo3VrcwNIovqvXkvz77/cEFMbf0OGcENTIgWe d97hY7t2bC/jr3ZrSn+//ZYoJeUcECCICOAlq3cAuBrApeF0YaSkhCdA1K7N9tbWuJ8A5v5LOzZu 5GNODleCO3YYqvB8+Zz9jeSHtj7vJkCsXOmenpJ//+U+bPkeknvvdX5u9Wq+17Wrs79Fi/KP4cbu 3Yb03quX+V6oeBNxofvmm+Y84ab6/esvw50s+EMJEHZMnMjChOySsmPIENZqERmaFqkdUt9PmgUL 3MNUueQS+ziq/vXvz+9DxIKjKrzYCRAlSvDxxx+D/f33X77XpEnwPfWdwmXjRv7+VsFCfRd53qWL u1+XXmruR5fI1p0sqK1s2WJ0ybVsaVY1A0SLFgXHR0WOIZLdsJK0NBZGrLz7LsfJDjVcNU9LARSw f8cdOwxhTyKFa1XgdeLwYaP7xcrKlcaYoYIFDXtVgAiVB6S7nBxuXW/a5O4+UmTX0YsvBr+z7NqR 3WC5xeq/+u0SErz78/PPRrkjG2G9e5OjAEF0bgkQ0wG8HDj3VYCoU8fIhLEC4IIpErZs4f5qJ39D CRD587vfl6Z2bfd4FCoUukK0IzubK2g7ZB//o4+G76+VhQspYgHCDrfBrWqrTqqeAaNF5FWACBfZ JSM1J0RG61uabdu8+7dpk1GxqaiqVDf27yf6v/8zj5sYPZqFGLv/SwoQt9ziPY65RX2Pbdu4Ky+3 fk2YYH//xAm+/913hgAq1eNLl7Kbfv0oqMuViGjNGnZnN4YlXNQBjup32L/f6O5JTvbm19Sp7F7t uswNW7bwWBWJqjEJNX7Bj3/KDvmuvXpxl+D48ca9gQONbxwNAGPMHBELhh98wJpop3LfjaVLjXTc upXo+uvtGxxEsRcgwpp0IoQYAKCPixMCUBdASwDFwItHAbystWd69uyJkiXNm2lVr56ETZvsN9OS i3nEcoGdIkWA116L7NkqVZzvdegQerGUCy5wvlenDk95WrmSs5Ube/cCp0+7u7EjMZGnWdlRoQIf z4bFp55/3pgzri4II9OtRQvgm2/4XE5fK1cuunF4/XWesqVO/xozxrxeQTjrWFSrZp4bLxk2DJg7 l6eauXHhhcZ0119/5TRo0MB5CqWc7ta5s/c4RhM/1vhQKVjQ/B8R8fTXTz4x8kz//vbP1q0LHD8O FCqU+3ikpfG77txpLucuvJCnKL//PtC+vTe/7r6bpz9Gaz0Ja3lWuDBw8CCwe3fotQo2bQq9JkQ0 kGlGFLxAlpymbl0UKlL27QNKlDCu+7jVmB649lrj/NJLgcWL+Tw5ORnJyuJEbdoAGRmx3UwrXK2C l2mc+QF8D+AUeB+MHLBgQYHzL138d9RAWCUtFTl183zgq6+CuxRUcnKM6XWPPx67eKlEqytp0SI6 o3ZUadUqdBeIHVYNBBHR999z/7jaqpMDmD780Pz8Tz85a16iiXUmUbQ4cMCYzeCVI0eiF360qFAh eukyYgT7NXWq92eeeoqfUceYxAI5Qj+axEoDEG9OnOCu1507g+/J8QarV8c+XtHgrNFAEFEagLRQ 7oQQzwCYB+BNAIMAbAFvoDUQwJBwwlR5+WX7Fds++IDvnQ+EaukJwWbnzui3lr0SrcVUrr0W6N07 +NtOnx6Zf8WKceu+a1egZk22a9uWjUqtwFJoV15pto/V6p9+adLKlnVezMgJt4XZ4sWqVUB6enT8 evRR1qLcdZf3Z6LdYtX4T8GCrKmxo3lz4MiRvJnXvfDpp8ZibbFGUCg9dySeCpEIYCuAfkQ0OrC9 9xYAVxHRSpfnGgBISUlJQYNYLOeoOS/xUgEcOgSUKROb+FjJyTGrfn34RTW5YM8eXhVxxIjoCcte ePBBYPz46OaHefO4uyxaq5tq4ktqaioa8hKmDYko1e/w/JKhG4DXgoAQIhXAMvA4iOo+hafReCYh IXTrMV7CA2DWQMyeHb94aOypWBEYNSq2wgMAfPEFsHVrdP1s1kwLD5rI8UuAqAYWGF4H0B88qHI8 gM+EEKV8ClOjOSdQBYhmzeIWDU0eo2BBHkSn0eQV/NpMS/r7NhH9QER/AugKHtwRxpYrGs35je5n 12g0eZVwlXADAXwZws1mBLovAKyVlkSUJYTYDCDkxCu7aZxJSUlISrKfxqnJHcnJyTptY0yoNK9Z E/jnn9hOTT7X0fk89ug09w/rNE4g9tM4/RpEWRzAAQBrAFQGUADAKgCXAehNRJ87PKcHUcaBNm3a YMqUKfGOxnlFqDSvXh3YvFkPoIwmOp/HHp3mseWcGERJREcAHAdQB8DLANoBKA2gFIC5foSp0ZxL dOoU7xhoNBqNO74IEEKICwCUBC8o9RaASQD2BG7rYUAaTQj69weys+MdC41Go3HGLw1EGoB1AI6C p26WBTADwD4AKX6EqdGcSwgRehlgjUajiSd+zmS+DcAPAI6Al7DeB6AlEbmN8igEAGvXrnVxook2 GRkZSE31vbtMo6DTPPboNI89Os1ji1J3RmEHltCENYjS62ZaRLRBCPEjgEQAbwM4AeAxAPcAaERE +xz87wRgnOcIaTQajUajsfIgEY33O5BwBYgLwBtqubEZwM0AfgFQioj+VZ7fAOBzInrfxf87wMtg n/AcMY1Go9FoNIUAVAEwIzCUwFf82kyrMIzdN1Vy4DLuIuC/71KTRqPRaDTnKItjFZBf69wtAXAY wFghRH0hRE0hxAdgyegnn8LUaDQajUYTI/ychdESQDEAvwL4A8ANANoQ0So/wtRoNBqNRhM7fFmJ UqPRaDQazbmN3qpHo9FoNBpN2GgBQqPRaDQaTdjkGQFCCPGUEGKLEOK4EGKpEKJxvON0tiCEuEkI MUUIsSuwrXobGzf9hRC7hRDHhBCzhBA1LPcLCiH+J4Q4KIQ4IoSYKIQoZ3FTWggxTgiRIYRIF0J8 LoQo6vf75TWEEC8LIZYJITKFEPuEEN8HtrG3utNpHiWEED2EEH8F0iFDCLFYCNHS4kant48IIV4K lC+DLPY63aOEEOL1QBqrZo3FTZ5J7zwhQAgh7gfwIYDXAVwN4C8AM4QQZeMasbOHogBWAHgSPH3W hBCiD4CnAXQDcA2Af8HpW0Bx9hGAuwC0B9AUvCX7JItX4wHUBdAi4LYpgBHRfJGzhJsAfALgWgC3 AsgPYGZg+jIAneY+sAO8iF0DAA0BzAHwoxCiLqDT228CDbpu4LJZtdfpHn3+BlAeQIWAuVHeyHPp TURxNwCWAhiiXAsAO8Fbf8c9fmeTAa+10cZitxtAT+W6BHi31I7K9UkA9ypuagf8uiZwXTdwfbXi 5g4A2QAqxPu945zmZQNpc6NO85imexqArjq9fU/nYgDWA2gO3k15kHJPp3t00/p1AKku9/NUesdd AyGEyA9uUfwq7YjfaDaA6+MVr3MFIURVsBSrpm8mgN9hpG8j8KJiqpv1ALYrbq4DkE5EfyrezwZr PK71K/5nCaXA6XAI0GnuN0KIBCHEAwCKAFis09t3/gdgKhHNUS11uvtGTcHd0ZuEEF8LISoDeTO9 /dxMyytlwXtmWPfH2AeWnDS5owI4Y9ilb4XAeXkAWYHM6OSmAoD96k0iOi2EOKS4Oe8QQgiwynAh Ecm+Sp3mPiCEuAK8SF0h8CZ99xLReiHE9dDp7QsBQe0qcMVkRefz6LMUwCNgjU9FAG8A+C2Q9/Nc eucFAUKjOZsZBuAyAE3iHZHzgHUArgRQEsB94JVum8Y3SucuQoiLwcLxrUR0Kt7xOR8gohnK5d9C iGUAtgHoCM7/eYq4d2EAOAjgNFhyUikPYG/so3POsRc8psQtffcCKCCEKBHCjXUkbyKAMjhPv5MQ YiiAOwE0I6I9yi2d5j5ARNlEtJmI/iSiV8AD+p6DTm+/aAjgQgCpQohTQohT4I0SnxNCZIFbtTrd fYSIMgBsAFADeTCfx12ACEi2KeDRoADOqIVbIIabgpyrENEWcKZQ07cEuK9Lpm8KeACN6qY2gEvA KmMEjqWEEFcr3rcAZ+jf/Yp/XiUgPNwD4BYi2q7e02keMxIAFNTp7RuzAdQDd2FcGTDLAXwN4Eoi 2gyd7r4ihCgGFh5258l8Hu9Rp4ERoB0BHAPQBUAd8HSSNAAXxjtuZ4MBT+O8Evyj5wB4PnBdOXC/ dyA9W4MLhB8A/AOggOLHMABbADQDtzwWAVhgCWc6uABpDFbZrwfwVbzfPw7pPQxAOng6Z3nFFFLc 6DSPbpq/E0jvSwFcAWAAuKBsrtM7pt/BOgtDp3t00/cD8JTKS8H7R80Ca3ouyIvpHfcEU17oSQBb wVNSlgBoFO84nS0GrFbMAXcFqeYLxc0b4ClAxwDMAFDD4kdB8NoGB8ED1L4DUM7iphS49ZEBrkBH AigS7/ePQ3rbpfVpAF0s7nSaRy/NPwewOVA+7AUwEwHhQad3TL/DHCgChE73qKdvMngJg+PgmRPj AVTNq+mtN9PSaDQajUYTNnEfA6HRaDQajebsQwsQGo1Go9FowkYLEBqNRqPRaMJGCxAajUaj0WjC RgsQGo1Go9FowkYLEBqNRqPRaMJGCxAajUaj0WjCRgsQGo1Go9FowkYLEBqNRqPRaMJGCxAajUaj 0WjCRgsQGo1Go9Fowub/ATTBek26IJSnAAAAAElFTkSuQmCC " >

Zadanie: ilustracja funkcji autokorelacji procesu<a class="anchor-link" href="#Zadanie:-ilustracja-funkcji-autokorelacji-procesu">¶</a>

Dla współczynników $a$, dla których proces ten jest stacjonarny, charakteryzuje się on też pewną konkretną funkcją autokorelacji. Poniższe ćwiczenie powinno nam uświadomić:

  • jak może wyglądać estymowana funkcja autokorelacji dla realizacji procesu AR
  • jak estymata funkcji autokorelacji zależy od długości realizacji (czyli od ilości dostępnych informacji). Co dzieje się z funkcją autokorelacji dla poszczególnych realizacji, gdy zwiększamy liczbę punktów w realizacji N od 50 do 5000?
In [8]:
<span></span><span class="n">legenda</span> <span class="o">=</span><span class="p">[]</span>
<span class="k">for</span> <span class="n">r</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span><span class="n">N_realizacji</span><span class="p">):</span>   <span class="c1">#rysujemy funkcję autokorelacji poszczególnych realizacji</span>
    <span class="n">f_corr</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">correlate</span><span class="p">(</span><span class="n">realizacja</span><span class="p">[</span><span class="n">r</span><span class="p">,:],</span><span class="n">realizacja</span><span class="p">[</span><span class="n">r</span><span class="p">,:],</span><span class="s1">'full'</span><span class="p">)</span><span class="c1"># ...</span>
    <span class="n">tau</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">arange</span><span class="p">(</span><span class="o">-</span><span class="n">N</span><span class="o">+</span><span class="mi">1</span><span class="p">,</span><span class="n">N</span><span class="p">,</span><span class="mi">1</span><span class="p">)</span>
    <span class="n">ind</span> <span class="o">=</span> <span class="nb">range</span><span class="p">(</span><span class="n">N</span><span class="o">-</span><span class="mi">10</span><span class="p">,</span><span class="n">N</span><span class="o">+</span><span class="mi">10</span><span class="p">)</span> <span class="c1"># tu szykujemy indeksy, dzięki którym będziemy mogli pobrać wycinek +/- 10 próbek wokół przesunięcia 0 </span>
    <span class="n">py</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">tau</span><span class="p">[</span><span class="n">ind</span><span class="p">],</span><span class="n">f_corr</span><span class="p">[</span><span class="n">ind</span><span class="p">])</span>
    <span class="n">legenda</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">r</span><span class="p">)</span>
<span class="n">py</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s1">'fragment funkcji autokorelacji'</span><span class="p">)</span>
<span class="n">py</span><span class="o">.</span><span class="n">legend</span><span class="p">(</span><span class="n">legenda</span><span class="p">)</span>
<span class="n">py</span><span class="o">.</span><span class="n">show</span><span class="p">()</span>



<img src=" AAAPYQAAD2EBqD+naQAAIABJREFUeJzs3Xd4VFX6wPHvm0oSIEACIYRektAJgYQiiCIiLbgWXF3F XeuuDVH3Z1sb6lp2FdcO6qKioohSBBUs9E5I6KGGTgIhCQHSM+f3x524YQjSZnKH8H6eZx7IuWfu ee+dycybc849V4wxKKWUUkp5Kx+7A1BKKaWU+j2arCillFLKq2myopRSSimvpsmKUkoppbyaJitK KaWU8mqarCillFLKq2myopRSSimvpsmKUkoppbyaJitKKaWU8mqarKhqR0S6ichiETkmImUi0snu mC5EItJaROaISK7zPCZ5qJ1nRcQhIvXctS+Xsp0i8t/z3bcdnLHPsDuOikRknoj86sH9n/B6icil zvdHX0+1qbyfn90BKOVOIuIHTAHygQed/+6yNSgvICJBwP8Bc40xC87waZ8CzYAngFxglYfCM86H u/blcClzuHH/Z0xEegJXAmONMXnnuBtvvB+Kp2Oq7PXyxvOgqpAmK6q6aQU0BW43xkywOxgvEgw8 g/Whf9pkRURqAD2A540x73o4Nnd6HnjJpSyGkxOYqtALeBqYAJxrsnIxOuH1MsbMF5EgY0yxjTEp m+kwkKpuIpz/HjldRREJ9nAs3kTOsn4D57+nPY/exBjjcP1SM8aUGGPKbAjnbM95lRNLoN1xVFTZ 66WJitJkRVUbIjIBmIfVezDFOc79q3PbxyJyVERaisj3IpIHfObcdomITBaRXSJSKCK7ReR1Z++C axvXi8gGESkQkbUicrVz3+kV6jRztv2QiNwjIttF5LiIzBaRKGedp0Rkj4jki8g0EalTSVuDRGSB c+5NnojMFJF2LnXKj6uRcz9HReSgiPxLRKQ8HuCg87yUzw9xiMjTpziPzwA7nfX/7ay7o0J76ZU8 p7K5Ig4ReVNEhovIOue5XS8iAyt/BU94bjMR2eY8x/UrlCc6X79s53lZIyIPnCaOM5qzIiKPOOc6 ZTlfl1Uicm0lcTlEZGQlz//tnDrP4avOTTud28pEpKlzu6/zPbDNeV7SReRFEQk4gzhvFZESEXml QlmwiLzmfO8WikiaiDx8ihjfFJGbRGQ9UAgMdG4TEXnQ+RoViEiGiLxf2XvTZZ/+IjLGeb5yna/L AhHpV0ldEZFRzte1wPle/UFEulaoo3NW1El0GEhVJ+8De4Engf8AK4FM5zaD9X6fDSwEHsaazwJw PRAEvAscBhKA+4Eo4IbynYvIEOBLYA3wGFAX+AjYR+Vj6jcD/sCbQD3gUeBrsRKoS4GXgdbAA8C/ gTsqtHUL8DHwI9Zck2Dgb8BCEYkzxuyucFw+zuNa5jyuK4CHgG3AOOAQ8Ffn+fnW+QBYe4rz+A2Q A7wBfAF8Dxyr0F5lx3qq8j7ANVjn9qjzWKeISFNjTE5ljYtIK+BXZ9wDyuuJyADgO2C/M7YMoC0w BOscnyqOM53v8AAwHSuJDQD+CEwWkaHGmB/OcB/lvgWinfsYhfW+wnlMYL1vRgKTsV77ROBxIBY4 IUGqSETuAt4DXjDGPFNh03dY76kPsd6fA4F/iUgjY4xr0tIfGAG8DWRhJaYA450x/Rfr96cF1u9B FxHp/Tu9U7WB24BJzn3UAm4HfhSRBGNMxffZf4FbgVnAB1i/k32whhxXO+uc6v2lLmbGGH3oo9o8 sD6wHcA1LuUTgDKsD3nX5wRWUvYoUAo0rlC2FmuyblCFsj7O9nZUKGvmLMsAalYof9FZvhrwqVD+ OVAA+Dt/DgGygfdcYqqPlUS8X8lxPeFSNxlYUeHnMGfbT5/heSw/hocqOY87Kqn/DFDmUuZwHlfz CmUdneX3uD4XK6GLxUo4lwKhFer4ADuA7UCt34m7sjjSgf+ewTEHuvzs63zNf6rkvIys5PknnF+s xLEMaOpSr5Oz7vsu5a8661/qEvsM5/8fcG5/3OV5w537e8ylfLLzPdzCJcYSIMal7iXObTe4lA9w lv+xQtlc4NcKPwvg5/K82sAB4IMKZZc59/X6aV6HE14vrN/pMqDvmbx39VE9HzoMpC4277sWGGOK yv/v7E4Pw/qy9AHinOWRQAfgE2NMQYXnLgTWnaKtycaYYxV+Xu78d6IxxuFSHoDVkwPWFSShwJci Elb+wPrrcjnWh76rcS4/LwRaniKuqvSTMWZn+Q/GmHVYk00ri60j1jDeDqwelYrzZeKA5sAbxpij ngjU5X1QB6vnbCHQ9ZRPOjeDsV7LsS7lr2F98Q9xfYKI/B2rN+nvxhjXCcSDsJKStyrZn49ze0Xz jDGbXcquw7ri6xeX91wKVq9aZe85AIyl1BmniEhdrPfzKk48d9diJStjTrUvpU5Fh4HUxaTUGLPX tVBEmmBdRTIM6wuqnMFKGsD6ixqsv+xdbcOZ1LjY4/Jz+Zevawzl5XWxuuRbY31pza1kn4aTrywp NMYcdinL4cRjsYvrOYDKYxOsoYwM4CpjTL7L9lZYx77B7RGWByAyFGsIsQtQcdKpu68kKu+d2Vax 0BiTKSK5/O+9Vq4fMBR42Rjz+in2t98Yc9ylfFOF7RXtrGQfbYA6WHObXBn+N+G6UiJyK9bQYyzW 0Ge5HRX+39IZZ+7v7Uupymiyoi4mRa4FIuID/Iz1Qf0SsBk4jtXL8QnnNwn9VGP8pyovv3rEB+sL 4mb+N+emotIz3J8nnGrugO8pyk93rBX3OwVrPsPNWHMfqoyI9MGarzIPa27QAazhktuAG13irOz5 5/I+OdN5GOux3p+3iMj4ij1V56igkjIfrPfaTVR+FdOhSsoAEJGbsYYHv8UayjqIc2gS7+jdU9WA JivqYtcR66/KW4wxn5cXisgVLvXKF5ZrXck+Kis7H9uxvjAOGWPctVKouyYo5mB9cbpq7oZ9/x3r S+5dEckzxnxZYVv5OemANfnW3a7B+hIfWD6kASAit7vUK58U7HoOXHsv4NTnfBdWctAGKzkub6uB c7+uixhmYQ3TLMYapultjMlw2V9/EQlx6V1pW2H76WzHmni7pOJw2Bm6FthujLmuYqGIuA73bAeu FJE62ruizpbOWVEXu/K//F1/Fx6kwpeNMeYA1l+4I6XC+iwicilWwuNOs7GGep4Qa0XeE4hI+Dns s3xY5XcvQz0D24FQEelQIZ5I4Orz3C9Y5/surB6WT53DMuVWY028fFBEQit78nkq439XjAEgIs2x Jq/+L0BrvkwW4HoZ7b2cnJyUJw6u5/x7rMTrQZfyh537mOUanDFmP9ZVXkHAT855IRX35wfc5/K0 0VjDTWdyJdNk5z5OupzdeZn1753zk3rPRCQR6OlS/A3W79kzrvWVOh3tWVEXuzSsL+DXRKQxVpJw LZV/qT8BTAOWiLWmSz2sL6l1QM3zjOO3rndjzFER+RvWcverReRLrG74pliTLxdhXRlyxowxhSKy EbhBRLZiXW203hhztnNAvgReAaaJyJtYVy79FauH4LwnohpjjHNYYRrWZd6DjTFzneV/A2YAqc7z fwBrjkQ7Y4zrJNKzNQtrzsVsEfkCa3HBe4CtWFfvVPQh8JiIfIA1ibQvVi+J6/BJsrPsn87XsATr yp61IvIJcJcz6ZiPdenySOBbY8z8ygI0xmwXkSuxhqrmiMjlzuTpO6z5TS+KSAv+d+nyMKyl/k9a F6eSfS8QkXHO4+oCzHHGG43Vq/MA/7vk3dVM4BoRmYZ1HlsCd2PNL/rt98IYM09EJgIPiEg01mX5 PlhX1P1qfn+lZK9fYE95lvasqOroVN3vJ5U7u/yHYl318BjWX5absb44XOvOxJq/4I+1Rso1WHMa tmAtruXa1tmsF3FCuTFmEla3/F7gEawrQW5wxul6G4EzPd7bsdaEeR1r/ZRTrudR4fmucWVj9aIc x0pabsE6bzPP5PmnKS9voxTrC3IpVlLU3Vk+B+uqlM1YicVrwOVYCcxZHUclbc7Fei0jsK7SuQFr fZtplVQfg5WwXIt1DgTripsT2jHGrAL+gZXsTMA65+UL3N2O1cPQzdleP6xL2yvOjzkpdmPMemdb bYAZIhJojDFYickbWMnsWKwk7hFjzCNnei6MMX/D6tmq74zln864PsUagnLdT/nzPsZaI6YT1vos A4A/YSVrrm39GWu4rznW/JbHgRrAkspiqqw9dXES632ulDpXIpICHDTGnHZlVuVZznkSjxljTrsS rPJOIrIb+NEYc5fdsSjv4dGeFRHpIyIzRGSfc7nkJJftE+R/S3+XP753qRMoIu+ItQT2URGZ4pyI VrFOXRH5XESOiEiOiHwoIiEudZqIyCyxlj3PEJFXz3EGv7pIiYifiPi6lPUDOlP5Zcaq6jXCmlOi LkDOOVph6GuoXHh6zkoIkIq1tPSpxjt/wOoaLB+TdJ2J/gZWt+e1WPMJ3sGaqNWnQp3yMeb+WIsR fYy1SNbN8Ntlhd9jLdPdA+sDbSJQjNVNq9SZiAJ+FpHPsN5LbbHG5vdz8qJsqgo552pcgzV8dLph IeWFnPNxbsQaFvrF5nCUl6myYSCxbi52tTFmRoWyCVhLal9ziufUxppY+EdjzFRnWQzWYkc9jDEr RKQt1kSueGNMirPOQKyJXo2NMRkiMgjrAyzSGJPlrHM31ryD+hUvVVTqVJzvx3FAb6xx/eNYa7Q8 fiaTGJXnOBcl+w9WD9ddxphTrguivJNY98xqBbxrjHnldPXVxcUbrgbqJyKZWOsX/Ar8wzmJDyAe K8bfsmxjzGbnmGZPYAVWT0lOeaLi9DPWhKxErIWeegDryhMVp9lYNwRrjzV7XqnfZYzJ4+QJkMoL GGM+wVrET12gjDGX2x2D8l52Jys/YA3ppGNl1C8B34tIT+cM94ZAsfNLoqJM5zac/56wRLQxpkxE sl3quK4EmllhW6XJivPeGAOxlqd2vdpDKaWUUqdWA+vKr9mV3BLkrNiarBhjJlf4cYOIrMNa86If 3jFhcSDWHXGVUkopdW7+hDW39JzZ3bNyAmNMuohkYS1fPhfrpmYBIlLbpXclwrkN57+uVwf5Yi3Y VbFOd5fmIipsO5WdAJ999hlt27b9nWrqQjF69GjGjnW92a26UOnrWb3o61m9bNq0iZtvvhkqv3nm WfGqZMW5gmgY1sqUYC0qVIp1lU/FCbZNsRaMwvlvHRGJqzBvpT/W1UXLK9R5QkTCK8xbuRLrbrcb fyekQoC2bdvStau77xKv7BAaGqqvZTWir2f1oq9ntXXe0yg8mqw41zopv909QEsR6Yy11Hc21gqO 32D1brTGWg1yC9bkV4wxeSLyEfC6iOQAR4E3gcXGmBXOOmkiMhv4wLkcdwDwFjCpws2+5mAlJRNF 5FEgEngeeNsYU+LJc6CUUkqp8+PpnpVuWMM55Us8v+Ys/wTrvhudsJY1r4O1VsVs4GmXBGI01o2y pgCBWPeTuNelnZuAt7GuAnI4644q32iMcThvivYe1rLOx7HWYtEbaimllFJezqPJivOGXL+3SuxV Z7CPIuB+5+NUdXJxLgD3O3X2YN0DRimllFIXEF1uXl1UbrxRl0mpTvT1rF709VSnosmKuqjoh2H1 oq9n9aKvpzoVr7oaSCmllPI2u3fvJitL763oKjw8nKZNm1ZJW5qsKKUuTAcOQFERNG9udySqGtu9 ezdt27YlPz/f7lC8TnBwMJs2baqShEWTFaXUBenAsLvwP7iX8N0pp6+s1DnKysoiPz9fFwd1Ub7g W1ZWliYrSilVqaIi6qT8SpAjH8e+A/hERdodkarmdHFQe+kEW6XUBSdr+mKCHFa3/K4Pf7I5GqWU p2myopS64Bz4ZA7J9dsxo8kVHJs6x+5wlFIepsNASqkLTs0lsxnx1GMcbFCH1NtuB4cDfPRvL6Wq K/3tVkpdUMr2ZxJRsIk1nRqzu3EtjtWBo4vW2B2WUsqDNFlRSl1Q0sf/xNy4OEr8rPujTk3sw87x s22OSinlSZqsKKUuKMenzmFi4hCaB9agd+3aTO51Ff6/6rwVpc5FcXExjz76KFFRUQQHB9OjRw9+ /vlnu8M6iSYrSqkLh8NB1KY5zOvdlRF5tbkuoybJXVvS+NAyzNFjdken1AXn1ltv5Y033uCWW27h zTffxM/Pj8GDB7NkyRK7QzuBJitKqQtG7sJ1HG4YQGb9YAa8eJyuDxymMNCXFR1j2T1xvt3hKXVB WbFiBV999RUvv/wyL7/8MnfccQe//PILzZo14//+7//sDu8EmqwopS4YO8fNZnrCJdQ5Bv5L83Fs L6LLAX++ShzA4Uk6b0WpszFlyhT8/Py48847fysLDAzk9ttvZ+nSpezbt8/G6E6kyYpS6oLhP28O U3oNYOSmEEypQfyEm9bUYHbvnoSv1nkrSp2N1NRUoqOjqVmz5gnlCQkJv233FpqsKKUuCI6jx4nM WUFKp2ZcusKHkI4h1L2iLp2XONjVuA7UzCF/0y67w1TqgnHgwAEiI0++VUVkZCTGGPbv329DVJXT ReGUUheE9E8WsKlLexziQ/i8AsLuaERAVADZo7dT6zjMSuxB73fn0OmtO0+/M6U8ID8f0tI8305s LAQHn/9+CgoKCAwMPKm8Ro0av233FpqsKKUuCNmTZjM5sT/9dgTgyCpmdtPZ7A/ZT//S/ty0IZiv egykx39nA5qsKHukpUF8vOfbSU4Gd9xTMSgoiKKiopPKCwsLf9vuLTRZUUpdEOqnzmbOg//imbkB +NVz8FL+S2RlZzG03VAuX+nDp7dH03jM01BaCn760aaqXmyslUhURTvuEBkZWelQz4EDBwBo1KiR expyA/2NVkp5vaMbdlMYdpzM+jWJXlSK9BP2HNsDQG6vXCKmh1D4Nz/Wtm9GzNSVNL6+p80Rq4tR cLB7ejyqSpcuXZg3bx7Hjh07YZLtsmXLEBG6dOliY3Qn0gm2Simvt+3dOcxK7EHkIfBdV8ia9msI DQylVd1WzG85H3OolF7b/Jia0If9E/QSZqXOxHXXXUdpaSnjx4//ray4uJiPP/6YHj16EBUVZWN0 J9KeFaWU13P8OIcp9w7glrXB4JvP53U+Z3CzwUTViuLjlI8ZXHcwI1IDGdurD/d+9RrwrN0hK+X1 EhISuP7663n88cfJzMykdevWfPzxx+zatYsJEybYHd4JtGdFKeXVTGkZERmLWNWpFb2WQY3EGiw5 uoSkmCSSYpI4UHgA09fQblEZO5uEERiQTlFGjt1hK3VBmDhxIg8++CCfffYZo0aNoqysjFmzZtG7 d2+7QzuBJitKKa+265tVpHRujk+ZD3WWFLIrfhd+Pn5c1foqejbpSVhQGKntUvFbV0iDgzAnoTub 3/vV7rCVuiAEBATwyiuvsG/fPvLz81m2bBlXXHGF3WGdRJMVpZRXO/DxbKYl9uGq9f6YfAczomZw abNLqVOjDn4+fgyJHsJn9T4DH/jTuiCm9OhP/jSdt6JUdaLJilLKq9VaNocfevYiaXUAAc0D+Lro a5Jikn7bnhSdxIrjKwhMCOSSZcLiru1psO1XMMbGqJVS7qTJilLKaxVkHMHU3s+B+qG0WFjMkV5H KDElJyQrA1sPJMA3gPS4dOotKaTMx48dsaFkLNhiY+RKKXfSZEUp5bU2vfMrPyV2o006+OwpYX6r +XSK6ETzOs1/q1MzoCb9W/RnetR0yHdw+VpfZib2JH2c3thQqepCkxWllNcqmDabbxP7cdPaIHxC fJgQMIGk6KST6iXFJPFN6Tf4N/Xn6tRAZvS8lIC5Om9FqepCkxWllHcyhvBd81jRKYbuSwyOXg4O lh08YQio3NDooZRRRm7PXNosLCG9cX2CzAZKj5983xOl1IVHkxWllFfaM3cbmzuGEZTvS0hyIWva rSGyZiTxjU6+U1zj2o2Jj4xnXqt5+O4uoVU6zE/sRNp/l9gQuVLK3TRZUUp5pZ3j5zAzoQeDV/uB Az4N+5Rh0cPwkco/tpJikphQYwI+wT6MWFOD6Yl9yP5S560oVR1osqKU8koB82fzXc8+DF7tj18n P1Y7Vlc6BFQuKSaJw47DlPYspccymB/fmdANv1RhxEopT9FkRSnldYqPFeMTuI2DYXVovKiYnV13 EuwfTP+W/U/5nM4RnWka2pTUtqnUTi7Ev8ifg60dHNpwsAojV0p5giYrSimvs+HDpSxI6ECX9SC5 ZcxoNIOBrQZSw6/GKZ8jIiRFJ/Fp2KdQBgNW+fBDYiJb3vmpCiNXSnmCJitKKa+TM3kOMxIv4frU QHzr+/KN3ze/OwRULikmiTWyBt8OvgxNCWB6Yl8cs3XeilIXOk1WlFJep+bmeSzp3J4uSwy5PXMx PoYhbYac9nmXNr+UWgG1SI9Lp9niEnZGRRBYmIKjTJfeV6oyx48f55lnnmHQoEGEhYXh4+PDp59+ andYJ9FkRSnlVTLWHWJfWyH8kC81thQzv+V8ejXpRf2Q+qd9boBvAIPaDGJ61HR8csrouMGwqntL 0iavrYLIlbrwZGVl8fzzz5OWlkaXLl0QEbtDqpQmK0opr7L5nZ+ZnZDAkOU+iL8woeaEMxoCKpcU ncS0gGn4hvtyXXIgMxN6cuATHQpSqjKNGjUiIyOD9PR0Xn31VYyX3gBUkxWllFcxs2czo0cfrljt T0n3ErL9ss8qWRnUZhDiK2QnZtN1ueHX+K7USP7ZgxErdeHy9/enQYMGdodxWpqsKKW8RlmpAdlA Tq26RKwoJrVtKtFh0cSGx57xPuoF1aNvs77MazmP4M0l1MnxJ6d5Hrn78z0YuVLKkzRZUUp5jfVf rmdV95YkJhukyDAxfGKlNy48naSYJD6u/TH4wZXLhF8SurL+nfnuD1gpVSX87A5AKaXKZXw6h5lX 9eQPiwKRliWsDVrL2zFvn/V+hkUPY7T/aEriS7gqpSZP396bwf+aAy8O8kDUSlnyS/JJy0rzeDux 4bEE+wd7vB1vosmKUspr+K+dy+K/j+bJV8vY2WcnYUFh9GzS86z306peK9rXb09K2xS6T0pk32ON 8MldhTHgpRc7qGogLSuN+PEn32jT3ZLvSqZrZFePt+NNNFlRSnmFw3sLyGp9nOY7ffHPLGN61HSG RA/Bz+fcPqaSYpKYmD6RhKIEuiUb0rqF0/iXPcRc0cTNkStliQ2PJfmu5Cpp52KjyYpSyiuse2cB vyR2ZfBSQWrBjNoz+Cr6q3PeX1JMEi8tegmaw/Bkf75PSKD1+DnEXHG7+4JWqoJg/+CLrsejqugE W6WUVyiYMYeZib24NNmPnO45+Ab4cmWrK895fwlRCUSERJAel06nZYZf4+KRpXoXZqUuRNqzopSy ncMBJUVrKfAbRt11JUy/Yx79W/SnVmCtc96nj/gwLHoY03ZNY3TGaKL2BpAXmcHxvDJCavu6MXql LmzvvPMOubm57Nu3D4AZM2awZ88eAB544AFq1Tr330N30WRFKWW7TT/vY3O3MHovMwjCxLoTeTHm xfPeb1JMEtesvIaHaj7EwMWGRQntaPhhMpc8lOCGqJWqHv7973+ze/duwLp7+dSpU5k6dSoAt9xy i1ckKzoMpJSy3c7xc/g+MZEhyf4UdywmOzibodFDz3u//Vv2x7+GP4e7HeayFH9mJvYkd/JsN0Ss VPWRnp5OWVlZpY+mTZvaHR7g4WRFRPqIyAwR2SciDhE5aXUnERkjIvtFJF9EfhKR1i7bA0XkHRHJ EpGjIjJFRBq41KkrIp+LyBERyRGRD0UkxKVOExGZJSLHRSRDRF4VEU3WlPICZSvnsiy2E21WOEht l0p8ZDyNazc+7/0G+wczoNUA5rWYR9jaEg7XjKLk4Eo3RKyUqkqe/rIOAVKBe4CT7o4kIo8C9wF3 AQnAcWC2iARUqPYGMAS4FugLNAK+cdnVF0BboL+zbl9gXIV2fIDvsYa9egC3An8Gxpzn8SmlzlNe Thk5TbNot9EX32MOvqj/xVndC+h0kqKT+CL8C8RAz2WG3Z392ZFyxG37V0p5nkeTFWPMj8aYp40x 04HKlmIaBTxvjJlpjFkPjMRKRq4GEJHawG3AaGPMfGNMCvAXoLeIJDjrtAUGArcbY1YZY5YA9wN/ FJGGznYGArHAn4wx64wxs4GngHtFROftKGWj1R+lsDixHQOXgmloWFNvjVuTlaHRQ8kOyaaoQxFD VvoyJ7E7ae/Nddv+lVKeZ9swiIi0ABoCv11LaIzJA5YD5UtWdsPqDalYZzOwu0KdHkCOM5Ep9zNW T05ihTrrjDFZFerMBkKB9m46JKXUOcidPJtZiT3otcqXnXE7aVqnKZ0jOrtt/xE1I0hsnEhK2xRi VhnmdexK0Vy9C7NSFxI752w0xEooMl3KM53bACKAYmcSc6o6DYGDFTcaY8qAbJc6lbVDhTpKqSpm DBzPS8WnMJyau8qY1mgaSdFJiJvXxB8eM5xJ9Sfhd9QQvSWA3Hp7KCpyaxNKKQ/SIZAzMHr0aEJD Q08ou/HGG7nxxhttikip6mFrch674wLos8QBgT7MiZjDjJgZbm8nKSaJx+s/jqO+gwGLhNSEpsR8 tY1eI1uf/slKqdOaNGkSkyZNOqHsyBH3zQ2zM1nJwJrHEsGJvR4RQEqFOgEiUtuldyXCua28juvV Qb5APZc63V3aj6iw7XeNHTuWrl11CWWl3C3tvbnMTuzOXz7zI7tLFv41/bm0+aVub6dteFta1WtF elw6lyRH8/AfetDv49mgyYpSblHZH/CrV68mPt49N3a0bRjIGJOOlSj0Ly9zTqhNBJY4i5KBUpc6 MUBTYKmzaClQR0TiKuy+P1YitLxCnY4iEl6hzpXAEWCjmw5JKXWWChb+SkqLDjRd42Beq3kMajOI AN+A0z/xLIkISTFJTI+aTu1dZRQQxfE9y0//RKWUV/D0OishItJZRLo4i1o6fy6/7ekbwD9EZJiI dAQ+BfYC0+G3CbcfAa+LSD8RiQf+Cyw2xqxw1knDmiz7gYh0F5HewFvAJGNMea/JHKykZKKIdBKR gcDzwNshHzbPAAAgAElEQVTGmBJPngOlVOUKCuBw5AG6pPohpTC5wWSSot13FZCrpJgkfmr4EwRA 7yUODrQvYe+OYo+1p5RyH0/3rHTDGtJJxppM+xqwGngOwBjzKlZiMQ6rFyQIGGSMqfgJMhqYCUwB 5gH7sdZcqegmIA3rKqCZwALg7vKNxhgHMBQow+q1+RT4GHjGTceplDpLKyZtJ6V7U65c5KCoVRFZ dbMY1GaQx9rr3aQ3QaFBHO58mIHLfZib0Jk145Z5rD2llPt4ep2V+cYYH2OMr8vjtgp1njXGNDLG BBtjBhpjtrnso8gYc78xJtwYU8sYc70xxvXqn1xjzM3GmFBjTF1jzJ3GmHyXOnuMMUONMTWNMRHG mEedSYxSygaZn83hx+6JdFvtS0q7FPo060O9oHoea8/f15/BbQYzt+Vcmq+D5dFx5P3wk8faU0q5 jy43r5SyRc6h1dQ6XJ/AbMPXEV8zPGa4x9scHjOcbxp+g08JdFgXSFZIOqWlHm9WKXWeNFlRSlW5 9C0lZHQo4ZIlDhyhDlIjUxkWPczj7Q5sPZDDYYcpbFHI5YsdbOlej+TZWad/olLKVpqsKKWq3Jrx y/m1Rxz9l/uQ3jmdtg2tS4s9rXZgbS5rcRkpbVNITPblx+6J7PpIV7NVF6dVq1Zx33330aFDB2rW rEmzZs244YYb2Lp1q92hnUSTFaVUlcv96WfSGnYgYhvMiJrh1nsBnU5SdBJfN/yaGtkGv2NR5GxZ cvonKVUNvfLKK0ydOpUrrriCN998k7vvvpsFCxbQtWtXNm70rlU9dAVbpVSVKi6GzLp76L7SF+ML c5vM5fGYx6us/WExw3gg6gHKajnotQQyY45xMNPQIMK9S/wr5e0efvhhJk2ahJ/f/1KBESNG0LFj R15++WU+/fRTG6M7kfasKKWq1IofDrM5IYz+ixzktM0mqH4QCVEJVdZ+09CmdIrqRHqnHfRfJixJ jGXFhA1V1r5S3qJHjx4nJCoArVu3pn379mzatMmmqCqnyYpSqkrt/O8v/Nq5Ox3X+DCv1TyGRQ/D R6r2oygpOonvGn9Ho23C2iZdODhNL2FWqlxmZibh4eGnr1iFdBhIKVWlDu5ZQYN9Q/ErtOarvBnz ZpXHkBSTxBvN3uBBnweJWx1Apu9WHA7w0T/f1PnIz4e0NM+3ExsLwcEe2fVnn33Gvn37eOGFFzyy /3OlyYpSqsrs32c4GHucPoscFEaWcDDyIFe0vKLK4+ga2ZVaEbXIjs3m8kV12Na9BqlLC+jaO6jK Y1HVSFoauOnGfb8rORk8cHPdtLQ07rvvPnr37s3IkSPdvv/zocmKUqrKLP94E0sSYnnoZSG1QwoD Wg8g2N8zfyH+nvIbG85tOZfhv1zH+LviueSDhXTtfWWVx6KqkdhYK5GoinbcLDMzkyFDhlC3bl2+ /vprRLxrwrkmK0qpKnNg5i/su6MDdTKFaQOmcWf0nbbFkhSTxD1N7uG6gusIPRRF5vq5WDdjV+oc BQd7pMfD0/Ly8rjqqqvIy8tj0aJFNGzY0O6QTqIjtEqpKlFWBhlB20lY4UtZDQcpzVIYGj3Utngu a34ZhxofojCiiF5LHGQ2P0xurm3hKGWLoqIihg4dyrZt25g1axYxMTF2h1QpTVaUUlVi1aJCdnYP 5rJFZezqsJOuLboSUTPCtngC/QIZ2HogKW1Xc+kyITWhGYu/3m9bPEpVNYfDwYgRI1i+fDlTpkwh IaHqlhA4W5qsKKWqRNpHi1gaG0+bNF9mNZ5FUnTVrVp7KkkxSUxvNJ26mUJ63c7s+UovYVYXj4ce eojvvvuOQYMGkZWVxeeff37Cw5vonBWlVJXYu3UpTZv1QRywoOUCxsSMsTskBrcZzN0t76Ys0EHX 5AD2lmzEGPCyuYVKecSaNWsQEb777ju+++67k7b/6U9/siGqymnPilLK4w4fhsyWuVyy2EF2yxxC m4XSrn47u8MiPDichFYJ7GyXTr9FZRzoImxc77A7LKWqxNy5cykrKzvlw5tosqKU8riFkw+wplsz eqwU5rWaS1JMktdcGpkUncSsJrOI3uTD8g6dWf1RFVx6qpQ6K5qsKKU8bue3P3NE2hN0TPip2U9V epfl00mKSWJhq4X4OIQGeyLZs3Kh3SEppVxosqKU8iiHA/awmYQVvhTWLeZgy4P0btLb7rB+0yas DeGtwjncPIfeix0caJTJ8eN2R6WUqkiTFaWUR61NdbC/qy+XLipjTWwKg2IG4e/rb3dYJ0iKTmJe y1/puULY3K0BC78/andISqkKNFlRSnlU8oQU1jfvQtQeX75v8r1XDQGVS4pJ4pcWvxB8TDgU0Ikt X8y1OySlVAWarCilPCp93WJap9XF4WdY03oNV7W+yu6QTtKjcQ8OtzlMYWgx3Vb5s/PoOrtDUkpV oMmKUspj8vIgo0kWvZc42Bm9k8S2idQOrG13WCfx9fFlSOwQUmNW03dxGZkdi9m+3e6olFLlNFlR SnnMgu+Psa1zBF3WCLOb/ugVq9aeSlJMErObzqbJLl82t2jPks81W1HKW2iyopTymE1fzaO0IBa/ EmFxm8UMixlmd0inNKDlANZGr8Xha2i8owFbF8y3OySllJMmK0opj9lZvIHEFb5kN8qjfvv6NA1t andIpxQSEELP9j3ZGb2LXksd7AvbS2mp3VEppUCTFaWUh+Tlwf4ODi5Z4mBRy3lePQRULikmiTlN fiQuRdjdOZRtW3TpfaW8gSYrSimP2JScz8GwGOpm+zCv5TyvvGTZ1dDooSyJXoJ/iVBU2o4t89Lt DkkphSYrSikPSZu/kZab61EcVMLh9ofpGtnV7pBOq1GtRjTs2JCciKN0W+XPxvWb7A5JKY/ZuHEj I0aMoFWrVoSEhFC/fn0uvfRSZs6caXdoJ9FkRSnlEZv3bKPnUlgbk8aQ9kO85saFpzM8djgLWi+g 51LYfXy/3eEo5TG7du3i2LFj/PnPf+bNN9/k6aefRkRISkriww8/tDu8E/jZHYBSqnrKKMvm8i0R vD3wV/4ac7fd4ZyxpJgk/tbkbwxfPIRjUmJ3OEp5zKBBgxg0aNAJZffddx9du3bl9ddf54477rAp spNpz4pSyu2MAYfxxa9M2N9kH5c1v8zukM5YhwYdKGxTCIA/NcnPtzkgpaqQiNCkSRNyc3PtDuUE 2rOilHK7jAwIoC4ArXq2ItAv0OaIzpyI0LtHbwpqFBNYFM6mtSXE9/CuGy8q5U75+fkUFBRw5MgR pk+fzg8//MCNN95od1gn0GRFKeV2G5bmEJRXj6x6R+jTro/d4Zy1/q36syfiAPUzmrF+3mbie3Sw OySlPObhhx9m3LhxAPj4+HDttdfy1ltv2RzViTRZUUq53foVG2i2y4+dEbu5JLK73eGctbiGcfyn 4ft02t6MtJ1bAU1W1Onll5WRVgXjhrHBwQT7+rptf6NHj+b6669n//79TJ48mbKyMoqKity2f3fQ ZEUp5XY7Du2i//YopnfbwD0Rt9sdzllrXLsxu5vuYPAKw/yCQ3aHoy4Qafn5xCcne7yd5Ph4utaq 5bb9RUdHEx0dDcDNN9/MwIEDSUpKYtmyZW5r43xpsqKUcru8kuOE5kF+6yME+wfbHc5ZExFqtPfH 52vBUea+v2BV9RYbHExyfHyVtONJ1113HX/961/ZunUrbdq08WhbZ0qTFaWUW5WVgZ+jBgB14kJt jubcRcVH4RBDUFktsrIgPNzuiJS3C/b1dWuPh10KCgoAOHLkiM2R/I9euqyUcqsd2w1BRXUoqFFM m47e8VfZuejSvAuHwnMIPlqP9cl6/bKqfg4dOnmIs7S0lE8++YSgoCDatWtnQ1SV054VpZRbrV2c Qb2sWuxvsJeujbx/if1TiYuMY1qDWTTbFceaJRvpN7Cb3SEp5VZ33303eXl59O3bl6ioKDIyMvj8 88/ZvHkzr7/+OsEeHm46G9qzopRyq3XrN9Jqu7A9YitdGnaxO5xz1rpea7Y23kzLHbA1Q29oqKqf P/7xj/j6+vL+++9zzz33MHbsWJo0acKMGTMYNWqU3eGdQHtWlFJutT/nAH33RvFzrz3UDaprdzjn zEd8KGlbRMhsyD9+zO5wlHK7ESNGMGLECLvDOCPas6KUcquywlJ8jBDSuYbdoZy3Bt3qA+Bf4o8x Ngej1EVMkxWllNsUFECNkmAcYmjSrYnd4Zy3tm3bciykkJCiUHbtsjsapS5emqwopdxm4wYHtY6F khV+hM7NOtsdznmLaxTHgQYZhB2qSeqyHLvDUeqipcmKUsptUpbuJGpvIHvr7yYuMs7ucM5bu/rt 2NlgOy13CGvWbLA7HKUuWpqsKKXcZuO2LbTcAbuj0omsGWl3OOctwDeArNhDRGbA3oP77Q5HqYuW JitKKbfJO3yYkHwo6lKIiNgdjlvU6lrT+s+xYnsDUeoipsmKUspt/AqtBCWiW4TNkbhPi24tKPV1 EFRcg2LNV5SyhSYrSim3yM6GmkUhHAspon279naH4zZxTeI4VD+H0KO12LLF7miUujhpsqKUcovU NaXUO1yLzAaZF/Qy+646R3Rmf/huovYGsmKpzltRyg62Jysi8oyIOFweG13qjBGR/SKSLyI/iUhr l+2BIvKOiGSJyFERmSIiDVzq1BWRz0XkiIjkiMiHIhJSFceo1MVg5fLNtEj3YX+DnbSo28LucNwm JCCEQ0330SIdNqRttjscpS5KticrTuuBCKCh83FJ+QYReRS4D7gLSACOA7NFJKDC898AhgDXAn2B RsA3Lm18AbQF+jvr9gXGeeBYlLoo7dqVTmQG5MZk4yPe8tHiHiXxhsBiOJqZZXcoSl2UvOXeQKXG mJPvVW0ZBTxvjJkJICIjgUzgamCyiNQGbgP+aIyZ76zzF2CTiCQYY1aISFtgIBBvjElx1rkfmCUi jxhjMjx6dEpdBEoPHwdqEpJYy+5Q3C6qZxQA/scdNkei1MXJW/78aSMi+0Rku4h8JiJNAESkBVZP yy/lFY0xecByoKezqBtW0lWxzmZgd4U6PYCc8kTF6WfAAImeOSR11oyB1avRm7BceIyBoEJfSn0d tE5oY3c4btc5pjNHQguoWRjE0aN2R6POSWoqlJbaHYXXe/HFF/Hx8aFTp052h3ICb0hWlgF/xur5 +CvQAljgnE/SECuhyHR5TqZzG1jDR8XOJOZUdRoCBytuNMaUAdkV6ig7FRXBrbdCfDyMH293NOos 7dkDdY+GkFX/CHFNLvyVa13FRcZxMDyT8KyapK7V3pULzvffQ1wcDBsGR47YHY3X2rdvHy+99BI1 a9a0O5ST2D4MZIyZXeHH9SKyAtgFjADS7InqRKNHjyY0NPSEshtvvJEbb7zRpoiqmYMH4Q9/gORk K1kZMwZGjoSgILsjU2doZcpxGh4IIjN8G9eGD7U7HLerF1SPQxF7iN7cnOWr0unTu5XdIakz5XDA E09A+/awdCn06gUzZ0KL6jMJ3F0efvhhevbsSWlpKYcPHz6r506aNIlJkyadUHbEjYmh7cmKK2PM ERHZArQG5gGC1XtSsXclAigf0skAAkSktkvvSoRzW3kd16uDfIF6Feqc0tixY+natfpciulVNmyA oUOt2/XOm0dG3bo07NAB3nkHHnnE7ujUGVq9ehN902FZ/wP4+/rbHY5HFMXmEb4E5qVtAzRZuWBM ngxr1pCxcCERYWHIsGGQkABTp8Ill5z++ReJBQsW8O2335KSksJ999131s+v7A/41atXEx8f75b4 vGEY6AQiUhMrUdlvjEnHSib6V9heG2ueyRJnUTJQ6lInBmgKLHUWLQXqiEjF/un+WInQcs8ciTqt H3+Enj2hdm12LV7MtTVrEnngAFOffhpeekm7ay8gh3fuJ7AYqMY5fc2+4QCUHdJJKxeMkhJ46imW 3347UaWlXFFUxMb586FdO+jfHyZOtDtCr+BwOHjggQe48847ad/eOxd0tD1ZEZF/iUhfEWkmIr2A qUAJ8KWzyhvAP0RkmIh0BD4F9gLT4bcJtx8Br4tIPxGJB/4LLDbGrHDWSQNmAx+ISHcR6Q28BUzS K4FsYAy8+SYMGUJh//48//XXxO7bx7K8PDqEhPBs//44CgrgtdfsjlSdIb/cIgAi+zW3NxAPiu3e juKAMoLzReeAXygmTIBt2xjz5z/TrEYN9hQV0XnbNh4eP568v/zFGm5+4glrqOgi9t5777F7926e f/55u0M5JW8YBmqMtQZKGHAIWAT0MMYcBjDGvCoiwVhrotQBFgKDjDEV79IxGigDpgCBwI/AvS7t 3AS8jXUVkMNZd5SHjkmdSkkJPPAA5v33mfnKKzzYty97DhxgdOPG/KNZM1KPHaNvairfjRnD8Gef hfvugwYNTrtbZZ+SEqhVEMCR0EI6x3a2OxyPiWscx/z6y6hztCaZmdBQp+Z7t4ICeO45Vt1/P9+X lvJFmzZcU78+Y/fs4fldu/j8llv4V0ICN99xB7J5M3z6KYSc3zqhZfll5Kflu+kATi04NhjfYF+3 7Cs7O5tnnnmGp59+mnr16rlln55ge7JijDntLFVjzLPAs7+zvQi43/k4VZ1c4Oazj1C5TW4uXH89 W7du5cGZM/k+JIQBQUHM6tiR2JAQjq09RvhrBxh2U23GXHIJSb6+yD//CW+8YXfk6nds2WIIyw7h UPh+BkT0tTscj4mqFUVW2H4a7e/E8tQihl8VaHdI6ve88w4cPMjzN91Ep+PQ5bEcCm4L5LE+zfhT RAR/376dkS1bMm7OHN4ePZouffvCjBkQFXXOTean5ZMcn+zGg6hcfHI8tbq6Zz2jJ598krCwsHOa p1KVbE9W1EVi2zaOX3MN/+zbl38/8QSRNWrwbevWXB0eDg7Y/cpu0p9Kx5QYRhfX5fK7C/n+n/9k yEMPwUMPQdOmdh+BOoUFKTk03+nHzuj9BPsH2x2Ox4gI+U0P0f4HmLtqC8Ov6mh3SOpU8vLgpZdI efhhZhQWMn16GJkfZ5D5SQZN/t6EFmNa8GX79tydk8N9W7cS/9Zb/PXnn3n+ssuoN2mSdVXiOQiO DSY+2T0TSk/Xjjts27aNDz74gP/85z/s27cPAGMMhYWFlJSUsGvXLmrXrk3dunXd0t750GRFeZyZ N48p//43Dz37LIfq1eOxZs14tGlTgn19KUgvIG1kGkcWHyF7QBN+WhXADV9t59o/1GRM9+4MDg1F nnsOPvrI7sNQp7AlJY22h2FbTPWfeBrY3Re/mXBky15AkxWv9dprkJ/PC9deS9eMUmp/kMOPdZvQ LtEfGZtO9o/ZtJ3Ylss61SW1Wzfe3rePZ3x8+KpnT1564QVuu+UWfK+55qyb9Q32dVuPR1XYt28f xhgeeOAB7r//5IGJli1bMmrUKF5//XUbojuR7RNsVfW2ceJErkhJYcQjj9C1eXM2JibyXIsWBPn4 cOCjA6zqtIrju4r4vHsXrp3TiillUWQH1uCe/wor8vOZ8/LL8PHHkOYVS+6oShTvtu6XU6dffZsj 8bzGV7YFwCfnuM2RqFM6dAhef511jz/Ot8eP88yUGhQ6fPikpCl/nt2UN2LjKSqE5O7J7H51N35G GN2kCVsSExnSrBl3jRpFj4MHWf7WW9V+Ne0OHTowdepUpk6dyrRp0357tG/fnmbNmjFt2jRuv/12 u8MEtGdFeUheURHPff45bzZtSvM6dZjVti2DIyIAKM4sZvOdmzn83WGOX9qQO1NbY0r8mDkT/P19 eGVgC56avYkbrg/muc6duLJxY+Spp+Drr20+KlWZoGMlFAc4iOldfSfXlotr05V1YVsJPe5PWRn4 umeOo3Knf/4TfHx4YdgwErcVUPvzI7xX1pJ/vu9PdDTcemtNBu+L56M+6ZjHdnB45mFiP4mlYYsg PunQgbtycrjv6FF61KrFbR98wI3t2tl9RB4TFhZGUlLSSeVjx45FRBg2bJgNUVVOe1aUWxlj+GzX LmJ+/pn3IyMZc/Ag6wcP/i1ROTTtECs7riR3aR6zenZg6PxY+g32Y/16GDIErrwSfK9owO7Amtw5 HpYePcavL78MU6ZYK9wqr3L8ONTNCyKrfi5xjavfMvuuWtVrxeGwg4QfDmHHjur9V/cFafduePdd Nj79NF8fOcKTEwM44hfI1nZRjBwJvXvDmjUw8nYfRvzSik+6dOF4ehGrOq3iwEcHMMbQu25dVg0d yru5uUyNjOQPKSmnb7caEhG7QziBJivKbVKPHqXv8uXckp5O39WrSQMev+kmAn19Kc0rJe0vaWz4 wwbyW9TmNrozYUs4kyfDF19AUO18xswfQ9TrUdz46BLeKWqB74p8bkkNYkxMDMTGwpNP2n2IykXK egcNM4LICcugTo06dofjcT7iw9EGGTTf6cf81Oo/R+eCM2YMhIby4oABXJLuT63vjjG+qDl/e347 Ld5sykOzH6LEN5e334affoJfsupwbW43crrUZ/Mdm1k/fD3FmcX4ivC3q69mS1gYV6am2n1UVW7u 3LmsWbPG7jBOoMmKOm85JSXct2UL8cnJZG/bxi+vvMJXV19Nk0GDAMidn8vKTis5+M0hFvaK4coV HWjbM4D16+G66wyT1k0i9u1YXlz4Ij7iw3+23Uubm0PZ4F+HkeMcLMrJY97LL8Ps2TB/vs1Hqypa sHIfzXYJRY0P2R1KlfGLOU5oHqQt32J3KKqizZthwgQ2P/ccX2Zn838T/MkICKawXwTf5o+iqKyI 8cnjafNWG95b+R79Li9l3ToYfJ0fwxfFMq1bB3KX5LGy40oOTbPez+G9evHkOUy0Ve6nyYo6Zw5j +HD/fqJXrODTvXv51/jxpL7/Ppd/8gl07EhZYRnbHtlG6mWpFNSuwaiQbvx7fSQTJgjTp8PushX0 /m9vbvr2Jro16sbGezYy5foprMlcQ9ubP2Q8LfHbXMRtiwIZ06yZdTnh449X+0lvF5LM1O34lUGt uIvno6TBFY0BKNp5wOZI1AmeegqionixTx+uWOtHzYX5vFPcgmF//54ft//IuKHj2Hr/VoZGD+We 7+8hblwcKw//zIQJMH06fLknnJFl3TnWrDYb/rCBtL+kUZpXCpGRdh+ZQpMVdY5W5OXRY/Vq7tyy hUF797L5+ut5yMcH/59/hgYNOJp6lNXdV7PvrX2s6dGSAeu6ENY+iHXrYMA1+7h12kgSP0wkvySf X0f+yrc3fEureq1IbJzIrZ1vZeyaf9B3VBlLfMMZ8YGDRQdzWfjSS9ZdU2fOtPvwVbnMbAAaJ3Wy OZCqE3tpIgVBZQTlFZ++sqoaq1fD11+z7YUX+PxQFg986MtW/1o0urEW72wfzRUtr2B4zHAia0Uy YfgEVt25ijo16jBg4gCSJiXRtvdW1q+HblcEcNWqDsztHsPBKYdY2WklR5N1uM8baLKizsrR0lLu SEsjcfVqisvKWDh9Op/+8Y9Ejh4NEydi/APZ9dIuVies5nghPN0gnifWNOXNt4Vps/L5OH0M0W9H 8+O2Hxk/dDzJdyVzWYvLTmjjpf4vUVRWRHHvZ5gU0gLf/SX89ccAnm/QAPr1s+auXOT38vAWoUd9 yA4rpEvbBLtDqTLtG7Qnq34uYblBFBbaHY0CrPv7xMbyz27dGLbYj5B1RYxztKTFjW+SnpPOf676 zwkTRuMbxbPgzwuYfN1k1maupf277Xkp+WHGf5rLpEnCW9siubdGN/Jr1mDzXZttPDBVTpMVdVae Sk/ny4MHeTsiglWjR3PJ++9bt2D/xz8o2FFISt8U0v+Rzta4JgzcFk9p05qkpBjq9Z1Eu3djeWHB C9zb/V623r+VO+PvxNfn5Gs/I2tF8nTfp/lo7bsMfDKdH2lI0oQyFu/NYekLL8C6dfDll5VEp6rS wYNQ/3AI2WGHiKx18XSV+/v6kxeWQWRGEGs3atJsu/nzYfZs0l98kc/3H+SuD4Vk33p0HVXIO+uf 576E+2hX/+TLj0WE69tfz6Z7N/Fsv2cZlzyO6LfbkNPqPVLXltI0IYgrN3RhU7tzX35fuY8mK+qM HSgqYtyBA/w9MJB7r7oKv/R0WLAAc9117B+/n5WdV3J0VzGvNY3j3tSWvPCqD/+etII/L7TmpcQ3 imfjvRt5dcCrhNYI/d22RvUYRcu6LUluMIo5jZpDnoN7p/rxfK1aMGwYPP20dQc9ZZtFa4poutuf /PBMu0Opco6obKL2CfNWXTwTi72SMVavSnw8L7Vvz7VzfAneVcJnQS3I6/4YNfxq8Gy/Z393F0H+ QTzR5wm23L/lt/ksQ76L48E3f2b8h8K49IsnEfdmmqyoM/avPXsIdDgYNXw41KsHK1ZQ1KQT64at Y8vdW9gbE8HQA93YVzeU7xftY13rkfSakMjxkuP8MvIXpt4wldb1Wp9RWwG+AYwdOJZ5u36l31Pf M8XRmIFflLFsWzYrn3sOduzQJfhttnrJTkLzILDNxbeaa3i3AHwdsH+lDhHYatYsWLKEXS++yKSd Bxg5AX6VBvR6cgNfbf6UFy9/8YwvqW9UqxEThk9g5Z0rCQ0M5crPBjAjZDhjJ+z28EGoM6HJijoj mcXFvL9/P6MWLqROgwawcCGHlgeyssNKcpYd5cNWHRi5Job7/1FM0mvPk/TT/+alrL5rNZe3uPys 2xwSPYTBbQYzreAh1nZuQHGxD/dP8uV5Pz+46SZrTYV8z9+OXVUub+N2AKL6RdgcSdVrcXV3HGKQ A9qzYhuHw5q/dumlvNKiBTdM9cH/sINZDZuxvO4DxDWM4/a4s18qvlujbiz8y0K+uu4r1mSs4b55 13sgeHW2dLl9dUb+tXs3/g4HD776KqVvT2DrPXvInJhJTodw7t4cTVgDf577ZhLjdjxKxqIMHuzx IE/2efK0wz2nM3bgWDq824HLRr3BZ7eN5PZp6Xzwh8OkPPkkcV99BW+/Df/3f246SnU2grILyA8K JE43IsQAACAASURBVHbwZaevXM10bJvI9/XnU+eIfoTa5ssvYe1a9i5ezFdb9jPpcx9mmEjinpzM RxkrWfiXhZXOiTsTIsKI9iMYFj2MRz55hHd5l02b/p+9+w6rsv7/OP68z+EwDnujAoKIoqDg3miu nFlmmZq7YamZlZptG2pLW1pZlrk1V5bl3hsHLsCF7L03nHH//jjVz/pWLuA+wOdxXV5dwQ336yic 8z6f9Y6u5AdQs1X334f4TRNuKaOigsUpKbx48iSWrq2JeL0BFblZbAgMYvFFT0bMiOB64PO8FnmM B4Me5MM+H972dM+tNHFtwrQO01gUMY8uA8ZQsMOS55breaelgU1PPAHz58PTT4PjvRVFwp0xGsE1 z5psjwIauQcqHafa2VrakueahWdmPXJzwdlZ6UR1jE5nWrc2eDAfuLvz+KIU5FKIaOlCbOlsRoSM oKtv13u+jY3Ghll9Z7FMu4zHH3+8EoLXLlqtFjc3t2q5lyhWhFv6KDERC1lm+rvvcq3hWgrSVTyt b4dsmU3fr8ayOm0FLQ0t2TNmz11N99zK691fZ8X5FagfmsX3v37M8zuv8u3xLM7PnEnLH36Ajz6C d96p9PsK/y72hky9NBuK3BNRSXVzNrncLQP/074cO1fBgB6WSsepW777DmJjSd2wgU2RySzbILHa 4EP9yfM5l1XIB30+qLRb+fr6Eh0dTVZWFlGZUXx09CPOpZ2jjVs42b9MJ/diPd50vYarppDA9Kk8 tOgLWrm68l6jRpWWwVy5ubnh6+tbLfcSxYrwnzIrKliUnMz0s2dR2bQn96KWeeoGeDz/IZec53Om wJavB33NxFYT73rI9VYcrByY33s+438aT/8nniH1exumLi3n3U4lrJ86FRYuhClTwLPurZ1Qyp7T hTROURHTIkfpKIqxa1yK7SHYeyiBAT0qZyRRuA2lpab1aiNG8KGdHWOW51NqUHOjXxmH0z/lre5v 4e3gXam39PX1xdfXl9a0ZlTfUay/tJ6Zu2eSOuxRWg+ZytL3X+CLiqs08h/Lm9euMaVpUz4JCqKp VlupOeqyuvmWSLhtHycmopJlnp/zNte004m1VHNmdhciHd/h2XbPcnXqVZ5q81SVFSp/GBM6hvYN 2hPfchrfqxoSetzIlV2ZXJo2DdRqU1t4odpcORSN2gieYVX7727OGvcyvSDmXYxROEkd88UXkJFB +ptv8suxZHpvk1luaEjFAy/g4+DDi51frNLbS5LE8JDhxEyO4c3ub3LR+mtuvBLGca3M9eIRjP/k c+oD78bHV2mOukYUK8K/yqqo4IvkZKZGRaGS21AUZ8u3Pb+lvrs9UZOj+LDvh/e8gPZ2qSQVn/X7 jKicc6he2sJVlR2Tv5V4LzcXZsyAr74C8eRQbYxxyRhUMs0GtVY6imKaDexHob0eu6xypaPUHfn5 pnVqTzzBx2o1Y5fKZKutyJ1wjqMZ21lw/wKsLayrJYqNxoZXw1/lytQrhDUIYtnQOVRkqMl1G8nL e/awOj2dK2K3YqURxYrwrxYkJYEsM/2NN7lqM40o23KOdVjOkiGLK20B7Z34o2/QKcfXWOnkQeAl mcTNmcQ8/TQ4OcGcOdWeqa5yylGR7V5G0w49lI6iGFeneuS45+OWYyN6a1aXjz+G0lIyZ89m1+4k uhyAZZI314P/v/9PdatvX5+lD37DtcZH2O+azbXSkYyfvwAvSeI98Qaq0ohiRfhH2TodnycnM+Xq VSgOozTNjqUDP+LBJsMIbxiuWK55veahM1Ygv/QRpyUnnv4W5qVnms5b+OEHENsLq1x5OXhmacl3 ycZCrVE6jqJKnDOon2pNQqKoVqpcRgYsWABTp7JQp2Pc1zJxFjYUv7CGxKL/7f9TnYLcgni23WR+ GPYaunwLcuwf4+XDh1mVns41MbpSKUSxIvyjhYmJGI1GXnj9Ta5ZT+WMcw7nmx9i4YAPFc1Vz74e r4e/zlHdYrY0kfGOh8wVGVwbMwZ8fExt4oUqdTZKj0+SBp1LhtJRFKfyzMUrXcXeEwVKR6n95s4F tZqcF17g8JZkQs/CKgcXTjv8e/+f6jTnvjfJ9s5kl891YssfY8LbH+ChUvFegjgBtzKIYkX4Hzk6 HZ8lJzM5IQE5O5TyXHuWDnmHFzu/iJ+Tn9Lx/uwblDvxJfar3Bi/DObHp8Jbb8HGjXDqlNIRa7V9 B1KxLZGw9RPvGH1bmbYsXzx4SeEktVx8PHz5JcyYwSdFxYz52sgFC3typ7+LtebW/X+qg7ONM/P6 vs0PD72BrlRDtuUjzDp5khVpaVwvLVU6Xo0nihXhfyxMSsIgy7z4+hyuWT7L0XpxpDZO57Xus5WO Bpj6Bn3S7xMulexlV/hVXDKh6Ot0bgwbBkFBpikhocqknb4IQPNuYqt42OB26Cxk5BupSkep3d5+ G5ycyJsyhTMrEml8FTYGlHPasJy5Pefedv+fqvZ026ew8XXhl6YniK14jAlvvo+7Wi3WrlQCUawI f5Gr0/FZUhLPpKRgSGqOrtiO7x54lwUD52Fnaad0vD8NCBzAgMABXL9/Or+q3Ri5Ej6KSYR334Wd O2H/fqUj1lralGIK7A0ED+qrdBTFebXpQpZnKS7Z4qm0ysTEwLJl8OqrfJ6Zy8hvZI5pnEgc9zyt vFoxodUEpRP+yUJlwdcPLWTlgI/Q6dRkGYcyMzKS5WlpxIrRlXsifsOEv/gkKQmdLPPiG+9y3eJp 9jWKRNPEhTGho5WO9j8W3r+QHF0KBx/ZhlWphO7TdOIHDIC2bWH2bMQWjarhkW1NjkcB2gYNlY6i OMnCgkLnbOpl2KLXK52mlnr9dfD2pmDiRC59lYhXKvzc5SKx5RF81v+zKj/j6U71btSbls06syVs B/G6R5jw+oe4WVgwV4yu3BNRrAh/ytPp+DQpiUlZWRiuNUVXruX7/gtY+sgnZnmkehPXJjzf8Xku Np/DBisHhm6AT0/HmRbiHT8OP/+sdMRaJy9Ppn6qllIn0W34DwanDLyTNJyPEtVKpTt9GjZsgLfe YnFCBo8sM7Lb2onoPi8yssXISun/UxW+eugj1vb6jjIgq+QBZkRH80N6OnFidOWumd8rkKCYT5OT KZdlXnpzPrHqCewMPkiL1l3p7NNZ6Wj/6rXw13C0duDohIXoZBXSR+kkdesGPXqY1q4YDEpHrFX2 HS3EM0OFyjVb6Shmw7FhKVYVEjt231A6Su3zyisQFEThiBHELkzEIQ92PriRCop4v/f7Sqf7V4Gu gQzvPJYfO2wgwfAgE2Z/hLNazVyxM+iuiWJFACBfr+eTpCSeLihAfzGACoM1K3su46uHzfcJAf6/ b1CU6wrWOhvp/wssOnwD5s2DixdNbeSFSnNsv2nXi2+weQ29K6l1j/oApJ0Rx+5Xqv37TevP3n2X by6nMmS1ka0ONpwLms8rXV+p9P4/lW1e/9f4udt2SlR6snL7MyM2lu/T0ogvK1M6Wo0kihUBgM+S kig1GHjxnQXcUI1hW+tfebT3WHwcfZSOdkt/9A06MH4GuVZqrOalk9qqFTzwgKmNfEWF0hFrDf3l ZHQWMh36hykdxWw06dOTHBc9diniRajSyLJpVKVtW4qHDCFpfiKSTmLPqA/wcaz6/j+VwdHakdcH v8qa8JUkyYOY+PJCnNRq5om1K3dFFCsCBXo9C5OSeKqsDP3JhlRgwebuO3m3/0ylo92WP/oGJVud YrV/Mj32wpLt1+G99+DGDVi6VOmItYZLuooMr3JcOnRUOorZUPk2JM8tH89MG6Wj1B6//ALHjsHc uXx3KoF+G4386FVOtPumau3/c6+e7TSBY52vUGBZSkZqH15KTua7tDQSxOjKHRPFisDnyckUGwy8 NHcR8dJwNnXYxGuPzkarqTntzf/oG7Tn4edIcFRj924G6U2awKhR8M47II68vmeyDPUybClyzgYH B6XjmA9JoswxE+9kLcXFSoepBYxG03qz++6j9L77yHonkWKNxI4RLyjW/+duqVVqloz9kBU9fiCV +5k463Mc1Grmi7Urd0wUK3VcoV7PgsREnjQY0B2sT7kKDne/ysT2I5SOdsfm9ZoH1mWsanWcNqdg 2fqrplNtMzPh88+Vjlfjxccb8E62xOAgjtn/O0uXHFxyVezYl650lJpvzRq4cAHmzmX5wQTCt8us bZJIhjZG0f4/d6tX4+6k3acmT5tHRvx9vJiZydLUVJLE6ModEcVKHfdFcjJFBgMvvf8tiTzEui7r +erpeTXuCQH+v2/Q7u6zifaUcHwvkwxvb3jySXj/fcjLUzpijbbl1xisKiQc6xUpHcXsNAq2AODo /iiFk9RwOp1pndkDD1DWrh35byaSYS/x66CpZtH/524tf3I+3/dYRTr3MWHW19iJ0ZU7JoqVOqxI r+fjxEQmShIVO90p01SQ1FdNF792Ske7a9M6TiPAtRHLu60lKAZWf3vVdKhUWRl89JHS8Wq02FOm rbltu3gonMT8dO4TRpmVjHxZnD9zT5YuNa0ze+891my7QfvDMivbnsDa3sIs+v/crUYu/jg+2Iwc +zQyrnblhYICvklNJbm8XOloNYYoVuqwRSkpFBgMvPDxKlIYxKouG/luyhylY92TP/oGHQ/5ipP+ BlzfzyLbyRWeew4++QTSxTD93bKLLyHb1UDT7u2VjmJ2rFuHkV6vDLd0C6Wj1FwlJaYeQKNGUdas GaWvJ3PdC37r8jJze5lP/5+7tXjMy3zXYzPZdGX8rO+xVat5X4yu3DZRrNRRRXo9HyUmMsHSEv1W J0oti7Ae3hRvx/pKR7tnf/QNWt7nI3wSYe2CGJg5E9RqWLxY6Xg1lle6DTnuhaZmkcJfeXhQ4pRF /TRbpZPUXKtWQUYGzJnDhtWxND8v80P3jYTVDzOr/j93y97Knk4TB5LhGEfmxfZMLytjSUoKKWJ0 5baIYqWO+jIlhXy9nhc+3kAafVnRdRufTXxe6ViVZuH9C7ncYA97Wpbg+UkOORZaGDgQfv1V6Wg1 ksEADVK1VDhkgI3YovtPZPsM6qdaEhcvdp7dlW3boEsXKnwbop+TwrlGBg4FfWGW/X/u1isPjGH5 fQfIpR1jZ67BRq3mAzG6cltEsVIHFRsMfJiYyDitFt1GW0qss2k95X5sNLXnRaiJaxOmd3qeZb1e wykXNrx9Gfr1g1OnTO/ehDuy+0A8rjlqNA5ZSkcxWy5eJWj0Ehu2nFc6Ss1TUQF79kC/fmxcfA2/ 6zJL+y5mZEvz7f9zN1SSiomvTiTd+QrZZ0N53mDg69RUUsXoyi2JYqUO+iolhVy9nuc+3komPVnb 9QgvPjhM6ViV7rXw1yj3SuGXTtnU+zqXnDY9TJ/YtUvRXDXRvt2XAfALUDiIGevY0R2AhLMpCiep gY4ehaIiKnr2RTUvjcOhZVxrsN2s+//crYfadmVj32vk05IRL27ESpL4MDFR6VhmTxQrdUyJwcAH CQmMtbfHuM6GYptkhr87tkZuVb4VBysHPug7n+XdXsZCB5sXZENYGGzfrnS0GqcsOocyK5lu3UW1 8m/8OrQg3dOAQ5xo73DHtm8HDw82/2aDW4bM0t7v82q4+ff/uVuvvT+ZNJdLFJwOZppazVcpKaSL tiD/SRQrdczXKSlk63Q89cFv5NCZn++7ysAOrZWOVWXGhI6hUUMXNvZOoMGqfLLDHzI1RzMalY5W o3gkW5DWoAKb0BZKRzFfwcHkuRdQTyyyvXM7dlDRaxBWn2aws3M+xvrxNaL/z91q2bAhex8so4im PDR1MxpJ4kOxduU/iWKlDik1GPggMZGxTk5YrLemWBvHc4smKR2rSqkkFYsGfsbatm9QYSnzc3y4 ac1KZKTS0WqUBml2FDtlQWCg0lHMl5MTOrs0fFK0VOj0SqepOVJTITKSn9VDsS2CZd3n8emAmtP/ 527N/2QSaS6RVJxpzjRLaxanpJAhRlf+lShW6pAlqalkVlQw6t3fKJDbcKhfIc39vJSOVeU6eHdg aMseHG6bhSZCAnt7MRV0B1LSc6ifagXadNBolI5j1qzss3AoVLNjjzjJ9rbt3AmSRPZZB862KKV5 gH2N6v9zt1zsbYke70EJ/vSZtAkLSeIjsXblX4lipY4oMxh4PyGB0c7O2G9yoER7jVnfP6l0rGrz Qd/5HGsaQYMUmdSuI0Sxcgc2bDqPRi/h6FqgdBSzF+BvWvt1eO8NhZPUINu3U9Y6nEYxeo6GnGfR oJrX/+duvfH+CNJdzqCJDGGqpZZFyclkitGVfySKlTrim9RUMioqGPz6LxTLwVwepsXZoXYPs97M y84Lm5Byyi1hv2aAafdBfr7SsWqE66dMW73bhNornMT8dezkQ5GtTEWM6J90WwwG2LmTw/5jsDBI JDeJr7H9f+6GWi1R8mJrymhAlyc3oJIkPhajK/9IFCt1QJnBwPyEBEY4O1P/F3dKbWKY8u1jSseq ds/16s+psGKKYxxMT5J79igdqUbQ3tCT6mUkqI1Yr3Ir2hYhpDYoxyvZUukoNcOpU5CTw7X4hlxp rGdUeBulE1W78a/0INvlDE4XWvGUhQ1fJCeTJUZX/ocoVuqApWlppFVUcN/MLZTJTSh8yg+Npu79 098f2IvjzaPxvwalge3EVNBt8k6xJcejECkkROko5q9ZM0ods/BOtUeWZaXTmL/t2zE6uuFzScWR 0DhGt31Q6USKcH6/JxW40n7iBgAWJCUpnMj81L1XrDqm3GhkXnw8D9vb03R3Q3Q2l3hkYT+lYylC o9ZQEFyAJEscaTLRVKyIF5T/VFJRgk+KHQbbNPDzUzqO+dNqUdmk4JVuxeV4sW7llrZvJ6rdU9iW SFxtkoir1lXpRIro+UQYha6RNIhuzyijms+Tk8nW6ZSOZVZEsVLLLU1NJbWigk4vbUJn9MNmRjB1 ZO3aP5rcuwvRQXpik/wgMRGio5WOZNYOHD6PQ6EaS5sMUImni9vh4lSI2ijxy0+XlI5i3rKz4eRJ TpZ2JM1Dpk83P6UTKarxkgcwYE/HZ37CKMssEGtX/qLOPftIkjRZkqQbkiSVSpJ0XJKkdkpnqirl RiPzEhK439KCtgebI2vP0XVOD6VjKeqhFj052jIe3xhLDFZiC/OtHNoVD4BPffEu73a1amaDQQUJ Z3OVjmLedu9GNhqxj9FytE0m03rU/u3K/6XZ0EDK3c4TENONQYVlfJ6cTI4YXflTnSpWJEkaDnwM vAm0As4BOyRJclM0WBX5PjWV5PJyOr68FYOxHvXfaqV0JMVp1BqSgvKwLpeIbv20KFZuoSS6jCJb 6BjmonSUGiOoVQDJDYzY36hTT693bscOMoMG4Z6t5kKTZFxsxM9Y6MoHAEt6vLgTgyyzUKxd+VNd +22aDnwty/JyWZZjgElACTBB2ViVr+L3UZUu+gq6H2mLRnuWpjPClY5lFh7r2ZKkBjIR+o5w8CCU lCgdyWx5JlmR7FOBa4u6s530XkkhIeS6F+CTIrZ6/ytZhu3bOeg6jCJbaPZ7E8i6zvP+QFQe52l+ uSedUzP4LCmJXDG6AtShYkWSJA3QBvhzv6psWq6/G+ikVK6qsiwtjcTycrq99Ruy0ZWA+aFKRzIb T3a9j6Ots3C64oRcXgEHDigdySzpjXp8kx0pccoGsRPo9gUGImtT8U22J70wXek05unCBUhNpTTB i5NtSpgzcKDSicxG6JoBqJAZ/MYJdLKRT8ToClCHihXADVADf3/2SAdq1ZnzFUYjc+PjaVmQQ99j 4dhpT+I1pZfSscyGhcqCy01zcc5Xk+HTW0wF/Yuo+Gi8MqxRWyVDvXpKx6k5LC2xtkpHW6ri0EHR g+ofbd9OmbUPPolWnApKw93eWelEZsO+ZzBar3O0vNKbFteu82lSEnlidAULpQPUBNOnT8fR0fEv HxsxYgQjRoxQKNF/+yEtjfjycobPP4Rk7E/gB8HU6S1A/6BTt0bkL4FDHo8wbPtHSscxS3t/iybM 6IGjbbb4+blDvh6lAJzam8IwMWjwv7Zv53jzp9GfA/s2dkqnMTshK/sQ0TuVEe9f4eUljfgkKYm3 /P2VjvWf1qxZw5o1a/7ysfxKPCW8LhUrWYAB8Pzbxz2BtP/6woULF9K6deuqylWpksrKmBUbS5O0 ePqd6Imz9giOz7ypdCyz81q/7sxpu5sW0T6QegViY6FRI6VjmZW4iAJaqDwI8hWFyp1q29yZI05Q fsWodBTzU1gIhw8T5/cc2S0NzB3SW+lEZseqVzuc671B2JXeBJ47y3wkHnZ3p4Wd+RZ2//QG/syZ M7RpUzmnEteZaSBZlnXAaeDP+RDJ1C2rF3BUqVyVySDLjImJQYOBBxccR23UEDgvSJyP8Q+sLTWc a5pD/VRritXesGOH0pHMjs0NC5K8ZVoFN1A6So3jERJEsk859RJtlY5ifvbtQ6/T0CDWkRMhWQR4 il1A/6Tp0p5oKODJzzKopzYwMjqaUoNB6ViKqWuvYguAJyVJGiNJUhDwFaAFlimaqpJ8mJDA/rw8 HI8t4f5TD+Ch3YvNs48oHcts1etYjwoNnGw6Xqxb+RtZlvFNdiTbswjLFmJx7R0LCaHUKRu/ZCcK ykW36r/Yvp2rvg+jMUgUtxQ9lP6NRb/ueNU7QsvrvbH5+ROulpQwMzZW6ViKqVPFiizL64GXgLeB s0BL4H5ZljMVDVYJIgoKeD0ujoZ5J3j8e280soFGcwLBoi7N9N2Z+UO6cibMQFJJmKmpoWge9qfY nFgaJjtgtE2F4GCl49Q8/v5oLBLwyLLm7GWxyPZPsgy//cYZm95cbyQzY1A3pROZL0nCf3FPrMhi 2spwXJM280VyMtuys5VOpog6VawAyLK8WJZlP1mWbWRZ7iTL8imlM92rIr2eUdHRuOhzaLrsIOHR /fGzX4/llNFKRzNr7o6WRIQUUD/BGV2xCo4cUTqS2Th94jzaUjU26iRwq5VnJlYttRonqywATuy6 rnAYM3L1Ksa4RJwS63O0VRE9gsTP1n9RDRlAgO9Wmqa0pec3eXiWxjE+Joa08nKlo1W7Oles1EbT rl0jvrQY5y0LmbF1Ol5sw/ubQWBtrXQ0syeHOaE2SlxzHySmgm5ydp9pzXk9OzGFcbea1jOgs4Dk s+LQwT/t2EGWVVtsSyxIai4Wbt+SJOGxchIN+YEJB8biv2YVJRVFjL98GWMda8IqipUa7seMDL5L S8P25FfMWzILJ67SZEIh0vBHlY5WI8we1JHoIIi07yuKlZuUXoZcJwj1s1E6So3Vurk38Q1lbOPF 3+Gftm/nmPcjZLrBw30qZ5dIrdetG35v+uPGUd5cNQOX3Z+xPSeHz+rYYXGiWKnBEsrKeCImGsvU o7zz4WDc9XpCGq9A9fkCpaPVGO0a2XA8tASnZB+M56MhJUXpSGbBM9GBhIY6GrVorHSUGssqJJhs z0L8k1wo19e9Yfv/UVaGvHcfhpxmHG2nY2LnWnUWZ5WSXn+VZl0O4kQmcz99AtsrW5l5/TrnioqU jlZtRLFSQxlkmccunaeoNItn50kEZ9cnxOItrDYtAa1W6Xg1SmawFptyNZmqNrBzp9JxFJdWlEaj JBeKnXOQxDH7dy8k5Pdj9x24kHJB6TTKO3SI4jJPXHK1xDQ1oFaLaaDbplZjse47WjrMx6dUy+x3 gzAW3GDYhcg6s51ZFCs11HtxsRwrKGLA10cZcqETTeQFOH02SfRwuQsj7g8l1QsiGjwspoKAs1fO 4pllg6VFAjQXDQzvWoMG2BGHlU7FuWMXlU6jvO3bueDxICU2ENpd/FzdsQYN0K6YR4jxTTonBjL6 w3iul5Yw9Uq00smqhShWaqDj+fm8FRdP8O49TNsyiPqWv1J/mBaeekrpaDXSyLZOHG2nx5AfjHHH Tqgj71T+zfkDpt0rjqpksBedg++aJOGlzQUg5kiOwmHMwPbtJEmdiWhr5KXe4qDBuzJoEK7Pd6KR +nvGHu5Bl7X7WJqexaaM/zyEvVYQxUoNU6jXM+DMUVzjrvPOhz1xto2jsddG+OYb0b/lLqlVEleD LHAssKE4zx0iIpSOpKiU0+XoLCDAsVTpKDVeWH0bMt3AcFWjdBRlJSRQHpWGe7o7Z5rrcbNTK52o 5po/H9+Wl3CzPc2rS/vid+YsIy9GklJWpnSyKiWKlRpmUMQuikpl3n6xHu4aHS1KZqBatwqcnJSO VqO17R5EoR1cch5Q56eCtPF2xPnJtG7krnSUGi8gOIB4Px1eyc4YjHV4xG7HDhKt7sOgkrFv56d0 mprNygpp3VqCmI+zXS7vvh6CJqeYHid21urtzKJYqUHejT7CwTIbps8uoFmhLS1LnsfyvZegY0el o9V4z/dw40R7IymqLsh1uFjJK8ujYbI7mV4lOLVopnScGk8KCaHEKZuAJHcuZ19WOo5ytm/nonM/ LrSQeK6Pj9Jpar7AQCy+WkjLgil4G1W8Pl3Ndb0DT56pvRsERLFSQxzJuMbryXk8uDSZ/ue9CLJd jENvH5g5U+lotYKbrQWRzVS4ZLtRdiIe6uiR1pFJkfgnOaG3TROLtStDcDCWFvG45lpx7tI5pdMo Q6dDt/Mgtln+nAg10N5XnDtTKR5/HJuxfWnBG7RLdmLi3DS+y1exLu600smqhChWaoDcsnx6nThA 6Ck9U1c3oEHDk3hZHYQVK0RH5Urk1t4PnYVMiiYcdu1SOo4ioiKisNKpsOc6NG2qdJyaz90dV2Mc AFePJCibRSknTpBb1AyNXk1hS0+l09QuX3yBi28Wjev/xMi9Xty3rZCRUTFcz09WOlmlE690Zk5v 1NP6l89xKvLjnTlOODcqICB+tqlQ8RKHKlWmyb08iQyTiHLsi7z9N6XjKCL2uGn3ioc6VbRrqCT+ tqWUWUHWudq7nuA/bd/ORZcBxDWEYfd5K52mdrGzg3Xr8M5YjEfTRGZ/5op/ojttd62gRFe7+O0y KAAAIABJREFU2jyIYsXMPfzLe6RqO/HeiypcnSA4bjyqWTOgb1+lo9U67RrYcDIUtDn+lP68F4xG pSNVO/1lazLdoLmj2K1RWVp7u3LDHxwSHJFr8QLIf1P2y1bKS8M40kFmVJiD0nFqn7AwpI8/ounl J3Dy1TNvpiVGTUe6bXoLo1x7nsNEsWLGPjj6FVstAnnpXZnGuWpaqt7Asm0gvPOO0tFqrbKWXqiN KgpymsD580rHqValulLqJbtxw99ASKBYBFlZXFo2I6NeMf4p9YjPj1c6TvXKyKDsHNiUWpMQ5IhG TFtXjSlTUD/QjxY5k/FSq5gz00ikYxcmbX9X6WSVRvzkmKntV3cwKyGRRzd70vuYBc1abceuKBLW rAFNHT+zoQoNC/fiSiDEOPbDWMemgi5kXCAg2ZNCl1w0LcXi2koTEoLRNhXfFAfOxp9VOk312rmT eOte5DhD6y71lU5Te0kSfPcd1nbFtPD5lrBYNZMW2/FNmS3fnPpB6XSVQhQrZuhSxiUG7/6Ctol9 mPSdGt/+uXgcmwfffgv+/krHq9VGtHDgWDsoLwslb/NGpeNUq/NR53HLtUZjmQDBwUrHqT2aN8fB eBWNQcXVk1eVTlOtCrb8SLKmG0c7yUzr4qp0nNrN1RVWr8bp4ioC+17hkZ/V9D3ZmqfP7eRg3CGl 090zUayYmYziDMKXj8PDZjJvzZFw7WKJ/77RpqP0H3lE6Xi1nqVaRWIzJ6zKLTGeAgoLlY5UbeKP m1rOu1Zchsai23KlcXDAy2ia/kmOqDs/TxiN6HZcRlvowoXmNnjZihHhKtetG7z5JvV/m4TXAJjx sUSTsgncv/EFruVcUzrdPRHFihkp05dx35KhlNR7kvfessbFy5JmWc8jBfjBwoVKx6sz2nf2JN0D kjT3Ydi9W+k41SbnvEyZFfiqcsHCQuk4tUozawuS64Pqmp3SUarPmTPkl7Sh1ErGrZ3YuVhtXn0V KbwbgZHjcWppw3tvqrFxn0G3b4aSW5pbLRH0eti3D95/v/K+pyhWzIQsyzy6aiJRDk15+esm+GWp aNlmC5obF2DtWtBqlY5YZ0zt6MrRTpCm7krqhmVKx6kWeqMepwTTrpVQZ7Fjo7KFBDQgzs+IT2p9 MoozlI5TLbI2reK6bR9OtZN4tqub0nHqDrUaVq1CXV5IC5dPcLfQMOdDD7I8HqDv0mHoDLoquW15 OWzbBhMngnvjRHpOX87W/Lcq7fuLYsVMvLLjHX7OOc+oo4/T/RAEP5uH7foP4NNPxUmi1aye1pKL zbVYlzgib78BdWC7aUxWDI1SvUnxLsMnREwBVTbL0BCKXHIISPLkbErdWGRbuGU3FoUNORmmpnM9 W6Xj1C0NGsAPP2C1ay2hI6IJuQxTtvTmlCwzdv2USttCX1QEP/4IQ0Yn4xS+kkFLnmCFcwB5433h obF4t46ulPuAKFbMwsrItcw/9QGdsj9mwvcSPs854r5kjGmNypNPKh2vTvJs60GxVqYirw2GmMr7 hTNXZxLO4JvihN4uDamFKI4rXUgIlpp4HIssuXjhotJpql5eHpoYH2QJykLdkERH+Oo3cCBMn47j 4sk0nWXFkK0w6NprrInbxNz9d7+sICcHPl2aSptxa3B8/CkePRTI1sbelA0YTWCPEzzVcwAbH9xI XIc4Pkr5qNIejpiYVtjRhGOM3TwOH9USXv3EEtsBjjQ6MRmcnWHJEtOWNKHaPdvJjV3t47A+2RPj msUEvv2F0pGq1PWT1/E1+GInX4eQHkrHqX2CgnAv/wJoQ2pEGgxVOlDVStmyggTr3lwKkHi0vYfS cequefPgwAHqrxtL9oSNTFucTdysb3ntwMM092zMQ80fuK1vc/56Op9u3c+Oy/tI1uwHt8vgD56q ZvQJ7MuQlvPoKHdEOiSRsySHvD153Ci6QbZz5fVYEyMrCorLi6Pv9w9io5/Eu0t9saxvSZumm5BO nTSdp+LkpHTEOquLly0nWlmgLvGhdHPN3/Z3K1lnigCoXxoFvr4Kp6mFbGzw02VRZAsllyyVTlPl 0tatprSiBUc7SIwOFs9jirGyMq15TE0luOxjLNra8taXjriVz+fRdSM5mxr5j1+WWZzJF/t+pMvc yWhnNCd0pRffFTxGruN+uvncx5e91pLyTAqX2h7ijWPP4/OQD9dCrnFt6jX0uXocZ9aneE8AEcvc K+2hiJEVhRSUFxD+1WBKSv2Ze+BBPPMkunxajMXE90zVcMeOSkes0yRJQt/SDYMqFfsoP/TFhVjY 2isdq0oYZSMW1x1Jrg+BkiyaY1aREHt7fgoA9+R6FJQX4GBVSxcyyzL2hzQUGDQkBDtirRatGxQV GAhffYXq8cfp/Flv9sxtyNtb2jJtUD96fjOYqOkn0ag17I87wKYz+9lzfR8ZXAJAygnE19iD/v6v M3lgOP7FTuRszyHnnRyuHLiCXC6j9rGksIeWmOe17Gth4IRUTKYuHwD7jPRKexiiWFGA3qjn/m+H k1iQwjPXNtP+hJHAH+qhnREOvXvDjBlKRxSAx9q6cy40DZvoXuRvWEzY2FlKR6oSN3Jv0DC1IbGN ZAbXE7s2qkrD4ABSSssIPutDZFok4Q3DlY5UJWKP/EJpeVcSvWU6txZTQGZh1CjYvRvL2ZPosOwY FqOymRk5lfdCIwlY2IxS2VRckBOAJrkHnVxnM7ZHd4aHe6E7kUvO9hyy5ycQkXgVo7VERltLTk+x 5OfQCi57V4BUgY+VFa3s7Hi2xIJWly7R6pdfyNy2jbaV9BBEsaKA0lKZCwf9GKh5iUc3GrF4ox4+ K6eaPrlihXhnayZGNXNidAeJsHPBlKx/GWppsXI29SwByV4cCsrHIbS50nFqLalFCMboNBqkNyTy Ru0tVq6vWoRKNYUjXSRebuuidBzhD59/DseO4fLeGDw+3UjvZxJIcl3GD3mbsCsKY2BwD8YM9qGD axHZu7NI+SyVs6OvIRkg3U/iSAeZ41PgfKiMv7OaVnZ2TLSzo5WFBWGnT+O2di38+iskJpqO2ujd m6yXX4a5cyslvihWFGBvq2FBvzfwefYymQO0DLPdCjt3wo4d4OmpdDzhdzZqNUnBjqiMebgctkNv 1GOhqn2/MlEXowgvCsfC8rLYJl+VQkKwX7cStexHwskE6KF0oKqh/S0LXYUd50Ns8LO1VjqO8Ac7 O9P6lQ4dCI3+lJ+enMDopbm0em8SQY5qCnalI429wYUcmWItnGkNZ6ZBUXctfk0daWVnxwg7O1ra 2WEbG2sqTLZtgwMHoKLCNN00dKhpF1J4uGm9zJkzolipyUqKdTi+fpl8bxVDXzIg9X0FZs2Cvn2V jib8TXiYO9f9c2mbGM7xI+vo2m2U0pEqXfop0yFlbhVREPKowmlqscaN8Sm6hEHVh/zzpUqnqRIx cadxS2xNjINMg9DKW1wpVJKwMPj4Y5g6lcGberH6vCuhs1MAKAiE6CFWSL3t8e3myhBne17Wak2d ssvK4OBBU3Hy669w7RpYWkKPHvDhh9C/v6lYqUKiWFGA1laDwxveBIZZYzm8G7RpA++8o3Qs4R88 29qVd7pI+K/tSPLq+bWyWNFFaSiyBf/8G2JkryppNARW6LjmA3ZxnpTpy7C2qF0jD2fXLqSeZiBH O0tMaisaF5qlyZNh925UT4xn0P5THDtpJKCnG+F+DqhuPiojIQFWrjQVJ3v2QEkJ+PiYRk4WLICe PcG2+g77E8WKQvo/GQDDh0NuLuzdCxrR5Msc+WmtudDCGtVKcNteUuumghLzE6mX6sf1AOitsRHn +lSxEA9XdiLTKKERZ1PP0smnk9KRKpW0KRLKn+BEGzVzvWrpbqeaTpLgu+8gNBSnyWPpv3evqReY TgdHj5qKk19/hYsXTUf3d+0Kb74JAwaYurEr9BxRe551a5pvvzWdU7x+Pfj7K51G+A++we5kOyfQ NLED+6/sondQf6UjVZrvI78nILUl59rqaertrXScWs8ptBl5Z/LpcMyLZWeW1api5VLGJZpcbE6W RkYf7IpaFL7my8UFVq82TeOMH29q7LNzJ+Tng4eHqTB54w3o08dszvsS206UUFYGc+bAU0+ZjtQX zNozbdw40lUiS9WdM5sWKR2n0ugMOr4/9j0N0h3R2adjESoW11a5kBAsLROwLbNg96Hd5JXlKZ2o 0uze9TUV+h6caisxMlRsgTd73bqZlh+sWmWa8nnhBYiIgNRU+P5702uTmRQqIIoVZVhbm4bbFt59 fwah+vTwdOBkGzXo3LH/6WqVdS2tblsvb6VBZAPUsoSNhdgJVC1CQnCrOI9BJRMaE8byc8uVTlRp in/8lVJdEMc6wqgmYstyjfDKK1BYCMePm0ZS2rY126MzzDNVXeDra9qLLpg9tSRBc1fKrIyERbVj 7429SkeqFIsiFjEqZjSXA2UaFpw3zUcLVathQwIzb3C8o8TwSyNZHLG40jrgKulSxiVanQhAQkVC sAOOFmKFQY1RjYtk74UoVgThNowMceNkexWUdWf74WVKx7lnUZlRnD9/nqALTdg2SCI4LdfUPFOo WioVIXoV2waCZ5wrhosG9tzYo3Sqe7bx7Go8sroSHSRzX5DYsixUPlGsCMJtGNnYmSOdoFwfCBsP 1fipoC8jvuTh6IfRWUicD86nkzi8q9oEBvpQbnuDXCeJ0TGjWRyxWOlI90SWZeJ/WkuBsT2Hu0o8 HSq2LAuVTxQrgnAbnDQaUoIdMEoy3c+E1eh3w4XlhSw/u5wHzg1hf1eJh08ewDJMrFepLqoWITyx Zyu/9pPpfLoLv138jcT8RKVj3bWLGRdpv98NyWjFuVArgmxtlI4k1EKiWBGE29Qr0I2LIVA/M5wf z69VOs5dW3l+JQHXArBN0fLrYJlntq0Xi2urU0gII/fuYnsfsChS0/tKb74+/bXSqe7a+kvraRnX lVRPIwGBbkhiy7JQBUSxIgi36emWrhzuKlGsb0XSjl+oMFQoHemOybLMoohFPHXtKdI8VaRZ6mmc nAzt2ikdre5o3RrHsjLcMvK50FzF6JjRfHPmG8r15Uonu2OyLHPg8GoqKrpyuJuKJ1uKKSChaohi RRBuU5BWy/lQSyRZw8Cjzdgdu1vpSHfsUMIh4hLiaBLRlK2DjUw5tR9CQ8XISnVyc4N+/Zh9eD0/ DzHicd4Di0QLNkVvUjrZHbuQcYH2ezTIBmeOt5fo62k+53IItYsoVgThNkmSRNMAdxIbGGgdF86P UT8qHemOLYpYxKjYUaCT2HEfTN34uekES6F6jR/Pw7+t5VhziTIbiUmxk1gUUfMOHFx/aT29ortR rDWgauKCpZme0SHUfOInSxDuwFMhrhzsrsZQ0pF9p7bUqKmg1MJUNkVvYsj5IZxspSIgIRfH0lIY VfuaM5q9wYNROzvTL+oqO3tA55NdOBZ3jHNp55ROdttkWWbj+XU45HblSBcVI5uKU2uFqiOKFUG4 A709nDjRDmSjPQ8c8WbX9V1KR7ptS04vISg9CO1lLT8/ZOTlA2tg8GDTtIRQvSwtYdQoXvt5MduG yKgzVPRP6V+jRlfOpZ/D/1gROn1DjnSRGNlIrFcRqo4oVgThDlipVFgGuFJor6dfTE/WR61XOtJt 0Rl0LDmzhKnxUylwVHEmAIbs3CimgJQ0fjyhF8+SKxmI91Uz7so4Vl1YVWP6Ba2/tJ7hZ7ujVxtJ DrLF09JS6UhCLSaKFUG4Q483ceNgVzX2mR3YEr25Ruzi+OnyT2TlZNHkUFO29ZEZei4Gtbs79Oun dLS6KywMQkN55vRBfhpswO2YG9p8LT9E/qB0sluSZZn1l9YTkNSVyFDo6ydOrRWqlihWBOEOPebn wtEuEgZ9fdqed2Ln9Z1KR7qlRRGLeCLzCciX+fUBmdk/LYLRo0H0cFHW+PE89+Pn7O4BeknihZQX WHxqMUbZqHSy/xSZFonuWjq60mYcClcxoZmYAhKqlihWBOEOeVlZkdZUi87CwPgL95v9rqBLGZfY H7efB849QHRTC/RlOkKiL4opIHMwahSuRUU0js/jcDsVnY524krWFfbEmvcJyesvreepU92RUHOu lYrW9nZKRxJqOVGsCMJd6Ofrzuk20DC2PT9d/okyfZnSkf7Vl6e+pEVZC6xOWLFliJ5nT+6D9u2h eXOlowlubjB4MDMPrOfnoQaIhQeKHmDxKfPtFyTLMuuj1tPlSndu+Olo7u2JSpxaK1QxUawIwl0Y F+TKwXA1+tIA7FJVZjsVVFheyPJzy5meOJ1yG4kDXWDKui9g3Dilowl/GDeOYdvWcdEPst3VjL88 nq2Xt5KQn6B0sn90JvUMiRkJkBvCvvs0jG/monQkoQ4QxYog3IU29vZcCJUAiecvDGT9JfPcFbTi /ArKystovK8xezqraXk5G+eKCnjsMaWjCX/o3x8Ld3eGRF5hax8Z570uuBvd+fqUefYLWn9pPY9f 6gxGG453kOnv7qx0JKEOEMWKINwFlSQRUs+T6411tLvYia2Xt5rdVNAffYCmlE/BkGLgp0f0zNq3 Bh56CJzFC4zZsLCA0aN5+acv+W2IEWOZkZm5M82yX9AfU0DDLt1PnnM51t5O2IlF2kI1ULRYkSQp TpIk401/DJIkzfzbNT6SJG2TJKlYkqQ0SZI+kCRJ9bdrWkqSdFCSpFJJkuIlSZrxD/fqIUnSaUmS yiRJuiJJ0tiqfnxC7TahuSt7elpCViDlxeXsuLZD6Uh/cTD+IFGZUQw+O5gUHwvi3GDIjs1iYa05 Gj+e1hcioVjP+WANHY50ILMkk43RG5VO9henU08TlxuHbVwz9oVrGNlYbFkWqofSIysy8BrgCXgB 9YDP//jk70XJr4AF0BEYC4wD3r7pGntgB3ADaA3MAN6SJOmJm67xA34B9gChwKfAt5Ik9amqBybU fv3cnDneQQbZkqdvPMAP58zrfIxFEYtoZ9kO1R4VG/sZefhsNBb160OvXkpHE/6ueXNo356nIw6w 6UEdutM6hmuGm92JtsvPLad7RltknTOHu6l41FdsWRaqh9LFCkCRLMuZsixn/P6n9KbP3Q8EAaNk Wb4gy/IO4HVgsiRJf4w9Pg5ogImyLEfLsrwe+Ax44abv8wwQK8vyTFmWL8uyvAjYAEyv6gcn1F72 FhY4eNqT7VbGQ5G92RyzmY1R5vFOOKUwhc0xm5meOh0DsHugkVmbF8OYMaBWKx1P+CfjxjF17SKO doJSBzXjLo/jaOJRItMilU4GwJGEIyyKWMSL0Y9RYaUjI0BNIxsbpWMJdYQ5FCsvS5KUJUnSGUmS XpIk6eZn0o7ABVmWs2762A7AEQi+6ZqDsizr/3ZNU0mSHG+6Zvff7rsD6FRpj0Kok0YEerG3hyWq K9483PRhnvz5SZIKkpSOxZLTS7BSWeG304/jrTVosysIjboodgGZs8cew6OkhBaXc/mtiwq7bXY0 tGnIopPKj67kl+Xz+ObH6eTdCZfT/pxsJ3N/g/pKxxLqEKWLlU+Bx4AewFfAK8D7N33eC0j/29ek 3/S5e73GQZIkq7sJLggAj/i4cqibCllvy0KX99FqtIzdMlbRE0h1Bh1LTi9hmuU0yi+Xs/HhCp45 uQ+6doXAQMVyCbfg7AwPPcRL+9bz03Ad+mw9s0pnmUW/oMm/TianNIdl7b5HV+jC3vssGR0opoCE 6lPpy7glSZoHzPqPS2SgmSzLV2RZ/uSmj1+UJKkC+FqSpNmyLOvuNco9fv2fpk+fjqOj418+NmLE CEaMGFFZtxBqqAAbG3IaSpTZlFOyJJ4VH66g1/JefHz0Y2Z0+Z913tViS8wWUotSGRQziAx3A2dD 9eyY+yUsWKBIHuEOjB/PsIEDGTfhaeICLGl7qC367nqWRS7j+Y7PKxJp1flVrLqwilVDV2G9rgCj ZORCqERnBwdF8gjmac2aNaxZs+YvH8vPz6+0718Ve84+Ar6/xTWx//Lxk5gy+QFXgTSg3d+u8fz9 v2k3/dfzH66Rb+OaAlmWb7k3cOHChbRu3fpWlwl1VP8GDTjc9Tran3V0WXwfMzrP4NW9r9KrUS9a 16v+n5tFEYvo5d4L3Yc6tvZT0zYqCzedDh55pNqzCHeoVy8svbwYcvYyG/o1x29xBWOHjWVxxGKe 6/AcKql6B8Pj8uJ49tdnGdViFMMDhnNs0W5ignWEOvmiUSk9MC+Yk396A3/mzBnatGlTKd+/0n/a ZFnO/n3U5L/+6P/ly1sBRiDj9/8/BrSQJMntpmv6AvlA1E3XhP9trUtf4LIsy/k3XfP3LRB9f/+4 INyTUQGuLJ5khcGg5+rTUbzT8x1aeLZg5MaRFFcUV2uWixkXORB/gOcyn8NQYuTnR3XM2LMGhg0D e/tqzSLcBbUaxoxh5uav2DPQgN5axegro7mac5XdsX9fdle19EY9j296HBcbFxYNWMSN2dfR56uY N9OO0c08qjWLIChWGkuS1FGSpGm/n5HiL0nSKGABsOKmImMnpqJkxe/X3Q+8A3xx0zTRaqAC+E6S pOaSJA0HngM+vul2XwGNJEl6X5KkppIkPQsM+/1+gnBPujg6Umav4mLn02RuySNvYx6rh64mIT+B F3e+WK1Zvoz4Ek9bT+r/Vp+YYCvyreDB7T+Js1VqknHjaHs+EvssHYfbWKLZqKGlW0sWR1Rvv6B5 h+ZxLOkYKx9aiRwhk/R5MplND5PcAAa6iSP2heql5DheOabFtfuBi8BsTAXG039cIMuyERgEGICj wHJgGfDmTdcUYBol8QNOAR8Cb8myvPSma+KAgUBvIBLTluWJsixX71sVoVbSqFQMqefGnMntcFAd 5cozMfgb/fmk3yd8ffprfor5qVpyFJQXsPz8cqa7TKfoRBHrBugZeiYKja8vhIdXSwahEgQGInXt ylMnDvDjw2WUJ5TzkvwSP1/5udr6BR1POs6cA3N4rdtrdHTryOVx0Wi5zCvTQuho74ibpWW15BCE PyhWrMiyfFaW5U6yLLvIsmwry3KILMsf/H1hrSzLibIsD5Jl2U6WZU9Zlmf9XsTcfM1FWZa7y7Ks lWXZV5blj/7hfgdlWW4jy7KNLMuBsiyvqOrHKNQd7zTyo8hDy/LRhRgKSrjy7BWeaPUEQ5oOYeLW iaQUplR5hhXnVlCqK+X+M/dT4aDmSG8DMzd8adquLNYX1CzjxzN5zZdEhUBOfUtaHmiJnaUdX536 qspvXVBewKhNo2jXoB2vd3+d2FdiKY0r4XifSK43defjJo2qPIMg/J14BhOEStBYq+XtAH8+G9MX S/cVZG3MIuvHLL594Fss1ZaM2zKuSrcz/9EHaGjjoRSvK2ZXew1uqRW0irpoOghOqFkeeYR6ZWWE ReewMVwib2seT/k/xbdnvq3yfkHP/fYcGcUZrHxoJUVHikj+LBl77TpmvvAIk70b0OlvOyMFoTqI YkUQKskL3t600Nox/u3+aKwucWXyFRwKHfjhwR/YFbuLT49/WmX3PhB/gOisaCblTkKXpePH4WVM OrYXevYEP78qu69QReztYdgwXtyzjm3DyzEa4bFrj5FZksmGqA1Vdtt1F9fxw7kfWDRgEX5WfsSM j0FllcqMV4NxtbFhrr9/ld1bEP6LKFYEoZJYqFR8HxzEtUYNODbgNPqSCq48e4XejXrzQscXeHnP y5xLO1cl914UsYhmbs1w/dmV1AAr4v3gmbVfi4W1Ndn48Tzy62ZK1HChhTXGtUZ6+fWqsn5BCfkJ TNo2ieHBwxndcjSxr8RSllBGSqst7OsYypLgptiLDsuCQkSxIgiVqLW9PdN9fXl10khk7TqyNmWR uT6Tub3m0sytGSM3jaRUV3rrb3QHkguS2Ry9mWk+08jdmcu6btAuKhMPgwGGDq3UewnVKDwcK29v hpyNYXV/HcUXi3nO+jmOJR3jbOrZSr2VwWhg9ObR2Fva8+XAL8k/lE/yZ8nI1rt4ZtZoHnN1Z6Cr OLFWUI4oVgShks3x96OexpK3XmtGhVsuVyZfQcqWWP3wamJzY5mxq3JPtv3mzDdYW1jT41QPjNYq dj5SzvRda2D4cNBqK/VeQjVSqWDcOF7ctISInnrKXDU02dMEbwfvSt/G/MGRDzgUf4iVQ1fiYHQg ZnwMevcKvpsM2NnyaVPRpkFQlihWBKGSadVqloa14GBYGFdDN2HQy1x59grN3Jrxcd+PWRSxiF+u /FIp9/qjD9DokNHkLM/hZJgNBoPM0B2/iCmg2mDMGDqcO4tLuo5f22vIXJvJM82fYdWFVeSW5lbK LSKSI3hj/xvM7jqb8IbhxL4SS3lKBWn1V7Ly/j58GtwMD7FVWVCYKFYEoQr0cnZmrIMTrz4/nESb CLI2ZZGxLoNn2j7DwMCBTPhpAmlFabf+RrewOWYzqUWpPFn+JOXx5awaVM7QM1FYNWoEnURT8RrP zw+pZ0+eOrafH4eXYig08PCNh9EbTf2C7lVRRRGjNo0izCuMt3q8Rd7BPJI/SybVOY5XXx5IT7Ul oz3/3qlEEKqfKFYEoYosaBGMxsKKTZOKKA6y5uqUq+gydHw35DtUkorxP41HluV7useiiEWENwzH aqMVRQ2suNhJz/QNX5vOVpEqrZenoKTx43l27RLSvGUSm2kpWVXCsObDWHxq8T1vh39++/OkFKaw euhqVGUq0/RPYy0HHook09WVb9u24v/au+/wKKu0j+PfO4USIEF6EaU3pSsLiIusgEgURUQwC5iI gASxoCgr6wvquthAUUFFioiSFUUQGwj2ikhXWqgKSQgJJRBII+f9Y0aMESEhZQb4fa6LK8zMmTP3 uZ48yZ1znufcpu8j8QNKVkSKSIXgYCY3a8r8Tn9nefkFZGNsHraZyiGVefX6V1m0ZREv/PDCaff/ U+JPfLnzS+5ocAdJ85OY3zaIqnHpXLr+ZxgwoBBHIj51ww3UTE+n5aZk3ujoOPj1QaJQ7bF9AAAT +0lEQVQrRLNl35YC1Quat34e01dN57mrn6NBxQZs+9c20uMzWFZiKS/3vob/1DqfOqVLF+JARE6f khWRItSnRg16pKYz9d5LWF4tnaT5SST+L5Hu9btzZ9s7GbVkFOv2rDutvqcsn0K1stVou7wtLhve 6ZfK0G8/wbp1g5o1C3kk4jMhIdC3L3cvmcunNx4lu1wg1T+qTvOqzU/7NuZdKbsY/N5gejfpTVTL KA58cYDdz+9mU+PSxNxbnZaHj3Jnw4aFPBCR06dkRaQImRkvX9mJQ2XK8l2370lvV4nYO2LJ2JPB E12foEHFBkS8E0FaVlq++k1JT2H22tkMaTWExBmJbG5WhgMV4fb/TdeFtWejqChu+nABZDm+aRVC wqwEhrcazvub32fngZ356irbZTNw/kBCgkOYeu1Uso9ks/HWjViLML5quoiNF17AzI7tCVKJBvEj +m4UKWLnlyrF42XLMq9nB14/9jMEeJaDSgaWZM4Nc4hNjmX00tH56vO1Na9xNPMoA20gqetSmX35 MS7ZuJfqzkHPnkU0EvGZ9u0pXacO167axKzwNDITM+nxSw/KlSiX73pBE76dwOc7Pmd2r9lUKF2B baO3kRGfwWzby9yBf+O+9HRaVFBVZfEvSlZEisGwjpfRfnc83444xtetzj++HNSsajOe7Pokk5ZN YtGWRXnqyznHlOVT6NWkF1lvZpFVKZhvex7lrsUxEBEBpUoV8Wik2JlBZCR3z3uFrW0zOVivNPtf 209ky0imrcp7vaCV8SsZ8+kYRnUYRec6ndn/+X52v7Cbrf+4kJVRv1LrQApju3Ur4sGI5J+SFZFi EGDG9EvbsKtqJT6q9RmBV1Ym9o5Y0hPSGdF2BN3rdydyQSSJqYmn7OvzHZ+zIWkD0U2jSYxJZGnr 0gSlOW5cpL1VzmoDBtBxzWoq7cng7dZBJH+YzJCaQ0g6ksRb69865dtTM1KJmBdBs6rNePQfj5J1 OItNt26i5KVhzApaxqrm9Zh+wfmU1pb64oeUrIgUkyYNGzJmx06+vfl8xmWWwAKN2GGxAMy8bibZ LptBCwed8nbmycsn07RyUxovb8yxlGPMvjaN61etp1SjRtC6dXEMRXyhZk2sWzcGffcF8286DCUC KPNeGbrU7ZKnC23v/fhefjn4C2/c8AYlAkt4ln8SMpgUWpUVg8ty2/qNdGrXrhgGIpJ/SlZEitHo PjfSMC6O7f1W83P3BiQtSCIxJpFqZasx47oZvL/5/ZNeg7ArZRcLNi4g+pJoEmYksLdpWeIuzuDu t6Z6ZlW0J8bZLSqK6JhppFZwrG9RlvgZ8QxvM5zvd33PyviVf/m2dze+y8srXubZ7s/SuFJj9n++ n7jJcey7sQ5rOn9DubSjPNWjezEORCR/lKyIFKMS553H9GPH2NGoIuMzthJyTWViR3iWg65peA3R l0Qz8uORrN+7/oTvf2XFK5QOLk2fkD4c/Oogc1oHUGVPOu3Wr4f+/Yt5NFLsevbkgsxMWsQmM7ND Nmlb0+iY0JFaobX+sl5Q3KE4Bi0cxHWNrmNw68HHl3/KdAhjZHIKGy+rzORduyhfu3bxjkUkH5Ss iBSzdgMGcMfnX5AQeYixgbWwIGPz7ZtxzvFUt6eoU74OEfMi/nTRZMaxDKaunMqA5gM49PohCA3i gz6HGPz1J1h4OFSp4qMRSbEpVQoiIhjx8Vx+vPYwWeeXYu/MvQxtM5Q56+b8qV5QtssmckEkwYHB TOs5DTPzLP/syeDVOvXYN2gnvZYto9ett/poQCJ5o2RFpLgFBfFY+3ZUObCPlR2Wkdi/AcnvJpMY k0hIcAhzes9hQ9IGxnw65g9vm79hPgmHE4huGU3CqwmsaFmWzLKOoW++6tleX84NkZH0+3AhwWmO j5qXYu/be4mqG0VWdhYzV8/8Q9NJ309iybYlvHb9a1QKqcT+zzzLP25wXeZWXwMlsnmhShUoV85H gxHJGyUrIj5Qrnt3XvriCxLbBjNoRyblb6hyfDmoZbWWjL9yPBO+m8CSrUuOv2fy8sl0urAT1X6s RuaeTKZ1zKJ17F5qAYSH+2wsUszatKFM/fqEr9nIrPCjZGdm4xY6+lzUhynLf68XtDphNaM/Gc3I diPpWq/r8eWfch3DuGV7aZLCj/Hke+9RY+BAHw9I5NSUrIj4ghlXR0cTsXQpaQM3MKXihX9YDrq7 3d10qduFWxbcQtKRJNbtWcdXv3xF9KXRxE+PJ71BGTZ2PcydH8V4rlUJDvb1iKS4mEFUFHe9PZ3k punsaRFK/PR4oi+JZuv+rSzZuoQjmUeImBdB40qN+e+V/wVg2wPbyEjM4OO2DUi6aTWdVq/mtj59 IDDQxwMSOTUlKyK+0qwZz6akEMIRZlWJxd3V0LMcNCeRAAtg1vWzyDiWwW0Lb2PK8ilUL1udHqE9 SP4wmfkXlyT4qKPPog+1t8q5qH9//r52LRWTMpjVPIDDKw/TLKkZLaq2YPLyydy/5H62H9hOTO8Y SgaVZP+n+4mbEkfZkXUZdzSOrMrZTF2xgoAuXXw9EpE8UbIi4kOVx4xh4vRpZHQ5wD9XB1DpJu9y UHw6NcrVYFrPaby76V2mrpzKkDZDSH49GQsO4PXwVK5f9RMhF18MzZr5ehhS3KpUIaBHDwZ98xmL e6VglYJJmJHA8Es99YImL5/MhG4TaFq5qWf5Z9AmwjqFMWxrKFm9d/N/s1+j4YMP+noUInmmZEXE l6pWZUC7dnT78Ufieq/n3UZ1sODfl4Oub3w9Q1oPITggmMGtB5MwI4GdrcJIrZfOHXOn68Lac1lk JEPfnEV2aDbLWoaS+EYi/er3o0LpCoQ3CGfYJcMA2Ha/Z/nnp2sasuKK9Vz0yw5GhYVBkyY+HoBI 3ilZEfExu+ceXpozh+DyaYxN2UXouIYkL0xmzxt7AJgSPoXYEbGUWVWGo1uO8kpzo/LedC7fsMFT C0jOTeHh1M3KotnWZF5sl0nWgSyOfHCEtcPW8k7fdzAzz/LPi3FUfagut69PxtU/yvQXXiB47Fhf Ry+SL0pWRHytdGnq3Hcfj02byrGeuxm0rARVbq7Clju3kB6fTmBAILXCahE/PR6rVYqve+5n8FdL seuuA1XHPXcFB0P//oz4aC47OqeQdnE54qfHU6NcDUoEliDrUBYbb91I+SvK8+Du8zjadxt3zXub S/v1g8qVfR29SL4oWRHxB/36ceevv9J65y8s77SJFX+vh5UwNg/1LAdlHshk71t7+axZOQhxDJ47 WxfWCkRG0vej9wnKdLzVuCQHPj3A0a1HAc/dP5lJmewf3JB36sRS8/BBHv3kExgxwsdBi+SfkhUR fxAQQOCECcx47BECLkjl9jXx1HiqIcnveZaDEmMSyc7M5qX26bSKTaR2QAB07errqMXXmjcntHFj wtds5I2rDhNQLpD4mfHHl38ufKweNy85CK0PMP3x/1DmkUc8u+CKnGGUrIj4i8suo0WrVtz/3kKO 3LCTUatCqBLhWQ7a/fxuDrc+jz0dUhj+4ZswcCAEBfk6YvEHUVEMf3sm6fXT2Nb6PBJmJhxf/nn+ UEX29NrKP7/7gW7BwdCnj6+jFTktSlZE/MnjjzN22itccCiVeXU2kdi3PlbCOLLhCLMbBhOckU1f 7a0iOUVE8I9166iwL4MXmzoy4jLITMok6MFGPHNsK6FB6Ux6/DGYOFFVueWMpWRFxJ/Uq0epYcOY 9cTD0CyFfh/spf60JpTtUYl5XVK4dvXPlG3VCho18nWk4i8qVCDw2muJ+vozfrh6P4HXVaXR1Eb0 ezuV7E57eXH6FCqGh0O7dr6OVOS0KVkR8TdjxnDF1q3csm4ze3pu46mfQ5h5bS2O1U4j+q1XNasi fxYVxeC334By2Yy/rCLzMiryc5fNXPFrMjd/8AGMH+/rCEUKRMmKiL8pXx4efphnH7yXUMtmYnYs sxISqLgvnc4bN8JNN/k6QvE3XbvSKCuLi7cnszQwgZEbthEclsmsf4/ERo6ECy/0dYQiBaJkRcQf DRlC+Zo1mfHem7j2yaR2TGDQl0sJ6NULwsJ8HZ34m6AgGDiQYR+9RWaLfaRfHcfjy77jgrQ0GD3a 19GJFJiSFRF/FBwMTz9N75depOu+TAhy3PZ2jJaA5K9FRRHx4fsEO8dFqQHcNW4MPPIIhIb6OjKR AtO9jyL+KjwcrryStx6+j5VXX02DwEDo3NnXUYm/atSI8s2b80XM69SNjyewSRMYNMjXUYkUCiUr Iv7KDCZMIKxVKzqvXQsPPQQBmgyVk4iMpP3QoZ7/L1qkvXjkrKGffCL+rEULuPVWz/9VYVlOpW9f KF0auneHq67ydTQihUZpt4i/mzgR+vWDunV9HYn4u7AwWLoU6tXzdSQihUrJioi/Cw2FLl18HYWc KTp08HUEIoVOy0AiIiLi15SsiIiIiF9TsiIiIiJ+TcmKiIiI+DUlKyIiIuLXlKyIiIiIX1OyIiIi In5NyYqIiIj4NSUrIiIi4teUrIiIiIhfU7Ii55SYmBhfhyCFSMfz7KLjKX+lyJIVM3vQzL4xs1Qz 2/cXbWqZ2QfeNglm9qSZBeRq09zMvjSzo2a208xGnaCfK8xshZmlmdlmM7vlBG36mNkGbz9rzOzq whutnCn0w/DsouN5dtHxlL9SlDMrwcBc4MUTvehNSj7EU0yxHXALEAk8kqNNOWAxsB1oDYwCxpnZ bTna1AbeBz4BWgCTgGlm1jVHmw7AHOAVoCXwLrDAzJoWxkBFRESk6BRZ1WXn3MMAJ5rl8LoKaAx0 ds4lAevM7CHgcTMb55zLAvrjSXoGeR9vMLNWwEhgmrefYcA259z93sebzKwjcA+wxPvcncBHzrmJ 3sf/501m7gCiC2nIIiIiUgR8ec1KO2CdN1H5zWIgDLgoR5svvYlKzjaNzCwsR5ulufpeDLTP8bh9 HtqIiIiIHyqymZU8qAbsyfXcnhyvrfF+3XaSNgdP0k+omZV0zqWfpE21U8RYCmDDhg2naCZnioMH D7Jy5UpfhyGFRMfz7KLjeXbJ8buzVEH7yleyYmbjgQdO0sQBTZxzmwsUVR5CKeL+f1MboH///sX0 cVIc2rRp4+sQpBDpeJ5ddDzPSrWBbwvSQX5nVp4GZp6iTe6ZkL+SAFya67mqOV777WvVE7RxeWiT 4p1VOVmbBE5uMfBPYAeQdoq2IiIi8rtSeBKVxQXtKF/JinMuGUgu6Id6fQc8aGaVcly30g3P0s76 HG3+Y2aBzrljOdpscs4dzNEm923I3bzP5/ysK4HncjzXNVebP/GOd07ehyQiIiI5FGhG5TdFuc9K LTNrAVwIBJpZC++/Mt4mH+NJSmZ791K5CngUeME5l+ltMwfIAGaYWVMz64vnzp4JOT7qJaCumT1h Zo3MLBq4EZiYo80koLuZjfS2GQe0AV4oksGLiIhIoTHnXNF0bDYTGHiClzo75770tqmFZx+WK4BU 4FXgX8657Bz9XAxMxrNklAQ855x7Otdn/R14BmgK7AIecc7NztWmN/AYnuQpFhjlnCvw1JSIiIgU rSJLVkREREQKg2oDiYiIiF9TsiIiIiJ+TcnKCRRWEUbxX2a2w8yyc/w7Zmb3n/qd4g/MbLiZbfcW Jv3ezHJvgyBnCDMbm+tczDaz9ad+p/gDM7vczBaa2W7vset5gjaPmFmcmR0xsyVmVj+/n6NfridW 4CKM4vcc8G88++1UA6oDz/s0IskT712BE4CxQCs8u10vNrNKPg1MCuInfj8XqwEdfRuO5EMZYDWe Ont/ugjWzB7AU4dvCNAWz800i82sRH4+RBfYnoS3COMzzrkKuZ6/GlgIVP9tjxgzGwo8DlTOVctI /JCZbcdzbJ87ZWPxK2b2PbDMOXeX97EBv+K5U/BJnwYn+WZmY4HrnHOtfR2LFIyZZQPXO+cW5ngu DnjKOfeM93EonnI3tzjn5ua1b82snJ68FGEU/zfazJLMbKWZ3Wdmgb4OSE7OzILx7JH0yW/POc9f XEtRYdIzWQPvMsJWM3vdu62FnOHMrA6embKc52sKsIx8nq++LGR4JstLEUbxb5OAlcA+oAOeWbFq wH2+DEpOqRIQyInPv0bFH44Ugu/xLKNvwrMcOw740swuds6l+jAuKbhqeJaGTqeQ8B+cMzMrZjb+ BBdx5b7AsqGv45TTl59j7Jx71jn3pXPuJ+fcVGAkMML7l7uIFBPn3GLn3DzvubgE6AGcB9zk49DE j5xLMyvFXYRRil9BjvEPeM6H2nh2OBb/lAQc4/QKk8oZwDl30Mw2A/m+Y0T8TgJgeM7PnLMrVYFV +enonElWfFCEUYpZAY9xKyAbSCy8iKSwOecyzWwFnsKkC+H4Bba5C5XKGcrMyuJJVF7zdSxSMM65 7WaWgOf8XAvHL7D9G54yOnl2ziQr+eG9uKsCOYowel/a4l1DzVmE8QE866y5izCKnzKzdnhOls+A Q3iuWZkIzM5RzVv810TgVW/S8gNwDxCCp7aYnGHM7CngPWAnUBN4GMgEYnwZl+SNtzhxfTwzKOAp LNwC2Oec+xV4Fvi3mW0BduD5XbkLeDdfn6Nbl/+ssIowin8ys1bAFDwXZJYEtuP5K+4ZJZtnBm91 9fvxTCevBkY45370bVRyOswsBrgcqAjsBb4Gxjjntvs0MMkTM+uE5w+/3MnELOfcrd424/Dss1Ie +AoY7pzbkq/PUbIiIiIi/uycuRtIREREzkxKVkRERMSvKVkRERERv6ZkRURERPyakhURERHxa0pW RERExK8pWRERERG/pmRFRERE/JqSFREREfFrSlZERETErylZEREREb/2/7pg4o5Ip5FzAAAAAElF TkSuQmCC " >

Model AR<a class="anchor-link" href="#Model-AR">¶</a>

Rozważania na temat procesów AR są o tyle interesujące, że wiele sygnałów, które chcielibyśmy badać całkiem nieźle daje się opisać jako procesy AR. Wyobrażamy sobie wówczas, że rejestrowane sygnały są generowane przez pewien model AR (trochę tak jak funkcja realizacjaAR wytwarzała pojedyncze realizacje procesu). Pojawia się w tym momencie pytanie: jak możemy poznać wartości parametrów $a$ i $\sigma^2$, które pasują do badanych sygnałów?

Estymacja parametrów<a class="anchor-link" href="#Estymacja-parametrów">¶</a>

Algorytmów służących do estymacji parametrów modelu AR jest kilka. Tu przedstawimy algorytm Yule-Walker'a:

  • mnożymy stronami równania opisujące proces dla póbki $t$ i $t-m$

    $x_t x_{t-m} = \sum _{i=1}^p a_i x_{t-i} x_{t-m} +\epsilon _t x_{t-m} $

  • bierzemy wartość oczekiwaną lewej i prawej strony. Wartości oczekiwane $E\lbrace x_t x_{t-m}\rbrace$ to funkcja autokorelacji $R(m)$ więc:

    $R(m) = \sum _{i=1}^p a_i R(m-i)+ \sigma _\epsilon ^2 \delta (m)$

    gdzie $m=0,\dots ,p.$

  • Dla $m>0$ możemy zapisać stąd układ równań:

    $\left[\begin{array}{c} R(1)\\ R(2)\\ \vdots \\ R(p) \end{array}\right]= \left[\begin{array}{cccc} R(0)& R(-1) &\dots &\\ R(1)& R(0) &R(-1) \dots &\\ \vdots & & &\\ R(p-1) & &\dots &R(0) \end{array}\right] \left[\begin{array}{c} a_1\\ a_2\\ \vdots \\ a_p \end{array} \right] $

  • stąd wyliczamy współczynniki $a$,

  • dla $m=0$ mamy

    $R(0) = \sum _{k=1}^p a_k R(-k) + \sigma _\epsilon ^2$

  • można stąd wyliczyć $\sigma _\epsilon ^2 $

Uwaga: w powyższym wyprowadzeniu występuje operacja brania wartości oczekiwanej iloczynu $x_t*x_{t-m}$. Funkcja numpy.correlate oblicza dla każdego przesunięcia $m$ sumę iloczynów wszystkich przekrywających się $x$-ów. Aby uzyskać wartość oczekiwaną należy jeszcze tą sumę podzielić przez liczbę sumowanych wartości. Można to zrobić w sposób pokazany w poniższym kodzie:

In [13]:
<span></span><span class="n">x</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">array</span><span class="p">([</span><span class="mi">1</span><span class="p">,</span> <span class="mi">2</span><span class="p">,</span> <span class="mi">3</span><span class="p">])</span>
<span class="n">N</span> <span class="o">=</span> <span class="nb">len</span><span class="p">(</span><span class="n">x</span><span class="p">)</span>
<span class="n">norm_ak</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">hstack</span><span class="p">((</span><span class="n">np</span><span class="o">.</span><span class="n">arange</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span><span class="n">N</span><span class="o">+</span><span class="mi">1</span><span class="p">,</span><span class="mi">1</span><span class="p">),</span><span class="n">np</span><span class="o">.</span><span class="n">arange</span><span class="p">(</span><span class="n">N</span><span class="o">-</span><span class="mi">1</span><span class="p">,</span><span class="mi">0</span><span class="p">,</span><span class="o">-</span><span class="mi">1</span><span class="p">)))</span>
<span class="n">py</span><span class="o">.</span><span class="n">stem</span><span class="p">(</span><span class="n">norm_ak</span><span class="p">)</span>
<span class="n">py</span><span class="o">.</span><span class="n">show</span><span class="p">()</span>
<span class="n">ak</span>  <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">correlate</span><span class="p">(</span><span class="n">x</span><span class="p">,</span><span class="n">x</span><span class="p">,</span><span class="s1">'full'</span><span class="p">)</span>
<span class="n">ak_z_korekta</span>  <span class="o">=</span> <span class="n">ak</span><span class="o">/</span><span class="n">norm_ak</span>
<span class="n">py</span><span class="o">.</span><span class="n">subplot</span><span class="p">(</span><span class="mi">3</span><span class="p">,</span><span class="mi">1</span><span class="p">,</span><span class="mi">1</span><span class="p">)</span>
<span class="n">py</span><span class="o">.</span><span class="n">stem</span><span class="p">(</span><span class="n">ak</span><span class="p">)</span>
<span class="n">py</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s1">'numpy.correlate: suma iloczynów'</span><span class="p">)</span>
<span class="n">py</span><span class="o">.</span><span class="n">subplot</span><span class="p">(</span><span class="mi">3</span><span class="p">,</span><span class="mi">1</span><span class="p">,</span><span class="mi">2</span><span class="p">)</span>
<span class="n">py</span><span class="o">.</span><span class="n">stem</span><span class="p">(</span><span class="n">norm_ak</span><span class="p">)</span>
<span class="n">py</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s1">'liczba sumowanych iloczynów'</span><span class="p">)</span>
<span class="n">py</span><span class="o">.</span><span class="n">subplot</span><span class="p">(</span><span class="mi">3</span><span class="p">,</span><span class="mi">1</span><span class="p">,</span><span class="mi">3</span><span class="p">)</span>
<span class="n">py</span><span class="o">.</span><span class="n">stem</span><span class="p">(</span><span class="n">ak_z_korekta</span><span class="p">)</span>
<span class="n">py</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s1">'skorygowana funkcja autokorelacji'</span><span class="p">)</span>
<span class="n">py</span><span class="o">.</span><span class="n">show</span><span class="p">()</span>



<img src=" AAAPYQAAD2EBqD+naQAAGWlJREFUeJzt3X+M3PV95/Hne4ODA7c40lFsc4dKoYRuLne4u2kSws+E 3wQcNdA2W7i4JJcLuBbcFi69HJGSqwALEXtxExwioTZw0FWrQ1EMCpiCSxHEgG43Tu4Sg08CKxBs Q5OTsSBQh33fHzO+rqe7n93veHZ2Z/b5kEbyfObzme/no7d39zXfXxOZiSRJ0lR65noCkiRpfjMs SJKkIsOCJEkqMixIkqQiw4IkSSoyLEiSpCLDgiRJKjIsSJKkIsOCJEkqMixIkqSiSmEhIq6OiB9G xN764/sRceE0Y86OiNGIeCsidkTEqkObsiRJaqeqexZeAv4U6AcGgC3AdyOib7LOEXE88CDwGHAK sAG4KyLOa3K+kiSpzeJQv0gqIn4O3JCZfznJa7cCF2Xmv5vQNgIsycyLD2nDkiSpLZo+ZyEieiLi 08ARwNYpun0EeLShbTNwarPblSRJ7XVY1QER8QFq4WAxsA/43cx8boruy4A9DW17gKMi4vDMfHuK bfxL4AJgJ/BW1TlKkrSALQaOBzZn5s9b8YaVwwLwHLXzD5YAlwP3RMSZhcDQjAuA+1r4fpIkLTRX AH/VijeqHBYy81fAC/WnP4iIDwHXAddM0n03sLShbSnw+lR7Fep2Atx777309U167mTXGBoaYnh4 eK6nMetcZ2e75JKr2bXrm0DUW4aAA+tMli+/hgcfvHNuJjeLurWejRbKOmFhrHX79u1ceeWVUP9b 2grN7Flo1AMcPsVrW4GLGtrOZ+pzHA54C6Cvr4/+/v5Dm908t2TJkq5fI7jOTnf55Rdxxx2vMT5+ 4ErpJdQuioKenof4vd+7uCvX3a31bLRQ1gkLa6208DB+1fss3BIRZ0TEr0fEByJiLXAWcG/99bUR cfeEIXcCJ0TErRFxckSspnboYn2rFiBp9t188w309a2np+ch4MAVVElPz0P09Q1z003Xz+X0JM2y qldDHAPcTe28hUep3Wvh/MzcUn99GXDcgc6ZuRP4BHAusI3avsvPZWbjFRKS5rHe3l62br2fNWue Yfny1QAsX76aNWueYevW++nt7Z3jGUqaTZUOQ2Tmf5jm9asmaXuCWqiQ1MF6e3vZsOGrrFoFAwMr efDBb7Jw9uZKC5vfDTHHBgcH53oKbeE6u83CWOdCqedCWScsrLW20iHfwXE2REQ/MDo6OrqQTkSR OsLYGAwMwOgo7lmQ5qGxsTEGBgYABjJzrBXv6Z4FSZJUZFiQJElFhgVJklRkWJAkSUWGBUmSVGRY kCRJRYYFSZJUZFiQJElFhgVJklRkWJAkSUWGBUmSVGRYkCRJRYYFSZJUZFiQJElFhgVJklRkWJAk SUWGBUmSVGRYkCRJRYYFSZJUZFiQJElFhgVJklRkWJAkSUWGBUmSVGRYkCRJRYYFSZJUZFiQJElF hgVJklRkWJAkSUWGBUmSVGRYkCRJRYYFSZJUZFiQJElFhgVJklRkWJAkSUWGBUmSVGRYkCRJRYYF SZJUZFiQJElFhgVJklRUKSxExJci4tmIeD0i9kTEdyLifdOMOSsixhse70TEMYc2dUmS1A5V9yyc AXwd+DBwLrAIeCQi3jPNuAROApbVH8sz89WK25YkSXPgsCqdM/Piic8j4o+AV4EB4Mlphr+Wma9X mp0kSZpzh3rOwnup7TX4xTT9AtgWEa9ExCMR8dFD3K4kSWqTpsNCRARwO/BkZv6k0HUX8AXgMuBT wEvA4xGxotltS5Kk9ql0GKLBRuD9wGmlTpm5A9gxoenpiDgRGAJWlcYODQ2xZMmSg9oGBwcZHBxs asKSJHWTkZERRkZGDmrbu3dvy7fTVFiIiG8AFwNnZOauJt7iWaYJGQDDw8P09/c38faSJHW/yT5A j42NMTAw0NLtVA4L9aDwSeCszPxpk9tdQe3whCRJmucqhYWI2AgMAiuBNyJiaf2lvZn5Vr3PLcC/ ysxV9efXAS8CPwYWA58HPgac15IVSJKkWVV1z8LV1K5+eLyh/Srgnvq/lwPHTXjt3cA64FjgTeBH wDmZ+UTVyUqSpParep+Faa+eyMyrGp7fBtxWcV6SJGme8LshJElSkWFBkiQVGRYkSVKRYUGSJBUZ FiRJUpFhQZIkFRkWJElSkWFBkiQVGRYkSVKRYUGSJBUZFiRJUpFhQZIkFRkWJElSkWFBkiQVGRYk SVKRYUGSJBUZFiRJUpFhQZIkFRkWJElSkWFBkiQVGRYkSVKRYUGSJBUZFiRJUpFhQZIkFRkWJElS kWFBkiQVGRYkSVKRYUGSJBUZFiRJUpFhQZIkFRkWJElSkWFBkiQVGRYkSVKRYUGSJBUZFiRJUpFh QZIkFRkWJElSkWFBkiQVGRYkSVKRYUGSJBVVCgsR8aWIeDYiXo+IPRHxnYh43wzGnR0RoxHxVkTs iIhVzU9ZkiS1U9U9C2cAXwc+DJwLLAIeiYj3TDUgIo4HHgQeA04BNgB3RcR5TcxXHSoz53oKkqbg z6emc1iVzpl58cTnEfFHwKvAAPDkFMOuAV7IzC/Wnz8fEacDQ8DfVpqtOsq+ffu48cav8cADT7F/ /5EsWvQGl156GjfffAO9vb1zPT1pQfPnU1VUCguTeC+QwC8KfT4CPNrQthkYPsRtax7bt28fp556 Gdu3/wnj418FAkjuuGMzW7Zcxtat9/sLSZoj/nyqqqZPcIyIAG4HnszMnxS6LgP2NLTtAY6KiMOb 3b7mtxtv/Fr9F9GF1H4RAQTj4xeyffsQX/7yurmcnrSg+fOpqg7laoiNwPuBT7doLuoiDzzwFOPj F0z62vj4hWza9FSbZyTpAH8+VVVThyEi4hvAxcAZmblrmu67gaUNbUuB1zPz7dLAoaEhlixZclDb 4OAgg4ODFWesdspM9u8/kn/6xNIo2L//CDKT2g4qSe3iz2d3GRkZYWRk5KC2vXv3tnw7lcNCPSh8 EjgrM386gyFbgYsa2s6vtxcNDw/T399fdYqaYxHBokVvUDudZbJfNsmiRW/4i0iaA/58dpfJPkCP jY0xMDDQ0u1Uvc/CRuAK4A+BNyJiaf2xeEKfWyLi7gnD7gROiIhbI+LkiFgNXA6sb8H8NU9deulp 9PRsnvS1np6HWbny9DbPSNIB/nyqqqrnLFwNHAU8Drwy4fH7E/osB4478CQzdwKfoHZfhm3ULpn8 XGY2XiGhLnLzzTfQ17eenp6HqH2CAUh6eh6ir2+Ym266fi6nJy1o/nyqqkphITN7MvNdkzzumdDn qsz8eMO4JzJzIDPfk5knZeZ/b9UCND/19vaydev9rFnzDMuXrwZg+fLVrFnzjJdlSXPMn09VFfPx zl0R0Q+Mjo6Oes5CFxgbg4EBGB0Fy9n5rGd3sZ7dZ8I5CwOZOdaK9/SLpCRJUpFhQZIkFRkWJElS kWFBkiQVGRYkSVKRYUGSJBUZFiRJUpFhQZIkFRkWJElSkWFBkiQVGRYkSVKRYUGSJBUZFiRJUpFh QZIkFRkWJElSkWFBkiQVGRYkSVKRYUGSJBUZFiRJUpFhQZIkFRkWJElSkWFBkiQVGRYkSVKRYUGS JBUZFiRJUpFhQZIkFRkWJElSkWFBkiQVGRYkSVKRYUGSJBUZFiRJUpFhQZIkFRkWJElSkWFBkiQV GRYkSVKRYUGSJBUZFiRJUpFhQZIkFRkWJElSkWFBkiQVVQ4LEXFGRGyKiJ9FxHhErJym/1n1fhMf 70TEMc1PW5IktUszexaOBLYBq4Gc4ZgETgKW1R/LM/PVJrYtSZLa7LCqAzLzYeBhgIiICkNfy8zX q25PkiTNrXadsxDAtoh4JSIeiYiPtmm7kiTpELUjLOwCvgBcBnwKeAl4PCJWtGHbkiTpEFU+DFFV Zu4AdkxoejoiTgSGgFWlsUNDQyxZsuSgtsHBQQYHB1s+T0mSOs3IyAgjIyMHte3du7fl25n1sDCF Z4HTpus0PDxMf39/G6YjSVLnmewD9NjYGAMDAy3dzlzdZ2EFtcMTkiRpnqu8ZyEijgR+k9pJiwAn RMQpwC8y86WIWAscm5mr6v2vA14EfgwsBj4PfAw4rwXzlyRJs6yZwxAfBP6O2r0TElhXb78b+Cy1 +ygcN6H/u+t9jgXeBH4EnJOZTzQ5Z0mS1EbN3Gfh7ykcvsjMqxqe3wbcVn1qkiRpPvC7ISRJUpFh QZIkFRkWJElSkWFBkiQVGRYkSVKRYUGSJBUZFiRJUpFhQZIkFRkWJElSkWFBkiQVGRYkSVKRYUGS JBUZFiRJUpFhQZIkFRkWJElSkWFBkiQVGRYkSVKRYUGSJBUZFiRJUpFhQZIkFRkWJElSkWFBkiQV GRYkSVKRYUGSJBUZFiRJUpFhQZIkFRkWJElSkWFBkiQVGRYkSVKRYUGSJBUZFiRJUpFhQZIkFRkW JElSkWFBkiQVGRYkSVKRYUGSJBUZFiRJUpFhQZIkFRkWJElSkWFBkiQVGRYkSVJR5bAQEWdExKaI +FlEjEfEyhmMOTsiRiPirYjYERGrmpuuJElqt2b2LBwJbANWAzld54g4HngQeAw4BdgA3BUR5003 9pJLrubaa7/Cvn37mpimJEkLx759+7j22q9wySVXt/y9D6s6IDMfBh4GiIiYwZBrgBcy84v1589H xOnAEPC3pYG7dn2TO+54jS1bLmPr1vvp7e2tOl1Jkrrevn37OPXUy9i+/U8YH18JfLCl79+OcxY+ Ajza0LYZOHX6ocH4+IVs3z7El7+8bhamJklS57vxxq/Vg8KFwEw+x1fTjrCwDNjT0LYHOCoiDp/J G4yPX8imTU+1fGKSJHWDBx54ivHxC2bt/SsfhmivIWAJALt3/y9WrlzJ4OAgg4ODczstSZLmgZGR EUZGRti9+38Dn6y37m35dtoRFnYDSxvalgKvZ+bb5aHDQD+QLFt2Hps2bZqVCUqS1IkOfID+jd84 l507v0vtEMQYMNDS7bTjMMRW4JyGtvPr7TPS0/MwK1ee3tJJSZLULS699DR6ejbP2vs3c5+FIyPi lIhYUW86of78uPrrayPi7glD7qz3uTUiTo6I1cDlwPrpt5b09DxEX98wN910fdWpSpK0INx88w30 9a2np+chZnBXg8qa2bPwQeAHwCi1Ga2jts/jv9VfXwYcd6BzZu4EPgGcS+3+DEPA5zKz8QqJf+bo o9eyZs0zXjYpSVJBb28vW7fez5o1z3D00Wtb/v7N3Gfh7ymEjMy8apK2J2jiAMrtt/9Xrriiv+ow SZIWnN7eXjZs+Cof+tAYV155f0vf2++GkCRJRYYFSZJUZFiQJElFhgVJklRkWJAkSUWGBUmSVGRY kCRJRYYFSZJUZFiQJElFhgVJklRkWJAkSUWGBUmSVGRYkCRJRYYFSZJUZFiQJElFhgVJklRkWJAk SUWGBUmSVGRYkCRJRYYFSZJUZFiQJElFhgVJklRkWJAkSUWGBUmSVGRYkCRJRYYFSZJUZFiQJElF hgVJklRkWJAkSUWGBUmSVGRYkCRJRYYFSZJUZFiQJElFhgVJklRkWJAkSUWGBUmSVGRYkCRJRYYF SZJUZFiQJElFhgVJklTUVFiIiD+OiBcj4pcR8XRE/E6h71kRMd7weCcijml+2pIkqV0qh4WI+ANg HfAV4LeBHwKbI+LowrAETgKW1R/LM/PV6tOVJEnt1syehSHgW5l5T2Y+B1wNvAl8dppxr2Xmqwce TWxXkiTNgUphISIWAQPAYwfaMjOBR4FTS0OBbRHxSkQ8EhEfbWaykiSp/aruWTgaeBewp6F9D7XD C5PZBXwBuAz4FPAS8HhErKi4bUmSNAcOm+0NZOYOYMeEpqcj4kRqhzNWzfb2JUnSoakaFv4BeAdY 2tC+FNhd4X2eBU6brtO6dUP89V8vOahtcHCQwcHBCpuSJKk7jYyMMDIyclDbyy/vbfl2KoWFzNwf EaPAOcAmgIiI+vM/r/BWK6gdnii6/vphrriiv8oUJUlaMCb7AH3ffWNceeVAS7fTzGGI9cC366Hh WWqHE44Avg0QEWuBYzNzVf35dcCLwI+BxcDngY8B5x3q5CVJ0uyrHBYy82/q91T4M2qHH7YBF2Tm a/Uuy4DjJgx5N7X7MhxL7RLLHwHnZOYThzJxSZLUHk2d4JiZG4GNU7x2VcPz24DbmtmOJEmae343 hCRJKjIsSJKkIsOCJEkqMixIkqQiw4IkSSoyLEiSpCLDgiRJKjIsSJKkIsOCJEkqMixIkqQiw4Ik SSoyLEiSpCLDgiRJKjIsSJKkIsOCJEkqMixIkqQiw4IkSSoyLEiSpCLDgiRJKjIsSJKkIsOCJEkq MixIkqQiw4IkSSoyLEiSpCLDgiRJKjIsSJKkIsOCJEkqMixIkqQiw4IkSSoyLEiSpCLDgiRJKjIs SJKkIsOCJEkqMixIkqQiw4IkSSoyLEiSpCLDgiRJKjIsSJKkIsOCJEkqMixIkqQiw8IcGxkZmesp tMnCWKf17C7Ws/ssnJq2VlNhISL+OCJejIhfRsTTEfE70/Q/OyJGI+KtiNgREauam273WTj/cRfG Oq1nd7Ge3Wfh1LS1KoeFiPgDYB3wFeC3gR8CmyPi6Cn6Hw88CDwGnAJsAO6KiPOam7IkSWqnZvYs DAHfysx7MvM54GrgTeCzU/S/BnghM7+Ymc9n5h3A/6i/jyRJmucqhYWIWAQMUNtLAEBmJvAocOoU wz5Sf32izYX+kiRpHjmsYv+jgXcBexra9wAnTzFm2RT9j4qIwzPz7UnGLAZ45anvMcb2ilPsLHtf fpmx++6b62nMqhdfhCN5mRe/dx9dXk7r2WWsZ/dZCDV95akXD/xzcaveM2o7BmbYOWI58DPg1Mx8 ZkL7rcCZmfnP9hZExPPAX2TmrRPaLqJ2HsMRk4WFiPhDoLurKUnS7LoiM/+qFW9Udc/CPwDvAEsb 2pcCu6cYs3uK/q9PsVcBaocprgB2Am9VnKMkSQvZYuB4an9LW6JSWMjM/RExCpwDbAKIiKg///Mp hm0FLmpoO7/ePtV2fg60JA1JkrQAfb+Vb9bM1RDrgc9HxGci4reAO4EjgG8DRMTaiLh7Qv87gRMi 4taIODkiVgOX199HkiTNc1UPQ5CZf1O/p8KfUTucsA24IDNfq3dZBhw3of/OiPgEMAxcC7wMfC4z G6+QkCRJ81ClExwlSdLC43dDSJKkIsOCJEkqmpOwsJC+iKrKWiPirIgYb3i8ExHHtHPOVUTEGRGx KSJ+Vp/vyhmM6ch6Vl1rh9bzSxHxbES8HhF7IuI7EfG+GYzrqJo2s84OrefVEfHDiNhbf3w/Ii6c ZkxH1fKAqmvtxHo2ioj/Up938YKBVtS07WFhIX0RVdW11iVwErUTRZcByzPz1dme6yE4ktpJrqup zb2ok+tJxbXWdVo9zwC+DnwYOBdYBDwSEe+ZakCH1rTyOus6rZ4vAX8K9FO7Vf8W4LsR0TdZ5w6t 5QGV1lrXafX8/+ofPP8jtb8rpX7H04qaZmZbH8DTwIYJz4PaFRJfnKL/rcCPGtpGgO+1e+5tWOtZ 1G56ddRcz73J9Y4DK6fp07H1bGKtHV3P+hqOrq/19G6u6QzX2fH1rK/j58BV3VrLCmvt2HoC/wJ4 Hvg48HfA+kLfltS0rXsWYgF9EVWTa4VaoNgWEa9ExCMR8dHZnWnbdWQ9D0Gn1/O91D59/aLQpxtq OpN1QgfXMyJ6IuLT1O6LM9VN8bqhljNdK3RuPe8AHsjMLTPo25KatvswROmLqJZNMab4RVStnV5L NbPWXcAXgMuAT1HbrfZ4RKyYrUnOgU6tZzM6up4REcDtwJOZ+ZNC146uaYV1dmQ9I+IDEbEPeBvY CPxuZj43RfdOr2WVtXZqPT8NrAC+NMMhLalp5ZsyafZk5g5gx4SmpyPiRGAI6IiTjPRPuqCeG4H3 A6fN9URm2YzW2cH1fI7aseol1O6ee09EnFn4I9rJZrzWTqxnRPxrasH23Mzc385tt3vPQru+iGo+ aGatk3kW+M1WTWoe6NR6tkpH1DMivgFcDJydmbum6d6xNa24zsnM+3pm5q8y84XM/EFm3kjthLjr pujesbWEymudzHyv5wDwa8BYROyPiP3Uzr24LiL+sb6XrFFLatrWsFBPQge+iAo46IuopvrSi60T +9cVv4hqPmhyrZNZQW13WbfoyHq20LyvZ/0P6CeBj2XmT2cwpCNr2sQ6JzPv6zmJHmCq3c8dWcuC 0lonM9/r+Sjwb6nN85T6438C9wKn1M+La9Sams7BWZy/D7wJfAb4LeBb1M5Y/bX662uBuyf0Px7Y R+2MzpOpXbb2j9R2w8z5WaktXut1wErgRODfUNvdtJ/ap545X88Uazyy/h92BbWzyf9T/flxXVjP qmvtxHpuBP4vtUsLl054LJ7Q55ZOr2mT6+zEet5SX+OvAx+o/x/9FfDxKf7PdlwtD2GtHVfPKdZ9 0NUQs/XzOVeLWw3sBH5JLd18cMJrfwlsaeh/JrVP6b8E/g/w7+e6QLOxVuA/19f3BvAatSspzpzr NUyzvrOo/eF8p+HxF91Wz6pr7dB6Tra+d4DPTOjT8TVtZp0dWs+7gBfqddkNPEL9j2e31LLZtXZi PadY9xYODguzUlO/SEqSJBX53RCSJKnIsCBJkooMC5IkqciwIEmSigwLkiSpyLAgSZKKDAuSJKnI sCBJkooMC5IkqciwIEmSigwLkiSp6P8BhHTElY8JGVEAAAAASUVORK5CYII= " >


<img src=" AAAPYQAAD2EBqD+naQAAIABJREFUeJzsnXu81/P9wJ+vbyJyimmUzYSZtZ8N5bJG5B4qI0xqkm0o rRbmMrbMirnmltymNOQWUy0KuSRhO7nMNNdCpAuqo0Q6r98fr/e38zmfvtdzvpdzeT0fj+/jnM/7 87683pfP+/1630VVcRzHcRzHSUei3AI4juM4jtOwcWXBcRzHcZyMuLLgOI7jOE5GXFlwHMdxHCcj riw4juM4jpMRVxYcx3Ecx8mIKwuO4ziO42TElQXHcRzHcTLiyoLjOI7jOBlxZcFxHMdJiRhni8gx 5ZbFKS+uLDhOI0NEDheRahHZu9yyNCdE5BMRuSny3Bzy4SJgKPBCuQVxyosrC47TOKnTpS4i0ktE Liy0MM2EajZM9yZ7uY6IHIgpCj1UdVG55XHKy0blFsBxnJLSG+gHjCq3II2Q7YF15RaihOwM9FTV eeUWxCk/riw4TgkQkc1UdXW+74ohSonCaXKo6tpyy1BKVPXWcsvgNBx8GsJZj4hcHOZgdxKR8SLy uYgsF5E7RKRVxN72wd7JKfyoFpE/pfBzZxG5K/i3REQuCe+3E5F/iMgKEVkkImfF/DsguD9BRC4N dr4QkUdE5LuxcL4Wka1SyHSriHwmIhtnif//icgkEVkqIqtF5A0RGRGzs5eIPC4iK8Nvhoh0idk5 I8jcNYS9FHg7vPtrePd9EblfRD4HHo+43VVEHhaRT4MML4pIj0xyB3cHisiDIvKBiKwRkQUicnk0 ziIyETgV2CTIUC0iqyPvEyJyToj3mpDWN4pIRSystiKyi4hsnoNcXUXkCRFZJiKrRORdERkbeZ9y 3j/4Xy0iJ0TM7g15s4OIPBbKwQci8uvwfg8ReTqE856IHBfzs52IjBaR14Pb5SIyRUR+lC0ewX2t NQsZ7J0kIi+LyJehrI8TkW1S2Etb3iLxT/VbHexcHsJok8LvCSHsFhHZ7xeR7iLyr+DubRH5RQq3 3xeRh8S+/1UiMltEDo28T4h9ryMjZhsFu1+JyKYR8xEhrIzfntPwcWXBiZKcf70faA2cD9wHDABG pHOUo5/3hb/nYYulLhSR3wEzgIXAuViDeqWI7JfCnwuBI4C/AtcBhwKPi8gm4f3fsZGyWpWfiLQE +gAPqurX6YQMDf4LwL7ATdhc7RTgqIidPYCngR9gw/ijwv/PishuKeJ8G9AR+BNwVezdPyLpMT74 vzvwPLADcClwDvA1MDUHheEXIf43Ar8FngTODjIkuSHIvxabiugPDIy8vxP4CzAz+HFneP9PEYmO SJwIzAOOzCSQiGwLPAq0B0ZiaToR+GnMaq7z/gpsDEwD3sTS5yPgFhHpB0wFZmNlaQ1wl4h0iLjf BegBPAz8Drga6Aw8LSLtcgw/IyJyBnAXsAr4PXAHll7PiMhmEXvZytvHWP5Ef78GvgAWBzsTQnrE laJNgZ8D96pqctpEgR8B9wD/xMrGF1ga7Rhx+x1gDnAAcC323VUA05JlUFWrg539I8F2ATYFWlA7 f/cDXsr07TmNBFX1n/9QVTCFoBq4NWY+CVgSed4+2Ds5hR/VwJ9S+HlTxCwBfAB8A5wTMW+LVbJ3 RMwOCO4/ADaLmB8XzIdEzGYDz8fkOQabZ+6WJe4vAsuAbTLYeRSrYLeNmH03yPxoxOz0INuMFH5c Ft7dnuLdc0GORMRMgH8Br0TMDg9x2jtitkma/FwLfDtidhuwOoXdQ4JcR8fMewXzn8fitw44IUua /iLY65TBzgZxCea7hHBPiJhNDHaHRsy2whSDb7D59aT5j4P7cyNmG6cI//vAV8DZOXwfi2LluJbs wCbAp8BLwEYRe8cGWc7Lp7ylCP9vIa4/jZhVAjNj9vqmKB+LQhp1iZhtiymjl0TMxgZ7nSNmbYAP gTciZhcCXybTFFPc3gBeJnz/mOJQBYzMNY7+a7g/H1lw4ihwS8xsFrBVLsPOGfz82/oH65n8G2sI 74iYr8B6jDvGPQDu1Mi8vqo+iFWA0d7tBGAfEdkhYtYP+FBVZ6UTLvSm9gJuUdXFaexsDBwE3K+q H0fkWIiNxBwUG2pNlY7RdzfH/G8P/AwbgdlSRLYSm1LZCht9+bGIbJkuDqr6VcSvzYLb5zHFbPd0 7iIcBywBnkuGHfx4EWtQDoyEdYuqtlDV+7P4uRzL46OTw+EFIlqWPgXeAz5T1akR8/9gDeuOEbP1 vVsRaSEi3woyzsdGGOpLV2BL4EZV/SYS7kMhjKNC2FnLWxwROQ0b5RmmqtFtjBOA/YOfSfoB76jq SzFvXlbVyohcH2NpF/3ejgBmqerciL2VwO3ALpFRiFmYcrRPeO4WzGaF/8FGG1oHM6eR48qCk4oP Ys+fh79pG6s6+LkCWKOqn6UwTxXOO2nMOkae78Matn4AYS73KGxYOBM7hb//zWCnA9ASeCvFu3nY FMB3YuYLMvg3P/a8c/h7JbA08lsCXBDebZ3OMxHpKLYm5DNs9GMpMD28bptBjmj4W8fCXgp8gsU7 bdgZmAFMxqZrloX5+V+GqaG6slxVV8XMVmA93zi1ylKYaz9XRN7FRhOWYem7M7mlUTa2xxTBVGXk zfAecitv6xGRvbCpt7+palwBvQcbtegb7G4FHIZNy8WJf4Ng3/aWwa0A2wVZ4yR3RCTjkFQik4rB vtQoCz8NymE3bITj+cwxdBoDvhvCSUW67WHJeeuUc7cikkn5TOVntnDyQlWXi8hUTFkYCRyPzene XRf/CsCXebxLpt2lwFNp3KSq7BGRjbB1Bq2weL8FrMYUqdvIrVOQwBrcU0id/jn1gKOoqgI/F5Gu QE9s2P5OYJiI7BtGQ9KtA0g3EpGuzORSli4B/oCN6jyFNZTV2NB7g+w4hbUUk4BXgTPj71V1qYhM x9Y0XIWtj2hB6jJfsO9NVb8SkUpsVOMR4FvAs5gCsRk2UrMf8JqqVuXrv9PwcGXBqQvJkYYtYubb xy0WkJ1TmH0fq0SjTAD+ISJ7AidhQ6/Z9om/G/7umsHOImz+f5cU7zph87wfZQknFxm+UtWZebrt gikGx6vqpKShiPRkw4YgXeP8LrA3NgT9TRo7dUJV52AL4i4UkYHYkHYfrFf8eZAxXpY6FlKGQB9g mqoOjhqG6Yh3UzvJi/exuOzChice7hLeQ27lLal834eN7Byr6RcJTgDuFZFdsTI/R1XjI1dZUVUV kQ9JX8ahJg5gowiDsCmqhar6QZD7HWyt0X5kH9VzGgkNUpt2Gjahp7CM2quhwXo+xTrR7uTomgkR OR6bGpgWs/cotsjsPKzC2mA4VkQ6hK1pAqCqH2GL0k6LrZ5fT6ionwSOC6v8k359BxvBeDJDZZ6V sPbhBeDMVCvzs6zWT/YY13/PIW7D2DA/VmFbJzeJmd+PrWa/IGae3BbXJvKc09bJNGssXsUa1GT4 84OM8bI0KIXs9WUdMeVJRH6JrQspBHMw5WdwGO1JhnEMtsNlKuRW3gKXYQ3uCdF1MimYDKzEdt10 JfUURK5MA7qFnTlJ+dtgOzH+p6rvRezOwnZKnEntdQnPBfvfwtcrNBl8ZMGpK7cD54vIbdhixf2x 3n+xDv35DFt8Nw7bijcMG26/PWpJVb8RkXuBIVhv/94Ufo0GTgj+LAlmQ7Ch6ZdDnN7H5pYPUtXk Iq4/YBXh82JnBQhwRnh3fgHieAbwDPC6iNyONaQdsPngLam9JS2azv/BpihuCAvQVoX4pWrMkwvc xojITOBrVX1QVWeIyJ3AxWFU5kmscd0FW/z4a2oUsxOxofsTMSUjHaeJyABsm+h72OjBaVheTgdQ 1WVhGPv3oYH9ADia+q2PScfUEM6t2A6T3bAdGwvq4ef6fAhD83/AtkI+Hcrhdtg21Lewba1J0pW3 A1X1p2Fr5e+xMzi+F7aGJlmnquvLdQj3ASyPviZznmRjFJbfT4rI9ZgScir2rfw6Znc2ptD9AFtT keRZbDGm4spCk8GVBaeuXAK0wyqW47GG5Ais8c1n33wu5orN5f8Ea5QrsEr0TFVdk8L9BKwyfiLN anPF5qprDFT/LSI/w+I1GOv5LsCGypN2XhGRA4IsyfsVngf+oKqvpYlLLvFL+v9aaKhHAL/CGszF wFxsLUJKP0JjcRRWYV+IrVd4ABiHNYpRJmK9z+Ow9QlfAw8GfwaKyAvAb7Be7ddYGvwthT+55PGT 2E6Mk4BtsF73HODiWE/5DGwdwRBsLcfdQfa5bEiuZSZpFjW/GMvXE7AFgf/CFgOOyTE+cf82CFdV bxGRlVhDfyW2dfBe4PzYbp5s5a1d8PuQ8IvyFRsqwRMICp2qfs6GpJJ9gzio6kdBrsuxsyg2xrZD HqGqT8TiulxEXgf+D1Oik8wKfr6lqkvThOk0MsTWINXDA5Fu2IfRBesF/VxVJ6exezPWs/idql5f r4CdZkFonJ8Cjgtb0HJx8xPgFaC/qt6Tzb7jNHbETsB8gTy+E8fJh0KsWWiNVcyDyaCdh3m7fajf IjDHyYXTsB7dw+UWxHFKxGnYyM3UbBYdpy7UexpCVR8DHoP1i6o2ICwCuw7bOhVfkOY4BSGs/v8/ bBj9elXNtHXRcRo9ItIb21UxAPhrfRbZOk4mir5mISgQE4ArVHVeGn3CcTKR61zZDdjhQVOx+WnH aercgq3hmYStpXGcolCKBY7nYyuub8xq03FiqOozpD+gJ253h+y2HKfpoKqZtl46TsEoqrIQtv8M BfbI091W2JTFAux8d8dxHMdxcqMVdrDZ9HB/Sr0p9sjCfsC3gQ8j0w8tgGtE5HeqmurCIDBFoVxH 9DqO4zhOU6Afke3f9aHYysIEbD98lBnBfFwGdwsA7rrrLjp16pTBWuNn+PDhjB49utxiFB2PZ+Om Z88zWLQoeQ4VwHDsbCsApUOHQUydenNqx42YppqfcZpLPKF5xHXevHn0798f6nfgWC3qrSyISGvs jP5kLbKjiOyGXRn7ITX3CCTtrwU+UdW3M3i7BqBTp0507lyIm2MbLm3btm3ycQSPZ2PnuOOOYMyY pVRX9wgmbUne6pxIPMrxxx/ZJOPdVPMzTnOJJzSvuFLAafxCnLOwJ3bCVyW2av1q7OS1P6exX6y7 AxzHKRKjRp1Dp07XkEg8Ss0nrCQSj9Kp02hGjjy7nOI5jlNk6q0sqOozqppQ1Rax36lp7O/opzc6 TuOioqKCOXMmMWTIi3ToYJc2dugwmCFDXmTOnElUVFSUWULHcYqJ3w3hOE5OVFRUcN11FzNgAHTp 0pupU8fSfEZzHad541dUl5m+ffuWW4SS4PFsajSPeDaX/Gwu8YTmFddCUtSLpMKVs6Ow2wh3BFYA T2A3sC3K4GdnoLKysrI5LURxnEbB3LnQpQtUVuIjC47TAJk7dy5dunQB6KKqqW5vzZtiXyS1GXZF 7Z+xg5mOAXYBHilAuI7jOI7jlICiXiSlqiuxA5bWIyJDgBdF5LuqurC+4TuO4ziOU1zKsWZhC2wE YnkZwnYcx3EcJ09KqiyIyCbAX4F7VPWLUobtOI7jOE7dKJmyEBY7PoCNKgwuVbiO4ziO49SPkpyz EFEUtgMOynVUYfjw4bRt27aWWd++fX3ri+M4juMAEydOZOLEibXMVqxYUfBwiq4sRBSFHYEDVfXz LE7WM3r0aN866TiO4zhpSNWBjmydLBhFvUgKWARMwrZP9gRaisg2wd5nqrq2vuE7juM4jlNcCjGy sCfwFLYWIXmRFMCd2PkKvYL5K8FcwvOBwLMFCN9xHMdxnCJSiHMWniHzQkk/UtpxHMdxGjHekDuO 4ziOkxFXFhzHcRzHyUi9lQUR6SYik0XkIxGpFpHeKexcIiIfi8hqEXlcRL5f33Adx3EcxykNxb5I ChE5DxgCnAbsDawCpovIxgUI23Ecx3GcIlPUi6QCw4C/qOrUYOdkYDHwc+D++obvOI7jOE5xKeqa BRHZAWgPPJk0CzdRvgh0LWbYjuM4juMUhmIvcGyPTU0sjpkvDu8cx3Ecx2ng+G4Ix3Ecx3EyUuy7 IT7BTmzchtqjC9sAL2dz7BdJOY7jOE56msRFUqo6X0Q+AQ4GXgMQkTbAPsCYbO79IinHcRzHSU+T uEhKVT8ErgUuEpF3gAXAX4CFwCP1DdtxHMdxnOJT7IukTlXVK0RkM+AWYAtgFnCEqn5dgLAdx3Ec xykypbhIClW9GLi4vmE5juM4jlN6fDeE4ziO4zgZcWXBcRzHcZyMuLLgOI7jOE5Giq4siEhCRP4i Iu+FWyffEZGLih2u4ziO4ziFodiHMgGcD5wOnAy8ge2eGC8iy1X1xhKE7zQAVJXU94w5jlNu/Pt0 slGKaYiuwCOq+piqfqCqDwEzsOuqnSZMVVUVQ4eOYIcdDmG77X7ODjscwtChI6iqqiq3aI7T7PHv 08mHUowsPA/8RkR2VtW3w4FN+wLDSxC2Uyaqqqro2rUP8+adRXX1xdiZXcqYMdOZObMPc+ZMoqKi osxSOk7zxL9PJ19KMbLwV+A+4H8i8jVQCVyrqveWIGynTFx44VWhIupBzeGeQnV1D+bNG85FF12d ybnjOEXEv08nX0qhLPwCOAk4EdgDGAD8XkR+WYKwnTIxZcpsqqsPT/muuroHkyfPLrFEjuMk8e/T yZdSTENcAVymqg+E5/+KSEfgAuDvmRz6rZONE1Vl7drW1PRY4ghr127mi6ocpwz499m0aBK3TgY2 A9bFzKrJYVTDb51snIgILVuuwq4KSVXZKC1brvKKyHHKgH+fTYtS3TpZimmIKditk0eKyPYicgy2 uPGhEoTtlIlevfYlkZie8l0i8Ri9e+9XYokcx0ni36eTL6VQFoYADwJjsHMWrgDGAn8qQdhOmRg1 6hw6dbqGROJRrAcDoCQSj9Kp02hGjjy7nOI5TrPGv08nX4quLKjqKlU9S1V3UNXWqrqzqo5Q1W+K HbZTPioqKpgzZxJDhrxIhw6DAejQYTBDhrzo27Icp8z49+nki6hqdlslRkQ6A5WVlZW+ZqEJMHcu dOkClZXg2dn48fxsWnh+Nj0iaxa6qOrcQvjpF0k5juM4jpORkigLIrKtiPxdRJaFy6ReDaMHjuM4 juM0cIq+dVJEtgBmA08ChwPLgJ2Bz4sdtuM4juM49adUt05+oKq/jpi9X4JwHcdxHMcpAKWYhugF /FtE7heRxSIyV0R+ndWV4ziO4zgNglIoCzsCg4A3gcOwMxau97shHMdxHKdxUIppiATwkqr+MTy/ KiK7AmeQ5W4Ix3Ecx3HKTymUhUXAvJjZPODYbA79IinHcRzHSU9TukhqNrBLzGwXcljk6BdJOY7j OE56mtJFUqOBn4rIBSKyk4icBPwauLEEYTuO4ziOU09KcTfEv4FjgL7Af4ALgWGqem+xw3Ycx3Ec p/6UYhoCVZ0GTCtFWI7jOI7jFBa/G8JxHMdxnIy4suA4juM4TkZKriyIyPkiUi0i15Q6bMdxHMdx 8qekyoKI7AWcBrxaynAdx3Ecx6k7JVMWRGRz4C5s2+TyUoXrOI7jOE79KOXIwhhgiqrOLGGYjuM4 juPUk5JsnRSRE4HdgT1LEZ7jOI7jOIWj6MqCiHwXuBY4RFXXFjs8x3Ecx3EKSylGFroA3wbmiogE sxbA/iIyBNhEVTWVQ79IynEcx3HS05QuknoC+HHMbDx28+Rf0ykK4BdJOY7jOE4mmsxFUqq6SlXf iP6AVcCnqhq/uroWPXuewdChI6iqqiq2mI7jOI7TqKmqqmLo0BH07HlGwf0u1wmOaUcToixaNJYx Y7rStWsfVxgcx3EcJw1VVVV07dqHMWO6smjR2IL7XxZlQVUPUtWzstsUqqt7MG/ecC666OriC+Y4 juM4jZALL7yKefPOorq6ByBZ7edLo7gborq6B5Mnzy63GI7jOI7TIJkyZTbV1YcXzf9GoSyAsHbt ZmRYC+k4juM4zRJVZe3a1hRjRCFJ0ZUFEblARF4SkZUislhEHhaRH+Tni9Ky5Spqdl46juM4jgMg IrRsuYoclwPWiVKMLHQDbgD2AQ4BWgIzRGTTXD1IJB6jd+/9iiSe4ziO4zRuevXal0RietH8L/o5 C6p6ZPRZRE4BlmCHNT2XxTWJxKN06jSakSMnFUtEx3Ecx2nUjBp1DjNn9mHePKW6euuC+1+ONQtb YGMln2Wz2K7dZQwZ8iJz5kyioqKi+JI5juM4TiOkoqKCOXMmMWTIi7Rrd1nB/S/JRVJJwnHP1wLP hcOZMnLttX+gXz8/wdFxHMdxslFRUcF1113M3nvPpX//wo7Gl1RZAG4CfgTsW+JwHcdxHMepIyVT FkTkRuBIoJuqLsrFzdVXD+e++/wiKcdxHMdJRaqLpBYubJwXSSUVhaOBA1T1g1zdnX32aJ+GcBzH cZw0pOpA3333XPr3L+xFUkVXFkTkJqAv0BtYJSLbhFcrVHVNscN3HMdxHKd+lGI3xBlAG+Bp4OPI 74QShO04juM4Tj0pxTkLjeRIacdxHMdxUuENueM4juM4GXFlwXEcx3GcjJRMWRCRM0Vkvoh8KSIv iMhepQq7IRPf8tJ0aR7x9PxsWnh+Nj2aT54WlpIoCyLyC+BqYASwB/AqMF1E2pUi/IZM8ym4zSOe np9NC8/PpkfzydPCUqqRheHALao6QVX/h+2QWA2cWqLwHcdxmiV33HEHt912W7nFcBo5RVcWRKQl dsPkk0kzVVXgCaBrscN3Ssf48eNJJBJ88EHNuVvdu3fntNMOLHhYd955J4lEgrlz5xbcb6dhcsop p9TrQrnu3btz4IE1ZfH9998nkUgwYcKEQojXIHnggQcYPnw4e+3ls75O/SjFyEI7oAWwOGa+GGhf gvCdEiEi2F1htc0SieIUs3hYTtMmVfnK132xymJD5J133mHQoEE88MAD7L777uUWx2nklPoiqVxp BfDx7GnMZV65ZSkqKxYuZO7dd5dbjIKw4PnnQZX/PPwwy9rZcpTLBw5kwXw49V/XMn/a3RQqO5Nh zZs2DeY1nDLSlPIzHfPnQ2sWFjQ/c+HTd9+leu3aOqfv5QMHAqx3v2jZMsDK0twWLVK6acz5OfNf /+KPp5xCu6VLM8ahXPlZLhpznubKx7PnJ/9tVSg/xWYEikeYhlgN9FHVyRHz8UBbVT0mhZuTgKad m47jOI5TXPqp6j2F8KgUJziuFZFK4GBgMoDYWOLBwPVpnE0H+gELAL8/ovHQE9vx0gv4JJjdClRj i1qTtMQWtx6OTUVVAa8Bo7GjwG/B1rmkYgTwz0hYp2G3mR6EleengSuBLyJu9geOBX4ItAWWYGXx DiCbtrwpMBjojk2pfQG8BVwX/gJMBf4F/DnmNh73zsHsfGBH4BigNTAnuP0aGAb0wHoETwCjgG8i fiawtOsFbA0sAx7D0ixpb3hIn4Mj7s7Fjli/Arg/mG0JPA5cCjyEpd+vgf2A7bDpw/8BY4HKiF/t Q5xHYx2BU4IsbwOXUdM/7YXlUd/wLsqpIV2ODHEA2BXLzx9jZWQh8A/g3vB+RIjTscAFwN7AV8AU LD+yEc+PZDySZSrJXsDpWHn5JsT9Bqw+itIOKxs/w8rVUuB5rPytA/6dQZaeIZxc0+dW7Nj887G4 7wqsxLYxxBddbAEMxfJxc+B94K5YHO/CvrVzI2b3ATsBvwDeDWaHYeWjT/DHaRy0AjpibWlhUNWi /7BKajVwMvYB3gJ8Cny7FOH7rzQ/YABWSX4vYvYUMDPynMAawXVYhTUIq7AeB3oFOwcDJ8V+jwY3 PSJhVWPbcJ8GzsSUz2+Ap2JyPYRVqmdhjdG9we3lOcTpbuBLrJEdCJyDNWB9I3bmA3ekcBuP+wEh 3LnAc0Hm0UHme0J6TMUaifEhvhfF/Bwf/Lg32BsXnidF7Pw8uP1RxOxlYC1wX8TsuGCvU3jeCmug rwzpdDbwBqaw/yTibvsQZiXwZkiTszEl7H2gRbC3ObAKuCJF2rwOzIg8HxrCeQ/4Uwh/NDA9Ymcc Vo/8B7gt2Lk/xOH0HPIynh/JeJwcMTsEU9rmhThdFOK1jNrlugPwEaboXgX8Brg4xKtNsBMvwyeF slIFfCvP9Hkq5M0C4BpMmXk8xP3wiL1WkTy7EitjT4d4/jZi71rgk8jzlsGvtcCgiPkNUXv+a76/ 0gVkGvgCrOKdA+xZ7sj7r+B5nIuyMDBUXEPz8PdnWA/y1lhY1cCLycYpmJ8TZOgZMdskhZ9jQ6Xd MkvYnwPXZ7GTr7Lwakzmu4PMU2PuZwPvRZ5/EtzfHLN3RXB/QHhuF+ydHp7bYArJvcDHEXfXAksj zwJsFPO7DbAIuC1ilmxklxAaxmDeK8hxZCxuH8b83CO4/2V4TmBKwrtARYZ0Hhf8/0PMvBJ4KYdy lIuy8HKIb9uI2Y9D+o2LmN2JNax75FGOfx/kPymf9InIHnfbEhsduD9iNizYOzFi1iKUpRVA62DW J9jbJTz3xOrmh4F7Im5fAR7MNY7+a7q/ki0NVtWbVLWjqm6qql1VNdMQndN0ORYbrr0xF8si0h54 EOuNn5nCyq2qui7yPJbQYCUNVPWriH+bi8hWWM9+M2ykKxPLgX1EpEMu8ubInTGZXwx/74jZexHY TkSS3+mR2LTJ6Ji9q7GG/igAVV2GTR/sH97vhzV2VwLtRWSnYN4NSweCO1XVb8CmCkVkS2BjbDi9 c4p43KuqKyPPs4IcO0bMJgDbikh0/2w/bITgofC8BzZkeq2qVqUIJ84tsedZsTDrRChru2FKwYqk uar+B+vFHxnsCXA0MFlVX87R7wOx4fzrtfYcci7pk+SLqFtVXQu8RO24H4GNBNwbsbcOG3XbHFNY oSavkmWkW/Dr8fA/ItIWm+6YlUscnaZN89lH5DQUdgLeVNXqbBZFpAU2zCzAsaFyjKLAO7UMVFdh PcOOEX9+JCIPi8hybJ53KfD38LptFjHOxSrMD0XkRREZISI7ZJM9Cx/GnldkME9EZEz2hONxXowp NdtHjGdsn3IDAAAgAElEQVQRKn1MWfi3qlYCnwHdRKQCaxhrNQQiMkBEXsWGsT/FRg+OInU61ZJX VZeHf7eMGD+OrV/pF/wX4ETgHyGvwMqEAv9NEUacNar6aczs81iYdSWZfm+leDcPaCcimwLfxkZc cpEXEfkuNqozC5vaiJJL+iRZmML7eNy3Z8P1D0n5JbxHVZcEe8ky0i3INwv4joh0xMqN4MqCQ5mU hXzviRCR7iJSKSJrROQtERlQKlnrSz5xFZEDRKQ69lsnIluXUuZ8EJFuIjJZRD7CholzoW2O+XkV sA9wvKouqqN8bYFnsaHki7Dh1kOA84KVjN+Aqj6A9dyGYA3oH4F3Q970TlpL4/xbwIHJvMSGkgVb 1JiKdWnM44cL5LKF6Tms0t+BmoYgad4Nm9qp1RCISH8sD7cLsqzAhq9fIHU6rYu47R4WMgswLJmn QSm8B+gjIhtjC1G3xdZn1IV0aZQXInIB8Agm7w0i8jAW72yswhp3Af6Y7fsMu8EexIb4fxFXkvNM n1zLRzT8M4LyNzvYO0dEeoTXz2GKYytsQfGz2FqJL7Cy+kiw9+N0/jckknEVkRXh93wkrqnsN7r6 No6InB/kviaLvXq3oSVXFvK9JyJouFOxEyB3w1Y93y4ih5ZC3vpQxzsxFNgZW6ndHugQegENldbY vObgHO1/jFU+M8mQnyJyIjb/eraqPreBL8EallZRd62xxWcLglF3rOc1QFVvVNVpqjoT64nnhKou VtWbsZX+o7Eed7SC/hxbgR5nm/A3mZ/HYPm7MoXdXHgf+2bjcd46hB9drZ5UAg7FVt0nn5/Fhp67 YQ1fdJdDH6xRG4Y1HvtjCkNnMjdIHan5RhVTLqJ5OgHriffCFvktAWZEvHg3+L9r2pgXnm7YYlEF Lsfm/5PTO7uksP9DLC2S3+dKYBrZv88bsLUmfVR1aRo72dInH96ndvn4EFOMLwyyvwQ8IiKdsDLx PWwkI4GtJdsem55bidVX/6OR1LfUxLUzVn5nUhPXdDS2+nY9oeN5GpZPmex1pBBtaKkXSWAVyXWR Z8GG185NY/9y4LWY2URgWrkXfBQhrgdgvYc2pZCvCPGtJvsCx39iH+iwdPmJNRpVwPgMYSUXOL5E ZFEeNYvIeobnnsFet4idjbGFbOuA/TOEkUiVF9haAgV6h+f7MSUoKkcyXKVmdXxygeOxKeKyDugc Mx8RzL8VnpMLHMfG7F1OZIFjxPxDbPj5G8KCPUxxqMYagRkx+w8Cb8fMDgtx+ChilpwOOSsS/muR MvCnFHn6CrbFczkwOhaGYArDe0QWFqZI93HAyhTmI4B1OZTPtAscqVkU+mbIy+jCzV1DGk4L6dwG UzTWxvMsFl5yMe8pOciWNn0isr+WwnwctRfBDg0y/iJi1gIbRViBKfefBtl2CvLNAyojebko5MWX wB/iedmYfsm4pnnXaOtbbP3Jm9hI1FPANRnsFqQNLekJjlJzT8SlSTNVVRHJdE/ET7GtdlGms+Ei rwZFHeMKVnG+EoYGXwcuVtXniypsadkca8SuEZF9sN5NAjhURHqp6hSsAlTgORHpF3P/vKrOjzxv DDwpIvdjvb9BwCxVnZq0j/X8J4hI8lyP/uQ2lF8BLBSRBzHt/Qusp75nzP3t2DbE6UGOnUIYHwHf pSY/P8oQVtZzjFX1NRG5EzhNbPHhM9g0zcnAQ6r6TMzJLKzX+JrWLNibi40o7MyGB59NBY4VkX9g St2OWHqCNSrpyOUbnYBNK2k83PBdDMLOvnhFRMZhDdYPse2fR2QIu1BsQc0ow1jgBRH5G9bLHoKV ofHYGRivBPN1WBm9GWtwt8XKwb7YSMVN2LqGtSnK8UOq+mXkOW365Mmt2LbK8SKyJzbCdjxW5/wO G73YDJijqu+KyCfAD7ARELC8fAorN4qVoY9p4PVtHLFFwScQ4prJKo2zvh0DTFHVmSLyxyx2C9KG lvq450z3RKQa+gMbGkplv42IbKKRle4NjLrEdRH2of8b2ATbu/20iOytqq8US9ASEG1Y2wM3Y/vB T8J2R3yBpdWbwU47rAcUX/UO1iNKKguKVeT9sEONWmIV7bD1Aat+JiJHYdNBf8Eq/b9jQ5TZDixZ jX2Uh2FTCAlsceGgEIdkGDNE5CzsHIfR2AFNR2GNzhchnptg6x2EyOLLCLkoLwC/wnrhp2DnKXyC Hdx0SQq7s7ADdtavS1DVdSIyB+uR1Fq4pqrjRWQbrAwehu3XfxPrgX+dQt6kzNFvNGke/0bvxhri tzXFTqiQhgdiowRnYWn9Ltb4xcNNRa7pF7eXfL4WeE5V7xCR+Vh5+jM2evA0dhiSUvv7HIY1SCdj jdJH2OjDauA7mCL7IzY8NAks7T+IPGdMnyxxXG+uqmtE5ADgr0GuNtjUxNfY+QxVwDFqt/8m5TiO ml0x7bERjt5YHryIKfgNvb4FQER2xZSDVmwY1ziNsr4NU7S7Y52WXChMG1rioZMOWA9lnxTDJHPS uHkTOC9mdgSm1W+wf76h/OoS1zT+PI1ttSt7nHKQtZowNJ/BTqPMz7rEtQnk51hsOLpDffMUO/Dp a2JnJDSEX67xLGZ+FjN9sE7hjti6qVHYmogf1jUvG/Ivn7gWMz+LGL/vYh2EXSNm2aYhCpKneS1w zHe1aXCzfhUmNmxaTc3CryTbUHM8cJxP0thfqQ1by12GZUY+cU3FS8D3CyVUA6Cx5mehaBT5KSI3 YucKdNfsO1FyydOBWE+1rrsgikKe8UxFofKzaOmjqt+o6nuq+rKqXohNqQ1LY71Rf595xjUVDf37 7IJt3Z0rImtFZC229mKYiHwtkvJa1oLkab67IfJabZpmFWYCG0JN2kneE5FunmgOtc+4BxsizTQP VXbUzgRI3okB5BTXVOyODZc1FRplfhaQBp+foQE9GjhQVT/IZp8MeSoiB4rIEGyh3MM5+lcS6hDP VNQrP8uUPgls2D0VTe37zBTXVDT07/MJbDfZ7libuhs2jXIXsJuGYYMYhcnTAgyLZFptmmoV5nNY jzvlPRHY9rQ7I/Y7YnNPl2Nz/YOx4bpDyj0klEPaZLwTI0Vch2FzhTsB/4fNo67Fej1lj0+aOLYO BXZ3bNTod+F5uyaYn/nGtTHm503Yuo5uWO8j+WsVsXNprnmKDZGuwSq5vIf5G1g8C56fxU6fEIdu 2LqTXUMZ/QY4KE2ZbczfZ75xbXTfZ4YydE3kOefvM69w6iFgAlsx+yXp57+eITaXgo0qrCbNPRHY SviZMTf7Y730L7FTx35ZV7nLkJFp78SIxxXb9vc2tlp9KTYik3ZrX0P4UbMdcF3sd0dTy89849pI 8zNV/NZR+/6ERp+ndYlnI83P26nZBvkJdn7DQU0pL+sa18aYn2niPZPaykJR8lSCRzmTYrXpSar6 WBq7b2IV6eURsyOwqYnNtBHMgTmO4zhOc6cuWyf/hw29tsW23EwQkf01/faUvBG76OdwrEe+plD+ Oo7jOE4zoBU2/TBdN7xLpU7krSyo3Ur3Xnh8WUT2xuZ+BqWwXtdVmIdTv4NJHMdxHKe50w+7e6Te FOJQpmwra+Onr+WyCnMBwF133UWnTpmO9W78DB8+nNGjG9XhaHXC49m46dnzDBYtGkvNQZPDqTkA TunQYRBTp96c2nEjpqnmZ5zmEk9oHnGdN28e/fv3h5o7cupNXsqCiFwKPIqdPFaBaS0HYAoAInIZ sK2qDghObgbOFJHLgTuw7RvHEe6Fz8AagE6dOtG5c+d8RGx0tG3btsnHETyejZ3jjjuCMWOWUl2d PFalLbaDGhKJRzn++CObZLyban7GaS7xhOYVVwo4jZ/vOQtbA3di6xaewM5aOEztFj+wYyXXX/Oq qguwY28Pwc5THw78SlXj51Q7jtOAGTXqHDp1uoZE4lFqThdWEolH6dRpNCNHnl1O8RzHKTJ5jSyo 6q+zvB+YwuxZTKlwHKeRUlFRwZw5k7jooqt54IHJLFoEHToM5vjjt2HkyElUVFSUW0THcYpIqS+S chynkVJRUcF1113MgAHQpUtvpk4dS/MZzXWc5k2+0xBOgenbt2+5RSgJHs+mRvOIZ3PJz+YST2he cS0keR/KVApEpDNQWVlZ2ZwWojhOo2DuXOjSBSor8ZEFx2mAzJ07ly5dugB0UdW5hfDTRxYcx3Ec x8lIvldUXyAiL4nIShFZLCIPi8gPsrg5QESqY791IrJ1/UR3HMdxHKcU5Duy0A24AdgH2w7ZEpgh IptmcafAztjWyvbY7WpL8gzbcRzHcZwykO/WyVqHKYnIKcASbGvkc1mcL1XVlXlJ5ziO4zhO2anv moUtsFGDz7LYE+AVEflYRGaIyM/qGa7jOI7jOCWizsqCiAhwLfCcqr6Rweoi4HSgD3As8CHwtIjs XtewHcdxHMcpHfU5lOkm4EfAvpksqepbwFsRoxdEZCfs6OcBqV05juM4jtNQqJOyICI3YpdBdVPV RXXw4iWyKBlgt4O1bdu2llnfvn39UA3HcRzHASZOnMjEiRNrma1YsaLg4eR9KFNQFI4GDlDV9+oU qMgMYKWqHpfmvR/K5DgNFD+UyXEaNsU4lCnfK6pvws557Q2sEpFtwqsVqrom2LkU+E7ymmoRGQbM B/4LtAJ+AxwIHFqICDiO4ziOU1zynYY4A9v98HTMfCAwIfzfgcg11cDGwNXAtsBq4DXg4HAbpeM4 juM4DZx8z1nIunsifk21ql4JXJmnXI7jOI7jNBD8bgjHcRzHcTLiyoLjOI7jOBlxZcFxHMdxnIy4 suA4juM4TkaKfkV1cNddRCpFZI2IvCUifnKj4ziO4zQSin5FtYh0BKYCTwK7AdcBt4uIn7PQjMj3 8C/HcUqHf59ONkpxRfUg4D1VPTc8vyki+2F3Qzyel7ROo6KqqooLL7yKKVNms3Zta1q2XEWvXvsy atQ5VFRUlFs8x2nW+Pfp5EN9LpKC3K6o/inwRMxsOjC6nmE7DZiqqiq6du3DvHlnUV19MXZLuTJm zHRmzuzDnDmTvEJynDLh36eTL6W4oro9sDhmthhoIyKb1DV8p2Fz4YVXhYqoB1YRAQjV1T2YN284 F110dTnFc5xmjX+fTr7UZzdE8orqEwski9OEmDJlNtXVh6d8V13dg8mTZ5dYIsdxkvj36eRLKa6o /gTYJma2DXbr5FeZHPoV1Y0TVWXt2tbU9FjiCGvXboaqYgNUjuOUCv8+mxaluqI6b2UhdkX1Bzk4 mQMcETM7LJhnZPTo0X5FdSNERGjZchW2nCVVZaO0bLnKKyLHKQP+fTYtUnWgI1dUF4x8z1m4CegH nES4ojr8WkXsXCoid0ac3QzsKCKXi8guIjIYOA64pgDyOw2UXr32JZGYnvJdIvEYvXvvV2KJHMdJ 4t+nky/5rlk4A2iDXVH9ceR3QsROrSuqVXUBcBR2LsMr2JbJX6lqfIeE04QYNeocOnW6hkTiUawH A6AkEo/SqdNoRo48u5ziOU6zxr9PJ1/yUhZUNaGqLVL8JkTsDFTVg2LunlXVLqq6qarurKp/L1QE nIZJRUUFc+ZMYsiQF+nQYTAAHToMZsiQF31bluOUGf8+nXyRhnhyl4h0BiorKyt9zUITYO5c6NIF KivBs7Px4/nZtPD8bHpE1ix0UdW5hfDTL5JyHMdxHCcjriw4juM4jpMRVxYcx3Ecx8lI3sqCiHQT kcki8pGIVItI7yz2Dwj2or91IrJ13cV2HMdxHKdU1GVkoTW2BXIwNXtusqHAztg9Ee2BDqq6pA5h O47jOI5TYvI+wVFVHwMeg/WXSeXKUlVdmW94juM4juOUl1KtWRDgFRH5WERmiMjPShSu4ziO4zj1 pBTKwiLgdKAPcCzwIfC0iOxegrAdx3Ecx6kndbp1Mh9U9S3grYjRCyKyE3bs84Bih+84juM4Tv0o urKQhpeAfbNZ8iuqHcdxHCc9DfaK6gKxOzY9kRG/otpxHMdx0lOqK6rzVhZEpDXwfWouQt9RRHYD PlPVD0XkMmBbVR0Q7A8D5gP/BVoBvwEOBA4tgPyO4ziO4xSZuows7Ak8hZ2doMDVwfxO4FTsHIXt IvY3Dna2BVYDrwEHq+qzdZTZcRzHcZwSUpdzFp4hwy4KVR0Ye74SuDJ/0RzHcRzHaQj43RCO4ziO 42TElQXHcRzHcTLiyoLjOI7jOBlxZcFxHMdxnIy4suA4juM4TkbyVhZEpJuITBaRj0SkWkR65+Cm u4hUisgaEXlLRPyYZ8dxHMdpJNRlZKE18AowGDtnISMi0hGYCjwJ7AZcB9wuIn4ok+M4juM0AvJW FlT1MVX9k6o+Qs0pjpkYBLynqueq6puqOgZ4ELtIKiM9e57B0KEjqKqqyldMx3Ecx2lWVFVVMXTo CHr2PKPgfpdizcJPgSdiZtOBrtkcLlo0ljFjutK1ax9XGBzHcRwnDVVVVXTt2ocxY7qyaNHYgvtf CmWhPbA4ZrYYaCMim2R2KlRX92DevOFcdNHVma06juM4TjPlwguvYt68s6iu7kFug/750Sh2Q1RX 92Dy5NnlFsNxHMdxGiRTpsymuvrwovlfiiuqPwG2iZltA6xU1a8yOx0OtDVPPvkPvXv3Tnkdp+M4 juM0RyZOnMjEiRP55JPXgaOD6YqCh1MKZWEOcETM7LBgnoXRQGdAad/+UCZPnlxw4RzHcRynsZLs QO+wwyEsWJDcdzAX6FLQcOpyzkJrEdlNRHYPRjuG5+3C+8tE5M6Ik5uDnctFZBcRGQwcB1yTs5CJ x+jde798RXUcx3GcZkGvXvuSSEwvmv91WbOwJ/AyUImds3A1psb8ObxvD2yXtKyqC4CjgEOw8xmG A79S1fgOiRQoicSjdOo0mpEjz66DqI7jOI7T9Bk16hw6dbqGROJRcjgCKW/ynoZQ1WfIoGSo6sAU Zs9ShzGRdu0u46STdmXkyElUVFTk69xxHMdxmgUVFRXMmTOJiy66mnvueZ1lywrrfynWLNSZa6/9 A/36dS63GI7jOI7T4KmoqOC66y5m773n0r//pIL63Si2TjqO4ziOUz5cWXAcx3EcJyOuLDiO4ziO k5E6KQsicqaIzBeRL0XkBRHZK4PdA8JV1tHfOhHZuu5iO47jOI5TKupyzsIvsO2SI4A9gFeB6SLS LoMzBXbGtlW2Bzqo6pL8xXUcx3Ecp9TUZWRhOHCLqk5Q1f8BZwCrgVOzuFuqqkuSvzqE6ziO4zhO GchLWRCRlth5CU8mzVRVsSuoM105LcArIvKxiMwQkZ/VRVjHcRzHcUpPviML7YAWpL5yun0aN4uA 04E+wLHAh8DTkeOiHcdxHMdpwBT9UCZVfQt4K2L0gojshE1nDCh2+I7jOI7j1I98lYVlwDpSXzn9 SR7+vATsm83S1VcP57772tYy8yuqHcdxHMdIXlEdZeHCMl9RraprRaQSOBiYDCAiEp6vz8Or3bHp iYycffZoP+7ZcRzHcdKQqgN9991z6d+/sFdU12Ua4hpgfFAaXsKmEzYDxoNdUQ1sq6oDwvMwYD7w X6AV8BvgQODQ+grvOI7jOE7xqcutk/eHMxUuwaYfXgEOV9WlwUqtK6qBjbFzGbbFtli+BhwcbqJ0 HMdxHKeBU6cFjqp6E3BTmncDY89XAlfWJRzHcRzHccqP3w3hOI7jOE5GXFlwHMdxHCcjriw4juM4 jpMRVxYcx3Ecx8lI0a+oDva7i0iliKwRkbdExE9uDMQP02i6NI94en42LTw/mx7NJ08LS9GvqBaR jsBU7PKp3YDrgNtFxM9ZoDkV3OYRT8/PpoXnZ9Oj+eRpYSnFFdWDgPdU9VxVfVNVxwAPBn8cx3Ec x2nglOKK6p+G91GmZ7DvNCC6d+/OT37yk3KL4eTIlVdeyU477cRGG21E587FPCp9CldcMbQgPiUS CS655JKC+NVQ6dixI7179y63GLXo3r07Bx10UNH879ixI6eeWtOHfOaZZ0gkEjz7rJ/H1xgpxRXV 7dPYbyMim+QZvlNi7OoPpzEwY8YMzjvvPLp168b48eO59NJLyy1STohIgy5nc+bM4c9//jMrV66s sx8NMX7FlimRSGwQRkNMByc3in5FdR1pBfDx7GnMZV65ZSkqKxYuZO7dd5dbjLRULV7Ml198US8Z 58+H1ixk/rS7aeLZWdb8nHjffSQSCc48+GBaiMCnnxZFlvnz7e/K998siP/P33EHLRKJBvkdrFi4 kPtvvJHrJ05kzy22oEO7lEuzsvL1qlUN7luvWrwYEWH+tLuL8n1OHDGCRCRfK7C8bvnhh2VNh4aW D8Xg49nzk/+2KpSfYrMIOVq2aYjVQB9VnRwxHw+0VdVjUrh5BqhU1bMiZqcAo1V1yzThnAQ07dx0 HMdxnOLST1XvKYRHpbiieg5wRMzssGCejulAP2ABsCYfGZ282BQYDHTHppi+AN7Cdqy8FezcArQF Toy4+ym2I+Yp4I+AYlNapwK9gK2BZcBjwf03EbdTgbeB+4AzgR2BG4CDsM5H7btWjYeAj4Dfhuc2 wO+B/UPYTwH3YEu6RwD/jLjdCzgd+GGQozKEtyC8/z5wL7bgdlYw+yFwF/A/oH/ErxuCjKeE5/2B Y4P9tsAS7Lu4I8iV5NYg8/nABcCuwMog74SIvY2AXwP7YZextQgyjA1yZ+LfkTAl/H9xcDeVDdMl 6eYW4LbwfDp2K+zPgxzdg18zgcuAr2Nu76P2vS+/whY8XwncH8xaYuXicGxKsgq7TG408HEaOdpj abxX+H8N8C/gWuCTLOkA8EvsZtvtsZ7VfCxPZkbstCe3dDkt/DSkBeH/XkGWXMv9FOAdai/s7ol9 P3dTU3+2whaFHwJ8C0ujh7HyGJfxPuA/IfzvAecCyQUBJ2H5+F3su346hPFFxI9bQlzOCM/5lr++ wNEh7NXYuMSY4AYsff8F/Dk8d8a+hd8AL6fwzykcrYCOWFtaGFQ1rx9wAlYwTsYqyVuAT4Fvh/eX AXdG7HfEKojLgV2wxulr4JB8w/ZfYX9YJfUlcAUwEDgH+AfQN2LnKeC1yHPP4OYOwshUMB8PVGMN 7xnAuPA8KRbmfEwRWQaMwiqO/bGGZh3wo5j9vYI/J4VnAZ4PZeharGJ9DKt81gEnR9weEuzNA84G LsIa9GXA9yL+fQZcEXE3DKvo1wKbR+wtB/4asfcQ1uCfhTUo9wZZL4/F4SlgIaagXIM1yo8HeQ+P 2Nsq2Lsy+Hc28AbWWP4kS16eBDwTvs2+4bkj1mBWR9Ml4qYa+FPkeUQwqwQeCHLeEuS8LIXb6yPP I0OanRoxS2CLm9dhjd0grEF7HOiVQY4+wNwgz6+Av2B1zHtAqxzK9QeYYjco5OWcIMMRETs5pQvw Y+w7WYcpqyeF36Z1KPeTI8+nBT//HLP3ZEjHm4P8/wj+XZ1Cxv9iCstFIeyfhHe3AV9hjfxvgEux OvgFoEWsXM6sS/mLxHNKSJfh2PcwOBbnOyLPB4Q471/uus9/+f/q5sga/AVYozEH2DNWiGbG7O+P VUBfYr3KX5Y74v5TgM+JVPhp7KxXFrBe9FfA2Jidn4SK4+aY+RWhcjggYjY/mB0Ss9sGa+gujZlf h/XCN43IUA0MidlLNkpRZeFlYBE2RZY0+3GojMdFzKYAcyLPD2KN5dfAYcFsjxBuz4i9TVKk19hQ MbeMpeE6gsITzFpivcb7I2YCbJQiXRYBt+WQn+OAlTGzuigLt8bsTQKWpHB7ffj/Kkyx6h+zMzDY G5pF7rgcqdJ172CvXw7psEnsuQU2mvF4HdPl7JB/36tnuZ8c/h8a3l8Qc3d08O/8mPn9oczuEJNx LbBLzO5+4d0vYuaHBvMTY+UyqizkVP6wUZtq4Jos+eDKQhP61ekER1W9SVU7quqmqtpVVf8deTdQ VQ+K2X9WVbsE+zur6t/rEq5TcJYD+4hIh2wWReRErPc0VlUHxV4fiQ1njo6ZX41VQEfFzOeraq3t tKq6EniEyDSEiCSwkayHVfXLYHw41ojfHvNzDDXDxIhIe+wQsHGquiISzn+wnu2REbezgM4isml4 3g+Yhh041i2YdcMqyOcifn0VCW9zEdkqvN8MG3WL8oVG5g5VdS3wEjYNkzRTVf0m+CcisiWwMTbk XMx9kFEUG02IMgvYSkQ2j5mLiNyI9Sz7qWp8qPxYYClwY14C1E7XjUTkW9iownJySIeY+y2ALUMc Cp2G+ZZ7ROT32IjY71X1stjrIzCl4IYU/iXYcDr3aVV9M2Z2HJZOT4rIVskfpjh/gTX0Kcmj/PXB voWmvd/VqYXfDdG8ORebP/9QRF4UkREiskMKeztiw8gPqurvUrxP9tLeiRqq6mKs4to+Zn9+Gnkm AN8Tkf3C86HYPHBUudweWKSq8bUs78Sek2G+xYbMA9pFlINZWE+/q4j8APh2MHuWGmVhP+ANVV2e 9EREfiQiD4vIcmz0Y2lE1raxMBemkONzrCFbj4gMEJFXsaHfT7Fpk6NS+FdMPog9fx7+xhckD8CG yn+rqvezITsBb6pqdT6Bi0grEblERD7ARrKWYenQlhzSQUR6isgcEfkSm2JaEuQsdBrmW+67Y9Ox f1XVa9L497GqroqZz4u8j7IghR87A1tgcV4a+S0BWmPfU1pyLH87BjmXp/DCaaK4stCMUdUHsA9/ CLaA8BzgvyJyeMzqx8Bs4EgR6ZLJyxyD/jKN+XSsckouKuyPzck+mcZ+ofg3VjnujykHS1T1HUxh 2FtENg7myQWQiEhbTJn4MTZn3BNbI3FesBL/ttalCTs6GtIfm0p4m5pFgYdgC/Pq+q2mzJMwapOO rLIGnsPOTBkSeqGF4kZsIei9wPGY0ngI1vBnTAcR6YaNUK3GFIQjgtt7YvLXJV3SkWu5fx1b/PfL cAx+fUn1HSWwPDkYi3f0dyjwp3SeFan8OU2EshSA5nQRVT5xFZEDRKQ69lsnIhl7A/VBVRer6s2q eleXvigAABhkSURBVCywA9abuDBmbQ3WGL4DPCYinSIyd8PmIjcCvhGR3pF3W2O9nPdj/m2VKj9D D/Qe4LgwfHw0cI+qRivj94EOIhLfP7xz7DkZ5i4pov1DYFlyaiMyJZBUFpJKwSxgE2xnzjbAEhGZ LCIfUTMqMEBVb1TVaao6E+tRJuN/gIhUYz3KH+eQn32Ad1X1OFW9W1UfD37WZ690clRgi5h5vJe6 XmzgcRFZKSKLReRhLO6peAfb2fQdYLaIvBzL03eBXUSkRZ4y9wHGqx0R/5CqPokpq/E4pOJYrBE9 XFXHq+r0kIZxRWdgMLs1Gc8wqpQqXZLlb5/ot4ktAN0I2CdqOUO5X4Y1vt9g0wTxg+zeB7YVkdYx 806R99l4F1uo+HyI9w+waZKHw+8WEemRxm2f4P5GbNHuFGyh5fdShLFt+EYbDCJyhoi8KiIrwu/5 DHEtS31baETk/CB3qpGqqL16t6ElVxakGV1ElW9cA4o1fO3Dr4OqLimCbAkRaVMrYNVl2CjCBidr qmoV1tNYAjwRma5ojfWwU/Wuzg7m0a1pyco1XX7+HdsydkvwO37exnRsHvU3kbgItg1zvQyq+gnw CjAgGk8R2RVr4OLb5WYFubqH/1HVT7Ge4HnB77eDn4Op2Uq3/hsKIxCDY/4qtgr9DbLn5wY9ehHZ h3ocjR7ybRmmCEWplV7RILHV9PtgDVtLbJtqOv9fx3YsdMLybU9CnmJp921s5Cof1rFh3TQUW6iY i1slsi081CFHx+ztg00dPUNNPGdguyfi6ZKcFtic2t/nQeH55Jj9VOUeAFX9OIS3KaaURUdkpgW5 4+k1HJvueHSD2G7I/cGP5AjCh1j57YztLJoNPBJV+COsC26j9e0jWHw3jdibhOXPiBzkKSXRuHbB RkTSxTVJSerbYhA6nqdh7Uomex0pRBta6hWVWMV5XeRZsPncc9PYv5zI1r1gNhGYVmrZSxDX5Grh NiWQrS22an8c8Dtsf/V9IfxhEXtPUXvr5LbYYrP3gG0j5uOwD+9ZbPh3PFbBPRgLdzmwIlN+YivX q4HXU8idCOn6NbZvfDC2dbIyyP7LiN2DsTnvN7AK/I/YEO1SYPuYv4eFMNcBu0fMxwbzd2P2q7HG Zj5WmQ8PMswNfuwfyc9n42U4kmbvRZ5PCf7+A1OGLsOG3l+L2suQpxvshgjmlwZ/b8N6w3djIymp dkOsA74VMWsXSZfvxeKf3A1xOdbb/BKrlDZK5ilWYa/DRowGYYrHY2TeOjk+5O/okA53YL3qJURW 16dJg+RK/WdCXP+ETWW9DKzLkC5nYeX3jRTy7BnMng9/T6Fmd864EL97yVzu1++GCM+7Ykrcv4CK SP2QauvkOuCqFOUv5U4mrMyuw5SVYdg3ci1W9xyLjR4OZMPdEKeENFhB7fK3HFgdC+POSBi/DeE8 SPatk9WUcDdEMq5p3pWsvi1CvDYH3sQU1qfIsDOFArWhpY5gS2y7T++Y+XhsxXsqN8/EEyIU6s/L nWFFiGvyY3oP6+HPAH5WRPn+ijVuyQV6c4HTYvaeAl6Nme0YKp7XCQ0L1ohXB7nXYIuv/kJkC2Gw 9yXwTqb8xNZOVJNeqfoWNgKxPFRm44B9g5vjY3YPxBrrL7Ah+YeJbTcL9jYP+fU5tc+POClUKONi 9quDnLOD3x9ijc8h1FYWqkOc18bzM8gdV0LOC/m/GltLcUQqe2nSZRwxRSyYt8IOw0lW/PdgQ9Xr gD9G7KVSFr5PamVhHUERJnyj2MFEXwX/TwlpuQm2av6dUC4+whrWjrG0jDbObbCRicVYw/VPrPf3 HvC3HNLhFGxUYzV2FsHJybhlSJeVQY6u8XQJdv8Q5NHwWxzyc19szUoyfgtIXe7fAx6Jme0V8uMp wnZPbCfNVaE8rQnxGJ4ijuvTP00a/ApTCL8IYbyClc/TQ3n8YQj3yRRyLo+Vv1kp0k4wBeu/wb9P MEUxqminUhZKsnUSq49OTMY1jZ2S1bdFiN+dBAWS7MpCQdrQUkewQ8icfWLmlxPZ5x579yZwXszs iFDoNtiP3VB+dYzrDzCNfg/slMS/YT2s3Ystb4HiXE1MOapLflJzKNJ38wj758GPrg0oro09PyU0 AM/UN08zuE0qmX9oBPFslPmJjWJUYQrrZ0CPYuRlCr8+IHZmRwOLa2PNzxOxqYeW4TmbslCQPC36 RVIiMoLac1uC9SxSbdFr1qjqW9Te6veCiOyEDXEPKI9UZeFUbA95qu2GiEgrjWydDCvYf0vN6EiD oAnk503Aj7Dec7HYNvxdVsQwspFTPBtxfv4Pm6tui53DMEFE9lfV/2V2VndEZCNs9KrU+ZpzXBtj forId7EppUPUFmaXjFLdOvk6Nn/cEpt7jK+234b0Z75/woarsbfB5ma/SmG/obAM09xSyZ7L+fZJ XqK4lXWpSZufwLEiciDWO+gddxjhBrEzEuZgw9x9sJ7BBQ28TEAjyU+xw5aOBLqp/n97dxwjV3Xd cfx7NrUwuIsj1YAtQbETmrIJEa43MWzBQKkBi+Kl1BFlYje0UZS61DIs0ARiKtMKQ6JibCdZo0go AWR3RCUUYVPAQDdphTGg7gJpxbqQYhMMNqEhNVMHE8Oe/nFn493NzNud2ffuzJv9faSRvLPvzb1H Z8dz5r777vX94xxe13vUzD5HuEQwRPh2FF2NcVbS9Pn0sNDSq+UfnzezhYTRu7GLq0EK/9+a2cWE xdWmk/1tz6PUGGslzZ7PTsKk4YHyxG4IE3/PM7NVhJECH3NOKp+hsYqFD9z9bQALG1GdRbiumdVG VA3n9W26Vcl8wnKrraJaPp8nTLz7ObDO3X9tJvkIfYTrpX9E+A/px4Tln+9Ov7upa/p8lj9ALycs Vzx2gaZK6n2PfoNQKHzR3V+puaOTVEeclTR9Pitoo8IdT2Vp/H97E2FBrq95uO21kZJiraTZ8/kk YW2Xke4lLNz19QqFAqT1GRrh+spawjWkNwgzpv+NMOmk5TeiovZNt64lfKP+OPApwnDTEeCCRseS EOMMwrDffMJ//NeVfz6lBfNZa6x5zOdmQsG2iPDtY/gxfcQxt+c9p3XGmcd83l6O8VTCiN0dhPlA F1b5m81dLicRa+7yWSXuUXMWsnp/xgjkEsIw8RmEFcR2EoboX2MKbERFDZtuEW4re4VwX/fbhCG8 pt50haMzij8c8/huq+Wz1lhzms9K8Y3doCv3Oa0nzpzm8x7CsPzwHQuPU/7wbJVc1htrHvNZJe4+ RhcLmeTUyi8UjYVlcl8j3A70vSrH/BahyNhLuH1IREREJmY6YURhh4fF5SYt1pyFX3H3g2b2MuH+ 7Wou4ddX7hMREZGJW055fuBkRS8WLGxzexphh8Fq9gJs2bKFjo6klTrzr6enhw0bxu5w23oUZ2u5 7rrr2LhxY6O7kbmpks+pEidMjVgHBwdZsWIFVN6ZtC4x1ln4B8KGJK8RNpz5O8IkkmLCaYcBOjo6 WLAg7S3om8vMmTNbPkZQnK2gVCqxZs2dbN++kwMHXmbZsq+wdOk5rFt3I+3t7Y3uXiZaOZ8jTZU4 YWrFSoqX8WNsJHUyYRhkN2ExpreBs9O6jiIi2SuVSnR1LaO3t4u9e5/g8OGF7N37BL29XXR1LaNU KjW6iyKSocyLBXcvuPvJ7n6su/+2u3/e3fdk3a6IpGfNmjsZHLyeoaElHN3t2RgaWsLgYA+33LK+ kd0TkYxF36JaRPJn+/adDA1dUvF3Q0NL2LZtZ+QeiUhMKhYarFAoNLoLUSjO/HJ3jhyZwdERBQir +Q4zjhw5jti3YcfQivmsZKrECVMr1jRFX2dhIsxsAdDf398/lSaiiDStefMWs3fvE4wuGIY5c+de xJ49T8bulohUMDAwQGdnJ0Cnu6eyuZ5GFkRkXEuXnkNb246Kv2tre4zu7nMj90hEYlKxICLjWrfu Rjo67qKt7VFgeDTSaWt7lI6ODdx22w2N7J6IZEzFgoiMq729nV27HmTVqmeZM+caAObMuYZVq55l 164HW3adBREJoq/gKCL51N7ezqZNt3L11dDZCQ8/fDeaUiQyNWhkQURERBJFLxbM7CYzGzKzu2K3 LSIiIrWLWiyY2WeBLwMvxmxXGq8Zb9EVkUDvTxlPtGKhvNvkFuBLwP/Galcap1QqsXr1WubNW8wp p/wx8+YtZvXqtdpHQKQJ6P0ptYg5wbEX2O7ufWb2txHblQYY3ngo7CdwK2ExH6e3dwd9fcs0g16k gfT+lFpFGVkws6uA+cDNMdqTxtPGQyLNS+9PqVXmxYKZnQxsBJa7+5Gs25PmoI2HRJqX3p9SqxiX ITqBE4ABMxsuYT8CnGdmq4BjvMrsmp6eHmbOnDnquUKhoI1AmlzljYdGOrrx0NE/CRGJQe/P1lIs FikWi6OeO3jwYOrtxCgWngQ+Pea5e4FB4OvVCgWADRs2aCOpHDIzpk07RFgWuPLGQ9OmHdJ/RCIN oPdna6n0BXrERlKpyfwyhLsfcveXRj6AQ8DP3H0w6/alMbTxkEjz0vtTatWoFRx1U2+L08ZDIs1L 70+pVUOKBXe/0N2vb0TbEoc2HhJpXnp/Sq2sGVfuMrMFQH9/f7/mLLSAgYGw8VB/P9p4qAUon61F +Ww9I+YsdLr7QBqvqY2kREREJJGKBREREUmkYkFEREQSqVgQERGRRCoWREREJJGKBREREUkUYyOp lWb2opkdLD+eNrMlWbcrIiIi6YgxsvA68FVgAWFTqT7gITPriNC2iIiITFKMvSH+2d0fc/f/dvcf u/stwP8BZ4937mWXrWT16rWUSqWsuykiIpJrpVKJ1avXctllK1N/7ahzFsyszcyuAo4Ddo13/P79 d9Pb20VX1zIVDCIiIlWUSiW6upbR29vF/v13p/76UYoFMzvDzErA+8Bm4Ap33z2BMxkaWsLgYA+3 3LI+416KiIjk05o1dzI4eD1DQ0uovPX45MQaWdgNnAksBO4G7jez0yd68tDQErZt25lV30RERHJt +/adDA1dktnr/0ZmrzyCu38AvFr+8XkzWwhcC/xV8pk9wEwADhz4D7q7uykUChQKhew6KyIikhPF YpFisciBA/8JXF5+9mDq7UQpFipoA44Z/7ANhJsonNmzL2Lbtm0Zd0tERCQ/hr9Az5u3mL17HyJc ghgg3HyYnhjrLNxuZovM7NTy3IU7gPOBLRN9jba2x+juPje7ToqIiOTY0qXn0Na2I7PXjzGycCJw HzCHMDbyI+Bid+8b/1Snre1ROjo2cNttD2baSRERkbxat+5G+vqWMTjoDA2dmPrrx1hn4Uvu/jF3 P9bdZ7v7BAsFmDXrDlatepZdux6kvb09666KiIjkUnt7O7t2PciqVc8ya9Ydqb9+o+YsTMjGjV9j +fIFje6GiIhI02tvb2fTpltZuHCAFSvSHY3XRlIiIiKSSMWCiIiIJFKxICIiIolULIiIiEgiFQsi IiKSSMWCiIiIJIqxguPNZvacmb1rZm+Z2ffN7BNZtysiIiLpiDGysAj4FnAWsBiYBjxuZsdGaFtE REQmKfNFmdz90pE/m9mfAz8l7HLxVNbti4iIyOQ0Ys7CRwEH3mlA2yIiIlKjqMWCmRmwEXjK3V+K 2baIiIjUJ/beEJuBTwLnRG5XRERE6hStWDCzbwOXAovcff9Ezlm/vocHHpg56rlCoUChUMighyIi IvlSLBYpFoujntu372Dq7UQpFsqFwuXA+e7+k4med8MNG7TrpIiISBWVvkBv3TrAihWdqbaTebFg ZpuBAtANHDKzk8q/Oujuh7NuX0RERCYnxgTHlcDxwA+BN0c8rozQtoiIiExSjHUWtKS0iIhIjumD XERERBKpWBAREZFEKhZEREQkkYoFERERSaRiQURERBKpWBAREZFEKhZEREQkUZRiwcwWmdk2M3vD zIbMrDtGuyIiIjJ5sUYWZgAvANcAHqlNERERSUGUjaTc/THgMQAzsxhtioiISDo0Z0FEREQSqVgQ ERGRRCoWREREJFGUOQv1Wr++hwcemDnquUKhQKFQaFCPREREmkexWKRYLI56bt++g6m309TFwg03 bGD58gWN7oaIiEhTqvQFeuvWAVas6Ey1nSjFgpnNAE4Dhu+E+JiZnQm84+6vx+iDiIiI1CfWyMJn gB8Q1lhwYH35+fuAL0bqg4iIiNQh1joL/4omU4qIiOSSPsBFREQkkYoFERERSaRiQURERBKpWBAR EZFEKhZEREQkkYoFERERSaRiQURERBJFKxbM7K/NbI+ZvWdmz5jZZ2O13czGrunduqZGnMpna1E+ W8/UyWm6ohQLZvanhFUb1wK/B7wI7DCzWTHab2ZT5w93asSpfLYW5bP1TJ2cpivWyEIP8B13v9/d dwMrgV+gpZ5FRESaXubFgplNAzqBfxl+zt0deBLoyrp9ERERmZwYIwuzgI8Ab415/i1gdoT2RURE ZBJi7TpZq+kAb+58hAEGG92XTB3ct4+BrVsb3Y1M7dkDM9jHnke20uLpVD5bjPLZeqZCTt/cuWf4 n9PTek0LVwSyU74M8QtgmbtvG/H8vcBMd7+iwjmfB1o7myIiItla7u7/mMYLZT6y4O5HzKwf+ENg G4CZWfnnb1Y5bQewHNgLHM66jyIiIi1kOjCX8FmaisxHFgDM7ErgXsJdEM8R7o74HHC6u7+deQdE RESkblHmLLj7P5XXVPh74CTgBeASFQoiIiLNL8rIgoiIiOSX9oYQERGRRCoWREREJFFDioVaN5Uy swvMrN/MDpvZy2Z2day+TlYtsZrZ+WY2NObxoZmdGLPPtTCzRWa2zczeKPe3ewLn5DKftcaa03ze bGbPmdm7ZvaWmX3fzD4xgfNyldN64sxpPlea2YtmdrD8eNrMloxzTq5yOazWWPOYz7HM7KZyv+8a 57hJ5zR6sVDrplJmNhd4mLBc9JnAJuAeM7soRn8no84NtBz4HcLqlrOBOe7+06z7OgkzCBNWryH0 PVGe80mNsZblLZ+LgG8BZwGLgWnA42Z2bLUTcprTmuMsy1s+Xwe+CiwgLLvfBzxkZh2VDs5pLofV FGtZ3vL5K+Uvnl8mfK4kHTeXNHLq7lEfwDPAphE/G7AP+EqV478B/GjMc0Xgkdh9jxDr+cCHwPGN 7nud8Q4B3eMck9t81hFrrvNZjmFWOdZzWzmnE4wz9/ksx/Ez4C9aNZc1xJrbfAK/CfwXcCHwA+Cu hGNTyWnUkYU6N5U6u/z7kXYkHN8U6owVQkHxgpm9aWaPm9nvZ9vT6HKZz0nIez4/Svj29U7CMa2Q 04nECTnOp5m1mdlVwHHAriqHtUIuJxor5DefvcB2d++bwLGp5DT2ZYh6NpWaXeX4483smHS7l6p6 Yt0P/CWwDPgTwrDaD81sfladbIC85rMeuc6nmRmwEXjK3V9KODTXOa0hzlzm08zOMLMS8D6wGbjC 3XdXOTzvuawl1rzm8ypgPnDzBE9JJafNupHUlOTuLwMvj3jqGTP7OGHFy1xMMpKjWiCfm4FPAuc0 uiMZm1CcOc7nbsK16pmElXPvN7PzEj5E82zCseYxn2Z2MqGwXezuR2K2HXtk4X8I14hOGvP8ScCB KuccqHL8u+7+frrdS1U9sVbyHHBaWp1qAnnNZ1pykU8z+zZwKXCBu+8f5/Dc5rTGOCtp+ny6+wfu /qq7P+/uawgT4q6tcnhucwk1x1pJs+ezEzgBGDCzI2Z2hDD34loz+2V5lGysVHIatVgoV0LDm0oB ozaVerrKabtGHl92McnXoRquzlgrmU8YLmsVucxnipo+n+UP0MuBP3D3n0zglFzmtI44K2n6fFbQ BlQbfs5lLhMkxVpJs+fzSeDThH6eWX78O7AFOLM8L26sdHLagFmcVxK2rP4CcDrwHcKM1RPKv78D uG/E8XOBEmFG5+8Sblv7JWEYpuGzUlOO9VqgG/g48CnCcNMRwreehsdTJcYZ5T/Y+YTZ5NeVfz6l BfNZa6x5zOdm4OeEWwtPGvGYPuKY2/Oe0zrjzGM+by/HeCpwRvlv9APgwip/s7nL5SRizV0+q8Q9 6m6IrN6fjQruGsL20+8RqpvPjPjd94C+McefR/iW/h7wCvBnjU5QFrECf1OO7xDwNuFOivMaHcM4 8Z1P+OD8cMzju62Wz1pjzWk+K8X3IfCFEcfkPqf1xJnTfN4DvFrOywHgccofnq2Sy3pjzWM+q8Td x+hiIZOcaiMpERERSaS9IURERCSRigURERFJpGJBREREEqlYEBERkUQqFkRERCSRigURERFJpGJB REREEqlYEBERkUQqFkRERCSRigURERFJpGJBREREEqlYEBERkUT/D4nTcxsTHOPjAAAAAElFTkSu QmCC " >

Zadanie: estymacja parametrów procesu AR<a class="anchor-link" href="#Zadanie:-estymacja-parametrów-procesu-AR">¶</a>

  • Wygeneruj 2000 próbek sygnału z modelu AR o parametrach $a = [0.9, -0.6]$, $\sigma^2=4$
  • Oblicz funkcję autokorelacji tego sygnału wraz zkorektą na liczbę sumowanych wyrazów
  • Oblicz parametry zgodnie ze wzorami z poprzedniego paragrafu dla modelu rzędu 2. (wypisz konkretną postać wzorów analitycznie a następnie zaimplementuje je) wskazówka: R[0]=ak[N-1]
  • Wypisz parametry prawdziwe i estymowane.
  • Sprawdź jak wpływa długość sygnału na dokładność estymaty (uruchom program kilka razy dla każdej z badanych długości sygnału)
In [9]:
<span></span><span class="c1">#wspolczynniki modelu AR </span>
<span class="n">a</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">array</span><span class="p">([</span><span class="mf">0.9</span><span class="p">,</span> <span class="o">-</span><span class="mf">0.6</span><span class="p">])</span>
<span class="n">sigma</span><span class="o">=</span><span class="mi">2</span>
<span class="n">N</span><span class="o">=</span><span class="mi">200</span>
<span class="n">x</span><span class="o">=</span><span class="n">np</span><span class="o">.</span><span class="n">zeros</span><span class="p">(</span><span class="n">N</span><span class="p">);</span>

<span class="c1">#generujemy realizacje procesu</span>
<span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="mi">2</span><span class="p">,</span><span class="n">N</span><span class="p">):</span>
    <span class="n">x</span><span class="p">[</span><span class="n">i</span><span class="p">]</span> <span class="o">=</span> <span class="n">a</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span><span class="o">*</span><span class="n">x</span><span class="p">[</span><span class="n">i</span><span class="o">-</span><span class="mi">1</span><span class="p">]</span> <span class="o">+</span> <span class="n">a</span><span class="p">[</span><span class="mi">1</span><span class="p">]</span><span class="o">*</span><span class="n">x</span><span class="p">[</span><span class="n">i</span><span class="o">-</span><span class="mi">2</span><span class="p">]</span> <span class="o">+</span> <span class="n">sigma</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">random</span><span class="o">.</span><span class="n">randn</span><span class="p">()</span>

<span class="n">py</span><span class="o">.</span><span class="n">subplot</span><span class="p">(</span><span class="mi">2</span><span class="p">,</span><span class="mi">1</span><span class="p">,</span><span class="mi">1</span><span class="p">)</span>
<span class="n">py</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">x</span><span class="p">)</span>
<span class="n">py</span><span class="o">.</span><span class="n">xlabel</span><span class="p">(</span><span class="s1">'numer próbki'</span><span class="p">)</span>
<span class="n">py</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s1">'wygenerowany sygnal'</span><span class="p">)</span>

<span class="n">py</span><span class="o">.</span><span class="n">subplot</span><span class="p">(</span><span class="mi">2</span><span class="p">,</span><span class="mi">1</span><span class="p">,</span><span class="mi">2</span><span class="p">)</span>
<span class="n">ak</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">correlate</span><span class="p">(</span><span class="n">x</span><span class="p">,</span><span class="n">x</span><span class="p">,</span><span class="n">mode</span><span class="o">=</span><span class="s1">'full'</span><span class="p">)</span>
<span class="c1"># ak nieobciążona:</span>
<span class="n">norm_ak</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">hstack</span><span class="p">((</span><span class="n">np</span><span class="o">.</span><span class="n">arange</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span><span class="n">N</span><span class="o">+</span><span class="mi">1</span><span class="p">,</span><span class="mi">1</span><span class="p">),</span><span class="n">np</span><span class="o">.</span><span class="n">arange</span><span class="p">(</span><span class="n">N</span><span class="o">-</span><span class="mi">1</span><span class="p">,</span><span class="mi">0</span><span class="p">,</span><span class="o">-</span><span class="mi">1</span><span class="p">)))</span>
<span class="n">ak</span> <span class="o">/=</span> <span class="n">norm_ak</span>
<span class="n">m</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">hstack</span><span class="p">((</span><span class="n">np</span><span class="o">.</span><span class="n">arange</span><span class="p">(</span><span class="o">-</span><span class="n">N</span><span class="o">+</span><span class="mi">1</span><span class="p">,</span><span class="mi">0</span><span class="p">,</span><span class="mi">1</span><span class="p">),</span><span class="n">np</span><span class="o">.</span><span class="n">arange</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span><span class="n">N</span><span class="p">,</span><span class="mi">1</span><span class="p">)))</span>
<span class="n">py</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">m</span><span class="p">,</span> <span class="n">ak</span><span class="p">)</span>
<span class="n">py</span><span class="o">.</span><span class="n">xlabel</span><span class="p">(</span><span class="s1">'przesunięcie m'</span><span class="p">)</span>
<span class="n">py</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s1">'funkcja autokorelacij sygnalu x'</span><span class="p">)</span>

<span class="n">R</span><span class="o">=</span><span class="n">ak</span><span class="p">[</span><span class="n">N</span><span class="o">-</span><span class="mi">1</span><span class="p">:]</span>
<span class="n">r0</span><span class="o">=</span><span class="n">R</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span>
<span class="n">r1</span><span class="o">=</span><span class="n">R</span><span class="p">[</span><span class="mi">1</span><span class="p">]</span>
<span class="n">r2</span><span class="o">=</span><span class="n">R</span><span class="p">[</span><span class="mi">2</span><span class="p">]</span>

<span class="c1"># estymujemy wspolczynniki modelu na podstawie funkncji autokorelacji</span>

<span class="n">a2</span><span class="o">=</span><span class="p">(</span><span class="n">r1</span><span class="o">**</span><span class="mi">2</span><span class="o">-</span><span class="n">r0</span><span class="o">*</span><span class="n">r2</span><span class="p">)</span><span class="o">/</span><span class="p">(</span><span class="n">r1</span><span class="o">**</span><span class="mi">2</span><span class="o">-</span><span class="n">r0</span><span class="o">**</span><span class="mi">2</span><span class="p">)</span>
<span class="n">a1</span><span class="o">=</span><span class="n">r1</span><span class="o">/</span><span class="n">r0</span><span class="o">-</span><span class="n">r1</span><span class="o">/</span><span class="n">r0</span><span class="o">*</span><span class="n">a2</span>
<span class="n">s_2</span><span class="o">=</span><span class="p">(</span><span class="n">r0</span><span class="o">-</span><span class="n">a1</span><span class="o">*</span><span class="n">r1</span><span class="o">-</span><span class="n">a2</span><span class="o">*</span><span class="n">r2</span><span class="p">)</span>

<span class="k">print</span><span class="p">(</span><span class="s1">'prawdziwe wspolczynniki'</span><span class="p">)</span>
<span class="k">print</span><span class="p">(</span>  <span class="n">a</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span> <span class="n">a</span><span class="p">[</span><span class="mi">1</span><span class="p">],</span> <span class="n">sigma</span><span class="p">)</span>
<span class="k">print</span><span class="p">(</span><span class="s1">'estymowane wspolczynniki'</span><span class="p">)</span>
<span class="k">print</span><span class="p">(</span> <span class="n">a1</span><span class="p">,</span>  <span class="n">a2</span><span class="p">,</span> <span class="n">s_2</span><span class="o">**</span><span class="mf">0.5</span><span class="p">)</span>
<span class="n">py</span><span class="o">.</span><span class="n">show</span><span class="p">()</span>


prawdziwe wspolczynniki
0.9 -0.6 2
estymowane wspolczynniki
1.02962731347 -0.663102076999 1.81310097806


<img src=" AAAPYQAAD2EBqD+naQAAIABJREFUeJzsnXmYHFW5/7/vTPZtJttM9pVMEpKQkLALhIDsGhcUCJvi 5SKoF40XAUFF9KqIaFzh51UWARlZFAhruJKgbAHCBMi+b5OEZGYy2ffM+f3x9kvV1JyqOlXd1dUz cz7PM09Pd1dXn67lnO95t0NKKVgsFovFYrFkS1HaDbBYLBaLxdIysKLCYrFYLBZLTrCiwmKxWCwW S06wosJisVgsFktOsKLCYrFYLBZLTrCiwmKxWCwWS06wosJisVgsFktOsKLCYrFYLBZLTrCiwmKx WCwWS06wosJisViaIUQ0mYgaiOj0tNtisQhWVFgsFkvzxa6zYCkorKiwWCwWi8WSE6yosFhaMUTU Ke02WCyWloMVFZYWDxGNy/ieP+V6bWLmtXmebV8korcy//+FiGqIqFizz5eJaInreQci+m1m+51E 9DQR9ct8xw88n+1HRPcT0UdEtJ+IFhLR1Z5txF/+RSK6jYg2ENE+IvonEQ3XtOdEInqJiLYT0R4i epWITvFs88PMPkcT0aNEtA3Aa673zySi14hoNxHVZ37DqGyPY+b5VCJ6jog2Zn7zSiL6HhEVeT73 KhF9mGnjnMxvqSai77i26Zxp4wzNcehPRIeJ6Gbve57tLiWieZlztSPznTdk3hua+U3f1HzulMx7 l7heOyOzr31EtIKIrpVj7flsQ+Ya+QwRLXCd+3M92w0ionuIaCkR7SWiWiJ6nIgGB/0mi6UQsKLC 0hpYCGA7AHdA22kAGgCMJ6IuAEBEBOBkAP/KbPMQgB4AvJ1+OYApAB52vfwXAF8H8ByAmwDsA/A8 PD5vIioD8DaAMwH8FsANAFYAuE8GNQ+3APgMgF8A+CmAkwA84tnnmZk2dwHwQwDfBVACYDYRHefa VNryBIAOme3+lNnHJwG8BKAXgNsB/BLAKQBeJ6JBmc/FPY4A8GUAuzL7vQHAPAA/AvAzz+9V4GP+ IoD5AL4NYAmAO2XwVUrtAfAUgEsy3+XmsszjI/CBiM4G8CiAOvC5uhnAnMzvhVJqDYA3AFyu+fjl AHYCeCazr2Mzbe0O4PsA7ss8fgb6eIfTAPwBQCWA7wBoD+BJIuru2uZ48HmuBPBfAO4FcBaAOUTU we93WSwFgVLK/tm/Fv8H4FkAb7mePwkeXA8COCfz2rHgAfJTmecEYD2ARz37mg7gMIDBns/d7dnu fgBHAPzA9dqfAVQDKPVs+yiAbQDaZ55PzuxzIYBi13b/ldnn0a7XlgF43rO/9gBWAXjJ9drtmX0+ rDk+8wFsBlDiem1c5nc+kM1xlPZovvNesNBo63ptTub3XeZ6rS2ATQAed712dma7czz7fB/A7JBr YQaA+pBt/jOz/wrXa20AbAVwn+u1mZnfUO56bVjmeBzx7LMBLDaHeI5xA4CvhRyrEzLbXe56bXKm jaenfX/ZP/snf9ZSYWktvAZgIhF1zDw/FcALAD4Azx4BZ9b9OgAopRSAvwKYSkSdXfu6DMCbSql1 mefngWel93q+83dgYeLm8+CBuZiIesofgJfB1oWJnu3vV0od8fwOAg9cIKIJAEYAqPTsryuAV9DY qoBMO//ofoGI+gAYDxYPOz7eUKkFAP4PwAWe7490HDP7OuD6vi6ZNr4OoBOAj10sGXYrpR51ffYQ gHfkN2f4J1gEfWxNIKKxAI5BYwuSju0AOnvdDh4eB3AAja0V5wHoiYwVJOO6OQvA00qpLa72rgZb L3T8n1JqrWvbBWDLxzDXa+5j1YaIegBYnWm39/qwWAoKKyosrYXXwDPek4moAkDvzGv/hjMYngpg sVJqu+tzD4EHvs8BABGNBDAp87owGDyIrvF850r3EyLqDaAUwLUAajx/92c2K/PsY4PneX3mUczl I1ztdO9vK4BrALQjohLPPrztFF/9cjRlCYBeLhER6zgS0dFE9BQRbQcPojVwBn9v+6o17ah3/Wa3 4PusyyVwOdgS8KTm827uyfzWF4hjVe7zCoyMuHoWjjtF9r9RKTUn87wMQEd4znMG3WtA0/MJeH4b cXzOj4hoPVjY1ILPZwmaHiuLpaBok3YDLJY8MQ/AfvDMfQOArUqplUT0GoDriagdeFD8h/tDSqkl RPQegCvAM9QrwB39EzHaICL+EXAMho4PPc+PaLdyLCCyz/8GWwt07PY83+fXQAMiH8eMqPk3eKb9 PfCsez9YnN2JppObsN8sPASOS/gsgL8BmAbgWaXUrqAfoJSqyVh4zgVwfubvaiL6i1LKHTD7EIAv ENFJYDfUpwH8PmjfBpj8tt8D+BLYTTMXwA6whekx2ImgpcCxosLSKlBKHSKid8CD4Xo4WQ+vgeMP LgdQDh78vDwE4JcZN8E0cPzCDtf768Cd/VBwHIMwAo2pAfvfi5VSs7P7RR8j37cri32KG2ek5r1R AGqVUvuA2MfxDPBM/DNKqTfkRdJksURBKbWIiOYDuJyINgIYBA6WNfnsYXAg7fOZttwL4Foi+nHG fQFw4Gpt5je9A7ZKuANAt4LF0VGar/Ce+yhcBOBBpdRN8gIRtQdbuSyWgsaqXktr4jUAJ4IHudcA QClVB2ApOANAwZVi6aIy8/gbsHDw+uxngWeaX/O8/l9wZQAopRoA/B3ARUQ0xvslRNQr0q9h3gML ixs9cR/G+1RKfQQOcPwSEXVzfXYsgHOQGXhdRD2OR8DH5+P+JmPR8B6vODwMtjh8CywAXgr7QCZG wcuCzGN7eSETy1IJ4BJw9soCpdRC1/sN4NiOz2YEp+z/KHD8RVyOoGnffAOAJqnNFkuhYS0VltbE awBuAzAQjQe9fwP4KoA1SqlN3g8ppWqJ6CUAXwT7v1/wvF9FRH8H8K3MID4XHJkvs1V3auEt4MH4 bSL6E4DF4BTKSeA000jCQimliOiaTJsWEdEDADYC6A9Oe90BTm8M4zuZfcwlovvAcSTfyPzeOzzb Rj2Ob2b28xAR/Tbz2hXITYnpRwHcBXaB3OMJavXjzxlhMRscvzEE/FvnK6WWeLZ9CDygnwFOP/Xy Q7DwejNj7WgDtpYsBAe/xuE5AFcS0U7w9XEyOCC0VrOt1yVksaSKtVRYWhNvgmeBO9E4/uA18ACn c30IEpj5WCYbwcuV4PoDFwD4OXjGeym4098vGymltoLTA+8HB3/+DjxolaLpoOU36DZ6XSn1L/DA 8y54QPst2Ce/GeyXD0Up9Qp4dl0LFhHfBh+vU11ZLkKk46iU2gbgQnBa6I8z+54F/SDd5PcFvZ45 ni9nnvrWpvDwMDiu5HrwObsSbJG4wLuhUqoKwCJwIO6jPu+fB04H/hGAr4CFxitwnXdX+3W/zfv6 DeDr7TIAd4PdSZ8Ex8Z4P2/X/rAUFMRB1BaLJQgimgouuHSaUupNw89MAFAFri1QGba9JR5E9A8A Y5VSFQntvwpAnVLq7AifeQpcS0QXp2KxtFhStVQQURER/ZiIVmfK0a4kou+l2SaLxYdrAaz2ExQ+ lQ6/BZ7RB1lALFlARH3BVpCHwraNuf/jAEyAf7ZOk3NPRCPAVo85+k9YLC2XtGMqbgH7YK8C+w6P A/AgEW1XSmWbumWxZA0RXQouqHQ+2Cztx01ENAk8kBwGDyrnAvijUmpj4g1tZRDREHA9jGvA1Sv/ N8f7HwPuj74NjlF5PGDz1UT0IDhVdgiA68Cuj1/ksk0WS3MgbVFxMoBnlFISsb2eiC4D+5wtlkLg UXAa6J/RtGKmmzfBfu/vgdfgWA8ui/3TpBvYSpkM4AEAawFclYmtyCVfAK/hsRTANKXUwYBtXwTH z/QB1zB5E8CtSqlVAZ+xWFokqcZUENF3wTX2z1VKrSCi8eCUsOlKqb+l1jCLxWKxWCyRSdtScSeA bgCWEpHkZt9mBYXFYrFYLM2PtEXFJeC0qUvBMRUTAPyGiDYppbSLAmUWIjoXbPb0pmxZLBaLxWLx pwM49mdWpmhdTknb/bEewM+UUve6XrsNnIJ3tM9nLgMvJGSxWCwWiyUel7tXA84VaVsqOqHpAjsN CE51XQsAjzzyCEaPHp1Qs5Kjrg445xzg2muBr3417dYUBtOnT8eMGUY1mizNAHs+Wx72nLYclixZ giuuuALIjKW5Jm1R8SyA7xFRNbhq3UQA08GR9n7sB4DRo0dj4sSJybcwx7z9Nj927Qo0w+YnQklJ SbM8lxY99ny2POw5bZEkEj6Qtqj4Brhs7x8AlIHL+N6bea1FsmYNP+72LkZtsVgsFkszJ1VRoZTa Ay4u8+0025FP1q7lRysqLBaLxdLSsAuK5RlrqbBYLBZLS8WKijxjLRVNmTZtWtpNsOQQez5bHvac WkyxoiLPiKVi165021FI2A6rZWHPZ8vDnlOLKVZU5JGGBmDdOqB9e2upsFgsFkvLw4qKPLJ5M3Dw IDB6tBUVFovFYml5pC4qiKgfET1MRLVEtJeIPiCiFpkQLa6PsWOtqLBYLJYkeeMN4Oc/T7sVrY9U RQURlQJ4A7xc8LkARgP4bwD1abYrKSRI04qKYDZsALZtS7sVFoulOfPkk8BPfgKkuBJFqyRtS8Ut ANYrpa5RSr2nlFqnlPqnUmpNyu1KhDVrgF69gD592A1y8GDaLSpMzj0XGDoUuOsuYH/KS8a99x6w d2+6bYjCunXAjh1pt8JiSZ9t2zgg3t4P+SVtUfFpAPOI6HEi2kJEVUR0TcptSoy1a3mw7NKFn+/Z k2pzCpZNm4ABA4DbbgM+//n02rF7N3DSScCjOV9yJxneeQc4+mjgllvSbglz9tnA00+n3YrmyZYt 6Qvq5k5dZv3NdevSbUdrI21RMQzA9QCWATgHXKL7t0R0ZaqtSog1axqLCusCaUpDA7BzJzB9OnDz zcCCBem15f33gcOHgZqa9NpgysqVwIUXslVl3ry0WwMcOQK88grw+ONpt6R5cvLJwG9/m3YrmjdW VKRD2mt/FAF4Ryn1/czzD4hoLIDrADwc9MHp06ejpKSk0WvTpk0r6HzqtWuB44+3oiKInTvZB1pa CpSUpHuM3nuPH7dvT68NJuzbB5x3HtCzJ3D99ew2OnwYaJPi3b19O5/HN95Irw3Nle3beQKyYUPa LWneSFxWaxYVlZWVqKysbPTajoT9QWmLis0AlnheWwIg1Og9Y8aMZrVq3uHDwPr11lIRhgzgpaV8 nHbv5sGJKP9tEVFRX+Bhw8uXA6tWAa++ys9//GNg2TJgzJj02iSzxPXr+W/QoPTa0txYupQfbbBy drivwdaKbqJdVVWFSZMmJfadabs/3gAw0vPaSAAtTltu3Mgm4SFDrKgIwi0qunZlMZZWQGtVVeM2 FSrSeQ4YABxzDP//wQfptQdw2gRYa0VUrKjInoYGZzLQmi0VaZC2qJgB4CQi+i4RDSeiywBcA+D3 Kbcr56xezY/WUhGMdARiqQDSOU579gBLlrCFpNBFRW0tP/bqBXTvDgwezPEgaSKiorQUeP31dNvS 3LCiInt27GBh0a2bFRX5JlVRoZSaB+BzAKYBWADgNgDfVEr9Lc12JcGSJezjtqIiGK/7A0hnnZQP P+ROaeLEwhcVdXV8bXXrxs8nTEjfUiED4oUXWlERFSsqskdE7YQJVlTkm7QtFVBKvaCUOkYp1Ukp NUYpdX/abUqCxYuBigqgXTugY0eeAVtR0RSdqEjjOL33Hp+rU08t/JiK2loO0pS4k/Hjgfnz0y36 U1cHdO4MnHUWZ/Bs3w688IIt/GbC0qVAUZEVFdkgx27iRJuem29SFxWthUWLnMC5oiLucG3n2pTt 21lMtGmTvqgYNw4oL28eloqePZ3nEyZwGuxHH6XfplNPZXHz8MPAZZfxfSCVZS1NOXSIg27Hj2cx 29CQdouaJ2KpOPZYfrSZNPnDioo8sWgRFyYSJLPB0pjt29lKAaQrKqqqeJZTWuqkRxYqtbUcTyFM mMCPabpARFQcdRRQVgbccAPQoQO/t2VLeu0qdFau5ODkT3yCrzlbDTIeXlFhXSD5w4qKPFBTw3/u FD8rKvS4RUXXrvyY7+O0bx+LwEmTuC2HD0cv1b1wIX8uH4j7QxgyhOMr0gzWFFFBBJx+Ol/vzz3H 76VpQSl0JJ7ilFP40bpA4rFtG4vYigp+3lzTSu+8k9cvaU5YUZEHFi/mR2upCEdnqch3oOaCBZz+ K6ICiBZXsW0bz5DyVU2yrq6xpYKIzedxREV1NfDWW7lpU48e/P+vfsX7PO44PqfWUuHP0qV8zY0a xc+tqIiHiNr27YG+fZuvpeKll4CZM9NuRTQKSlQQ0S1E1EBEv0qzHUeOAA88wI+5YNEijhEYMcJ5 zYoKPW5R0a4dH7d8HyeZLY4Zwyma0i5TFi1iK8WiRblvmw6v+wOInwFy991ALorSbtvmWE8GDuQA TYBjVKylwp+lS1lQyLGLKyruuINjWFor27Y5onbw4OYrKmpqmp+VpWBEBREdD+BaACknw3GQ3le+ Arz2Wm725878EKyo0FNf74gKonSO0/r1HAfQsaPTlqiiAgBWrMh923R4AzUBHsg3b46+r+pqLtSW bYCgrk0Ar9BrRYU/IipkQIwrKt59l/9aK+7rb9Cg5isqamv5fjlwIO2WmFMQooKIugB4BFz4KvVY e1lAavny3OzPG6QJNC9R8fzzuTGJm+C2VADpiQopK52NqFi5Mrft0nHwILuHvJaKkhJeRyWqONi4 ka0sW7dm1y4/UVFebt0ffijliIrOnYG2beOLis2bW7d4c19/gwc3v9k+wPeuBJxu3JhuW6JQEKIC wB8APKuUmp12QwCnQmEuRYV3HYbmJCpuvDF/wUKFKiqixFRIDM2KFclnjUin4x3AS0v5u6Meu02b +DGbTmz/fg5stZaKaGzezEJw1Ci20vXoEV9UbNrE57659DG5xuv+2LCh+aXnbt/uuOCbU0ps6qKC iC4FMAHAd9NuiyAddS5EhS7zA2g+ouLAAR4c87UE+fbtThwDwBkg+T5O69Y5oqJDB/6Laqk45hhu d9KzcneJbjeygG+UlMSGBsdlko2o8BM6QPOxVKQxAEn9jmHD+LFHj3iF19yWpuZwrJPA6/44dCie OzBNxGIONC9LS6qigogGAPg1gMuVUofSbIsb6RRz4RPXZX4ALCrSKD8dlRUrWC2vX598zvzhw3xM vJaKfB4npZquqim1Kkyoq+OO/LOf5edJx1X4DeAiKqKIodpa7nwBx2KRyzYBbKmoqYkXBK0U8N3v cnGoJKms5HL6+a7CuHMnP4qojmup2LrVEUWmouKjj3IXmF4IuEXFwIH82JxcCIAzYQCal6hIe+nz SQB6A6gi+nhx62IApxPRNwC0V0pvQJ4+fTpKpOfMoFvmNQ5yMlet4oGuTRZHSZf5AaQzA4+DO4Nh 4UIuypMU0qnGdX9cdhlwySXAZz4Tvw3btrHpPq6okOP16U/zEuQrVgCnnRa/PWHk0lLhFhLZdMAy EIr52U15OQ94tbX8f9T93nknxxt873vx2xfGokXciT/1VG4yYUyR61/qs8QVFe7zaOJqWr+eXS6/ +x3wH/8R/fsKjUOH+FjK9RcnLirXbN7MInXoUPPPiKViwID47o/KykpUVlY2em1HwrPDtEXFPwGM 87z2IIAlAO70ExQAMGPGDEycODGRRtXVcX7zgQNsCh8+PP6+Fi5kQeHO/ACaj/tj0SJW/Dt2sAsk SVHhXvdD6NLFrGOsruYZ5ooV2YkKmRF4RYWpGXrxYqC4mN0fAwfmx1JRVOSICCEbUTFgQHLujz59 +PGjj6KLCulY58+P3zYTpDP/05/SERVSn6VHj3jBvm4zv8m9c/vtXPDtjTdahqiQe1WuP+lP0qxO evXVfF299575Z2prnZozcS0Vuol2VVUVJk2aFG+HBqS9SukepdRi9x+APQDqlFJL0mpXbS0X6gGy j6t45x3g+OObvt6lC9/IYSZHpdINbFu8mC/qiork4yrcy54LpuLr1Vf5cd48LrEdF52o6N49mqVC RORRRyUvKqSaZpHnTo4rKoi4PHm2oqKoqPF5FERUxPH1V1fzYzbn14TaWs68mDMnPxk8wq5dfL0X F/PzbCwVRUVc9Cms71i0CHjoIbZ0RRnwChmvqBXLT1qWim3bgFdeYTEcJUampob7nqFDbaBmtqS+ ykJdHRcPat8+O1Gxdy8XIDrppKbvyWxkz57gfcyaxWWX07ohJHNl3LjkRYWfpcJUVIwaBfTvD/zv /8Zvw/r1fN5793Zei+r+kKDcESPyY6nQWQQ6deLBKYqo2LiRrQeDB2cvKrp3byp0AMc6EUcoi6hY uzbZlWNrath9VVoK3Hdfct/jZedOZwAE4ouKzZv5OPfrF36cb7uNz/cPfsDX7r590b8vlzQ0ADNm AI89Fn8y5XW/FRdz2fq0LBXPPstudKWA1183/1xtLfdDgwY1r5iKghMVSqkzlVLfTrMNtbVc/Cjb QeG99/hiOvnkpu+ZLpb1wQfshkkjyOjgQf79Rx/tiIokUyR1oqJrV7NAzVdfBT75STbf/vWv8V1L EqTpHhCzERUrVyZ7zHTVNAG2OJSURLdU9OvHwixbUaETOgBn0pSUxLNUbNjgxDfFXdfk4ouB6dOD t6mt5Wvgiiu4su6hPIWQ79zJg58goiLq9SPnsU+f4ONcVQU88wzH/px8MltN01yEDuA6Hd/+NnDp pWxp+fnPo+9D534rKTG/h5ctA/75z+jf68ff/85u4wEDHIuqCTU1fG8PGsTXRnNZXK7gREU2fPrT rLizQSmnU6yoyM5SMXcuzxilRLEbU1Eh5tc0UsOWL+eORiwV27cnK27kpnfHB5hYKjZs4KDaM85g UbF3L/C3v8VrgzfzAzCPqait5ch7yfQZMYLbkk0mRRhBA3gcUdG/P/9t3x59ETWTNgHxS3VXV/N6 LJ06xXOBfPQRd/BPPhk8UNfU8AzxK1/h+y5XlXXD2LWrqag4dCjcmull82YekMNqgrz2Gou8Sy/l +7tt2/RdIFL5cu5cFjpxiu7pAoVLS83vhV/+Evja16J/r45du4CXXwYuuoj7p3/9y/yzYqmQ7JXm 4gJpMaKivh544QXuMLJh926+kXMlKo4/Xp89ElVUpBFXIZkMRx/tCKMkXSDbt3OnKj5lwBEVQYOA qP/TT2dBcO65wCOPxGuDTlSYxlRI+rDbUgEk6wLxs1QA2VkqgPgC0l14SEfYDNqPDRvYVH/MMfGC Nf/2NzavV1f7p6UeOeIs0DZuHF+L+Yqr0Lk/gOguELelIqjfWLyYXYbFxezyGzcufVGxfj23Z9Ik 7nPE5RWFujo+jm3bOq9FsVSsX5+7/vb559nS/PnPA5Mn83Vrek+6LRXSruZAixEVr7zCHcaSJdld EO4UvREj+ETG8TMqxSpb5/oAmoelYvFinlX27MlxHZ07Jy8qvMF9XbqwC+ngQf/Pvfoqd0ASB5FN tLSfpWLHjvCCSKtX86OIiWHD2A2R5KDkXaHUTZTZGcAiIheiIklLxcCBvAJsHFHx6KPAmWfyoDXb p3ZvfT3fu71782Sgf3+nKFXSeN0fUq8iqqgQS4UcZz9B7l0+YNKk9EXFunV8zNu0YXdBXFGhqzBr ei9UV7OFIaqFSMff/87HdfBgtlQ0NHCWjQliqejbl69ZKyryzKxZfPABjtqOi9sfV1HBN2ScYjsb NvDNrQvSBMxExb59zk2VlqVCOp2iIh640xAVQPBxevVVYMoU53nv3o0Lx5hy8CCfM52oUCo8tmPn Tl6ErH17ft6+Pe8raUtFLtwfhw6x66Z/fxYWQHKiIo6lQim+pwYM4OyUpUujuWdWrOAFtq67jjt5 vz5C0klFqA0Zkj9RoXN/ANFExZEjfGzFUnHwoP4aUIonDW5Rcdxx6Qdrrl/PAzDA53rLluAJhQ73 CrlClLgocTPkYiI3a5aT4j58OJ8X07gKsVQUF/N9ad0feUQp9lt98Yt8k2QjKtyWiooK/j/OoDB3 Lj+eeKL+fZPBcs0afmzbNj1Lhbu8eNIZIHFExYYNbCE44wzntV69uIOOurJfdTVfSzpRAYTHVXjN 1wCnlSZVAfLQIR4wgtwfph3pli382/v142PerVuyoiKqSN62jYsHiaWioQH48EPzz//1r3xuPvUp tlbMmaOfwcv9L1avIUPyt8JlLtwfUk1TYioA/bHesoWvZ/f9PWlS+sGa7hL5AwbwY9SYpLq6pu43 U4G9c6dTLyTbPnffPu6HpOAVkXlcxb59bCmR67A5ZYCkXab7u0T0DhHtJKItRPQUEVVE3c+yZXzA zz2XZ6x+pk0T3JaK3r35Yly2LPp+5s7lDklubC+dO/NjkKgQs/mkSfm3VLgzP4RRo5I15buXPRek k/WzEojgO+YY5zW5EaNaK3Q1KgDHDB02QHvN1wDPMJIK1JTBJheWCmmjWCniZoAopZ8puikv5/ss SlaFWOwGDGCLWZs25i4Qpdj1cdFFbEmaMoUHjCWaSjhiqXCLirTcHyUlPBBFERXu8xgkKtzxUsLY sfGDNevrc5Od4LVUANFdIH7uDxOB7f6ubPtcmYS41zKaPJmPb5jVwStuBw60lgpTTgPwOwAnAvgk gLYAXiaijlF2MmsWFxuaPJlnIatWxVd1tbXc8XTqxDf08OGOrzwKEr3sR3Exf0+YqOjUiWME8m2p kBLlo0c7r5WWsnpOao2AOJYKMYHLdoAzc3cvyGOCXDMSbS2YlvnViYq+fZNbyMivRLcQRVSIgMhW VOzYwddHmKVCqWjnRzrUgQPZrXT00eYZIOvWsfj83Of4+Sc+4RS38lJTw64+GQgGD+aBOqrVKw5e 94e0I4qokGtNYioA/eC4eDH3mbJ4GeAEa86bF73tV1yRfcbE4cN8zWUrKnSBwqb3gnvgzrbP1WWh XHIJn5urrw6O0fLe29ZSYYhS6gKl1MNKqSVKqQUAvgxgEHhNEGNefhk49VSe/U+ezGIgrgvEq3KH DYsuKo58wmdKAAAgAElEQVQc4VmUrpKmm7B0yVWrWNT07Zt/USEWAPeaJWFWg2yJIyokmKpTJ+c1 uRHjWCp692ax58ZUVOza1dT9IaIiiVoVQeWwgeiWirZtnWMXV1SEtQlwBrso13R1NQtx+ey4cU62 TRiy3fjx/Ni5M7sldRZNb4XSIUP4MelZolJ691nUAlhSTbOsjPfVsaO/qBg1qmlm2tix0S2zSgFv vqm3/ERh40buO8VS2K0b/4Y4lgqv0C4t5eMbFmxdXc3jR69e+uN2771c68TkfhZLhVtUlJQA99/P iQV/+ANbLU46qakg81rMBg7ktsVdPXf/fmDqVK7wnDRpWyq8lIIrahrfRgcOcODLuefy8549ufPI lagYOtSJbTBl5Uo+iW6TvI4wUbFyJfvky8sbrzyYD1as4IFaZq5AYYoKsVS4RUU27g+vlQJw6maY xFToLBUHDiRTEdXEUrFrl9l1I2mIsqxfXLdN0GJiQpBZ3o8NG7h9km4cpTDdokV8HbndWlOmsG/b OzhIcJwgoiKqCyTqPXLgALuDvNdPVFGxeTMLijZt+Fz6BcV6Mz+EOGJy9Wq+vrN1E8lMXCwVQPQM EKX0adYlJY5wC2LDBj5mAwfqj9vrrwNPPAH84x/hbZHz5nZ/AMDZZwPf+AZw443ACSewZcibEeK9 t8vLnRiqOCxfzpU981HIrWBERWaV0l8DeD2zBogREgV+6qnOa1OmRKtc5sZ7QQ4dyubTw4fN9yHB jOO8S6V5MBUVffo4+fP5YsUK/u6P145FfkSF9wY0ERXt2jWecXXuzKbcqO4PSVn00rYttyOu+wNI Jiamro7Pj26NDcDpSE3Ol6STCiIqogrZMKED8KAHRDsm3nMzYgSfX5NOVgZQ97V87LHOMvVuJI1P GDCAZ/5RBsyVK3liEiXgUc5RtqJCxKGgC4pVKlhUbN4cfN5l8TFBYjDq68MH7SAkINYt/qKKir17 eUKns1QA4deLXGd+wcQysbjppnCXmJ+oALhS6Pnn86q73/9+UyFXU8NWJom9i1uzRJAYGndgblIU jKgAcA+AowFcarLx9OnTMXXqVFxzzVQAU3HHHVM/XuJ1/Hi+QONUBNS5P44ciXZhL1jAHad0nn4E iYqDB7kjE0sFkN9gzRUrnOwXQTq8JESFVA70DpDt27NgCHJ/uK0UAA8ecdJKN250ajR4MQn08vrE AWdWnkRcRU0NdzbuYmFuoiwqJtU0hf79WUhHFWZyjQZd++3acduinB9JJxXELWcSOOxNnQSAkSP5 0VvcTqpputvar180UfH663w9RzE1y2CcC0uFCFlAPzjW1PA+dQNM//7c9qBz89hjPIkTl5A7sDOb TJn167nvlYEUiC4q/ESt3Ath97BcZ361VLZtA045hX/n734XvK/6eu7j3UW4hE6dgKefBr7zHbbM 1NWxGHL/DvdvEGESdc2byspKTJ06FbffPhXt20/FVVdNxfSwOvVZUhCigoh+D+ACAGcopYy63xkz ZmDmzJm4+OKZ6NJlJl56aebHS7xK8FFUtwWgt1RE3dfCheFWCiBYVKxbx7MFt6jIZ1zFihWN4ymA ZC0VMvB5RQURHye/79y7t6moAPgcRh0QsxUVOp+4dPBJiArvAOIlqqhw70tmi1EHiS1beCBs1y54 u+7do3WQOksFEO4CaWhomhoNcKwSkV5UeAekqGmlEugos0MTRFTkIqbCbanQDY66zA/BpEaJuCme f54f33uPzfhAdi6Qdesauz6A+KJCl/0BhN8LGzY4lgpdfyui4rrrgO99j9vbpw/w3HP6bYPcgIL0 OW53o1fcxrVUTJs2DTNnzsSYMTNx2mkzMXPmTMyYMSPaTiKSuqjICIrPAJiilIoc37pqlVO5UBg+ 3HkvKl5LxeDBvO8owZoLFujX+/ASJCqk7cOH519U7NvHN1c+RYVuMTEh6Djt3dt4ZiP06hVtJrx/ P5/7IFERJ6aiSxf+S0NUmHakgNOZCnLuly6N1qaPPvJPo3YTRVQoxQOL21JRWsrnOExUrF/P1izv ANq+PYsFr6jwuj+A6GmlcUSFn/sjaql1E0vF4sU8e5Z+0o1JNVV577nn+NxUVQEXXshCMhtRoatm O2AA/yZT93O2lgq5zvyqkdbX8wD/k58At94KXHUV95e6jBnZNgzdMc+VpUJwL3SYNGnXqbgHwOUA LgOwh4jKM38dTPexenXTm6NvX/ZHxRUV7pPZvj2fdFNLxd69bJI1tVT4DdArV/JNOmAAD5pduuTP /SEm5XyKCrlZ4ogKnaUiqvtDZgl+osJk/Q+d+wPg6zGJc2dqqQhr944dLIjcHXqXLiwyCkFUbNvG Hbc33sUvWLO62hFx3vVY3FRUNM50kDRX74A0eLD5YHnwIK+g2rNnPEuFTlSYBvk2NPDEw338+/Th 3+ROA1+0iN0/OrN8eTnHkAQF6crg98ornPFRX8/VOAcPzs794WepaGgwv38k7ixOTMWOHXwPi6Vi 377G/U5DA1+L3bvzefnBD3iF1wED9OdItg1DJyq8loquXdnNGSemYv9+HgtbhagAcB2AbgBeBbDJ 9Xex6Q4k7dINEVsvooqKvXv5QvKazoYONbdULF7MnZOJqAgyba5cyb9B/OVxF2GKgy6dFGCB1bZt dsFYfugKxQhBokIXUwFEd3/IDR3X/XHwIN+8XvM1kFytily5P9w1INyMGlUYosJd+MrNUUfpRcWX vsSFrgB95ocwcmRjS4UE+eksFZs2mZWLXrSIA/guu4zPj+lv9HN/RMngqa9n8SCWTcAJ8t661XlN F2MitGnDnwmyVGzaxJUh9+8H7rqLX5P1LeJaKpTyt1QA5i4Qd50hNx068CQt6B52X2e6ODY5D17r g9+1bGqp6NaNJ45Blgqi6C5DYdkybnerEBVKqSKlVLHm7yGTzx86xOpWZ8aLU1/CL8d+2DBzS8WC BXwBmJzA3r39Bz7J/BDiLsLkZvZss8VsVqzgzk0XbNe1a7KWiqiiws/9EdVSka2o8DNfA9xJ51pU KBUuKjp25EEiTFT4VRIdPTq6qNiypfGg5keUDtJP9IwY0TRQs6GB1/h46y0u471oEf8Ot3tUqKhw irwBTWsDCEOGOKubhjFvHs/0L7+cn5taK3bt4s95B8MoGTwiHNz3rQSkumtI6GJM3PTrF+7+mDKF +91HHuF7prw8u+qj27bxBEFnqQCiiYq4C+y5rzMRxu6JnK7uhOw3G0sFUdNUXq+lQr43jqUiKIYm CdK2VGTF+vWswnWiYvjw6JYKP39clFoVCxawCNENdF569WIho5uFeEVFtpaKw4eBK6/k4KIwJEhT 1xEnKSqKi/Uz/aDvDArUrK01Lzq1caOz5oWOsJgKP/M1kIylYscOnikGiQoiM5/8hg187L37krLs UXLbk7BU+GWUjBjB59jdoa9axdcKEfDHPwYPoBUVzsQEaLqYmBClVsW77/L3TZjAx9RUVEg8jvee ixIXoxMVRx3FFkZJc6+p4b+gASaoVsXBg87Cc5/6FPe/kzKlCrNZJ0U+5xUV3buzOM6FqAhzJW3Y wMLOb90UvxRRv2vZNFATaHzMpXyA93fEtVQsWsRC0S/1PNc0a1HhDmb0Mnw4C4EoJaX9LBVDh/KA brIUrmnmB8BKVPx0bo4c4ba7f1e2loqXXmKzpUknp8v8ELp1S05UlJbqhUxc98fhw9HKVPtZKYDw mIogS0USMRXucsxBmIiK9ev5t3tTU0eN4kHXVFDv38/HKNeiQlJnvdUfdRkgkt741a/yLDooQE1m 8RJX4V1vQRALiYmomDePK+m2b8/tiyIqdII6SgaPTlS0acMCYuFCfi4xJmGiwi+mQq5jERWAIyoG D+ZjGFR7xw8/axlRtAyQoFV7wywV1dV87bZty9u2a6cXFaaWivp6M0sF0FhUrFrlZP656dEjvqjI l+sDaAGiok0bvb90+HDuEHOR4ywpqiadyoIF0UQF0NQFUl3NM4JcWir+/Gc+VjU1jf2rOoJERZKW Cr8bMG6gJmDuAgkTFaWl3Aa/KHQ/nzjAA//27bldUtq7AJgfpqJCdw+NGsWPpi4QuT5NRcX27WaW JJ0pGNCLiqoq/i0338zX6d69/gPogAHsa5e4Cj9LRfv2fJzDZuH79/P9f9xx/HzMmGjuD50gjSoq 2rZ1PiOMHetYKhYv5n7A7/4Ggi0Vbjfh6acDF1zgLO0tFp041or16/lc6M5zVFER5P4Is1SIgCTi iZyJ+0MnkBsazGMqgMbHXFbf9VZkjroOjBDm7so1zV5UDB7cdAYDOLP8KHEVdXVO9UQ3prUqamtZ 2ZqkkwL+okL8xN6YCm8UtykffcTpX9ddx8+DOrrdu3kW3JxEhV9KKWAerOmtKOklzAwd5v4Acmut yKWlYsMGvajo04d/j+maDtIBm8ZUHDlidi35iYpu3XhW7hUVkybxACel+/061KIivs5FVNTW8rXW QZN7NnRouDv1gw9YdMYRFbp0ZCC6qCgra2rtGzeOLRUNDdyeigp95ofQr1/TYkyCe+G5du24VoWs qSKuiziiYutWvm50lspciYqwe8Gbtuy1Dm/bxteMd+KgEys7d7JgjiIqNm3iz3z4Id97upgKnaVi 927/lbnznfkBtABRoXN9AE59iShxFVKjwnth9+3Ls5UwgSIKM1tLxcqVbIp2+xfLy7lTiFolEgD+ 8hfuRH7wA+4Igjo6ETTeappCoYkKP/dHEpYKaaeOMPcHkNu4is2b+bt0v92NqaVCV56cKFoGiHTA ppYKwMycq6sdIRx1lHPNSs2EiRP5+a23sole99uEiorGlgq/76moCK+JMW8e32cywxwzhoWWSXn9 XLk/dMHV48bxfbJuXXDmh6ArxiRs2sR9oW6w7NePJ3hxgjW3bvU/9gMGmC/opotFEKJYKoCm1mEJ vCzyjJrdu3P/5I49CirRraN/f7ZO19XxOKJbN8rPUvHLX/J6IrrspKVL85v5ARSIqCCirxPRGiLa R0RziShkfU9GCl/paN+eL5AoosLvpiwq4plPmKVi3jweAP0GZC/du7N40ImKwYMbzyZ00cgmKAXc dx/whS/wTTtyZLCokA62OVkqdAOrdHomlgqlmpap9iJt8+uUxFKhs5rEWUArjLDMDyFMVEhWg85S ATQWFVIgzI+PPuJ7JWjdDyGKqAga7N21Ktau5f2JqDjtNF5EyTsIuHGnlepqVAgiPoLcNSLO2rfn 59KRm1gr/NwfnTpxH5GtqADYBWJiCg8SFSK+dRaF4mK+juKIipoa/9Luo0bxsQ2r1+G3mJgQdi+I tUTwFg7zc2forJgmC+u5cdeq8BMVfpaKv/+d72NdXycxNKNHm7UjF6QuKojoEgC/BHA7gGMBfABg FhEFdk1K6QtfuYmaARKUDmdSq+Ldd9n06rcWg5eiIraMeC+GVauaBunEXf9j/XrudL/4RX4+dqwT tOVFKeD3v+cL0C/YqWvX5OpU+IkKETK6Dt3P/SHBViaWitpaVvkmloogUdG1q34A69mT25NrS4WJ qAgLTtuyhWdYYaJCKeCSS7g+QdC+evc2u/6jigq/gUJEhVgpACdw0ISKCp6h7tkTbBGpqOBzH3Q9 eavxjhjBM3cTUeHn/jDN4AH8+y+J/H/1Vd7G1FKhi6sIcxPGLYAVZKk4+WR+nDs3eB+7d/N9HMdS oVTTBQ29MRV+KaK6azkoRV6HHPOlS3ny6mep2LOnsUVixQonXkY34Vy3jsVIvjI/gAIQFQCmA/ij UuohpdRScEGsvQC+EvQhyWs2FRVbtoRHJYeJChNLhfhTTdHVqvCmkwLxRYVccMcey4/i59UN0H/5 C/Daayws/EjLUnH4sN6852epAMxrVYRV0wTMRIVfOqosQZ2GqAhLo5Ooez8XwahR/Pl77gFmzmRB 6hfEZ5pOCuTOUnHKKdwX3HsvZ37062cW0yGIVfGsszjuyO8akO28Zb3dbNvWWFS0a8d9UNBnBD/3 B2AuKvwsFURsrXjiCX4eJirEraY7z2EWvbi1KoLO8VFHsVB4883gffit+yEEHUcpbOUefMVSIX2l X4qorm+Iaqno04cnJC+9xM/9LBVA43vmqaccq5EuAN+0bkwuSbtMd1sAkwC8Iq8ppRSAfwI4Oeiz ErgTJCqkANa77/KFecstwe3ZssXfBNe/f/CAXlPDN9PxRo4bB6+oUEovKjp25Js96iJZH37IN5ME II0dyxeld4CrqwNuvJGL9px5pv/+4qSU/vWvTtCcH2GiAmgqCg8eZLHhJypMq2qGFb4CnBoCQTEV foMCEL1WxY4dwavs5sr94ZfKJ4jZ9Fvfcq6LOXP020YRFWExKsKePZw14zfgTJkC3HADt+/xxx3X hyljxvB579iRV538xS/02/ktQOamrq7pINK3r5nL0s/9AZiX6vYTFQCLiupqtiKFuWd1xZiEsNij uFU1g9wfRCweTUVFkKXiwAF9AKrOslBezn2MHHs/94efpcKv7o6ONm34+156if+XzCvd97jjKv7x D15CHbCiQugFoBiA97bbAiCwe7rvPn70i6kAuCPYvp2DWPbs4Vl4EEEnoKyML1q/7AvJj8/WUrF5 M3eiXlEh24alg3qRFFdRs35+3u9/nwfoX/4yeH9Brgg/nn0W+Oc//cscHznCA19UUSGDrl+hMdNF xTZu5FlC0IBYVBTcuQdZKoDoouJTn+KB0o8oomLXLv/rdsMGPr5+5tHhw7mT69QJeOghvpb8Is2j iIriYj5eYaLCr8qlm1/8glfJXLUqmusD4DZUV7NQuv76pumYQseOLLzca4V48VoqAO43TERF0PVj Yqk4cIC3CRIVALtkwlaQBfS1KpQKd38MH859lOl6JYAzcAed41NOAd5+Ozj7LUxUBK2FI6+5+yC5 v0Rc+bk//CwV3bvrY0/8kInrqFFOXI4br3ipruZjctll/Nt011kaokKTjNk8mD9/Ovr1K8Fllzmv TZs27ePlzwHHijFsGDBtGlsq9uzRD0JyUwaJCqV4NqK7cd99l096kMjR0bt3444qqKBXWVk8UTF5 svN86FDuIBcuZLEFsE/90Ud5xhd2AXbtyjf2/v28HxPmz2fT4vr1erEkHWaYqPBaSERUBLk/TPzZ Gzfy79alJrsJ8smGiYo+fYB33glvC8DH4803/QXR7t18LMJqVABOR7prl144SHChX+fXti1XYv3k J7nTO/NM4Omn9dtu2QKcemp4mwSTAlgmoqJdO7ZSfO5zzqwtCbxrhXjRWSrKy51gOT+kDHc27g85 Tn6iQtLcTUs19+/vWLGEXbu4/wyyVEh66Ycfch0LE/yKjrk55RS+7hcudL7Di1/xQsEdUOkVv7oF DaWvWrmSj5+f+0NiqdzXcpRqmoLczzrXB9B0+fOnnuL788ILgTvu0I8Ny5dXYu3aSkyd6ry2I8qy tzFIW1TUAjgCwDuUlQMIjB547bUZmBhi6xw/Hvj5z4Grr2bVfdNNHMx12mlNt5UT4jeoygXvZ2KU eIooylT267ZUrFzpLIjmJaqoOHCAA3++8Q3nteJiNmm7B9t//YtvtM99Lnyf7pVKTUTFrl1OdP7q 1XpRERbU5JdWJxVOg9wfppaKoI5SCBIVQeZrIJql4t//ZhG2bJl+sDGtUQE0PnZ+osLP9SHcf7/z /5lnAr/5DccXSf0WIYqlAsidqAC4Q377bfPvjkNFhb/rR6n4loq9e/l8B1kqwoLEddU03YioME0t 7N+f109xY+ImlFn2+++bi4qwtgPct7Zpw2L7mGOAr3yFJ0tf/rKzTW0tTxj9+qWolorycp7QSP/l 5/7QWTGjVNMU5Lj6iQqvpeLFF9n9V1rqPzbs3z8NX/vaNNx6q/NaVVUVJkU16UUg7QXFDgF4D8BZ 8hoRUeZ5iActnDZtWEj07s03U8eO/rNFufH9Lmx53W9Qf/fd6PEUgBNMKO6ElSudSn+6NkQRFUuX slXBe5GOHdtYVDzzDA8sEyaE7zPq8ucffOD8Nr+OMUxU+BWeMrFU5FpU+A2CQYF2AA96W7earaMx ezZ3zEqxlcdLXFGhw6/wlR+nn86dqNcFsns3i7y0REU+qKjg+1Nngt+7l0W8zlIR5DYFggunAWaW irCBubQUuPNOZ6GzMGRRMbeb0134yo+2bbl/ef99s+8BzM5xx44cbP7mm7ymy4MPsnXVTVA6KRBc wE6uQ7f7i8jJLjpwgK9vvz7Key3HsVSEiYoOHfg4iKVi4ULH3efNVAG4r6mra30xFQDwKwD/SURX EdEoAP8PQCcAD+byS9q04RMQJiqC3B+APvBv40bu6KPGUwB8Ix065FzouiBNdxuiBGpK5oe3wueY MXxB7tnDncYzz3CpXRMriwycpmml8+ezeXrgwPiiwm+GYRJTsWNH+JLVpqIiaP2PMPfHsGE8GzUJ Yps9m1OAO3ZkC5iXKKJCOlk/MepX+MqP0lIOhvSKiijVNAVTUdG1q97HnG8qKnhw0RViko5eZ6kQ t6kfQSXegfC0YMA5v0ED8803O+udhNGvH/9W9/VuWhp+woTciwqAXSD/938cUN69O98bbtETJirC LBVdujStNCqiwq9Et+C1YkYp0S2IuPcTFYBzz+zaxdehBFLrJpxyXFudqFBKPQ7gRgA/AjAfwDEA zlVKRcxzCOeEE/xNpGGWCunYdJ2zdPxxLRWAcwEEiQoJ1DQNkvzwQ47G9g52X/gCB2V+//s86G/Y 4NTvD0P2ZWqpmD+fg8RGjowvKjp10i/hHWapkA4mKGtn8WI25Sft/tCtU6GjtpbP2znn8MxMAoDd bN7sZAOFMXAgWxZ0x37/fr6eolgqAHaBzJnT+DqMUk1TMBEVQbUj8k1QWqmIBp2lAgh2gQRVYwXM LRXduuktnHHQVaTduJF/X5jbc8IEtoSGiXlh61a+h8NWdj7lFD6OvXqxtaK+vvF1HbSYGOBkcPlZ KnTuQVNRobNURHV/XHQRB7UH9UWy/LkUpJMYGZ2oiCP0c0HqogIAlFL3KKWGKKU6KqVOVkpp5mfZ c+KJXAxEd4Nv3conzK8mPpG/++Hdd/nEmQxMXtyiQtJJ/dJky8o4M8RktVSALRU61TtsGPDjHwO/ /jWX7i4tNfd/RnV/VFXx4CjpvTrq6/U19QUi/YAeFlNxwgksRp59tul7Bw7wSpbjxvE5+MIXwn9L WKBmkPtDXFphouLVV/lxyhS2rPlZKvr2NbMstWvHokFXBE7SsuOIis2bG68JkpSoCKpfkG8GDeLj qcsACbJUAMFuSxP3h9RR8CMonTQOuiUEwjI/hAkTWFCYlnc3PceTJ7NIfuABvj8A7nuFMEuF9DF+ lgqdCBgxgn+3WKeCXLTe7I+olopOnZyVX/2Qe0buPUk9LS9vOuFs1aIiX5xwAj+6L0QhqEaF4Ccq ZLnjqEGaQOObd/ly7mCkUJXu+wHzuIqgFVO/9S0etJ5/nlcaDFpgyE0UUXHgAM9YRFSsWqW3ssgs Iaicsi6dM8z9UVbG2QAPPdT0vb/9DfjTn4C77+Yb1KS0up+oUCrc/VFUxGIxTFTMmcMd2YAB7E6T a8KNaTqp4FdZ1iTwTsfpp7NAkkI9AIuKtm2jzc5MRYVJ2e98UFzMVkSdpcKv2JHcs0GWijD3R0mJ kyHih7fEdLboFuQLK3wlyETG1AViKojKy9ldN2UKt2/IkMaiO2jdD8HPlRRkqQCcMcPUUhEnUNME sVQsXswiV/q+sjJ2o7v7pzDre1K0KlExeDAP4rq4CpN8Xp2oUIovuDjxFIAzs6mp4WhrIrao+H0/ YCYqtm3jQcNPVLRpw1H9HToAl15q3l65iE1ExaJF7GaZOJFFxc6d+kHE5AbUdQYiKoLMsVddxefb O2uaPZtnVNOnm+XtA/6D4L59HIgX5o5wr4jpx+zZTpEpCcKS8tNCrkRFlNgMNx07crnuF190XpP7 J4qwluMZ5M4rJEsF4J9WWlfnZAG46dKFZ6BB96yJ+wMIL7eey8FD+iW3+8M0u6dbN77mTEVF3HN8 3HHRLBWA/8TArw+SyYa4zU0sFQcOcN8U1VJhgttS4U4P1o0NW7bwtZMrl5gprUpUELG1IpeiYu1a HsDjxFMAPLj36ME3xFtv8YXiV4DHb1VTHRKkGRT0M24cf++nP23e3qIi7ihNRMX8+bz9Mcc4KbI6 F4iJqNBZKvbs4TiXoLUmPv1p3rfbWqEUWwTEhGpKaSnHIXgr8oUNCoJ78SsdNTUsfmR9jVGjeEDy ukBWrGiazhmEiArv4L15M4tE06p/bs4/n1NfpSBZVRXPHKMgy58Hlc8vNFFRUeHv/tCtYAmEp5Xu 3MnC1i8Y1URU5Nr9If2Su6/ZssXcvTVhAt//hw9z0PH//I//tnHP8fHHc8zRkSPhi4kJfvEpfu6P nj35vn/7bb4X/c6Re8IRdd2PKMiiYosXN14kTGcRS6PwFdDKRAXAs+YPPmj6elxRIUo5rqUCcGpV vPWWs3iOjrBIfjcyM/VbbVQIC47SYbr+R1UVz+w6dXJEhW7GbGqp0Lk/wtrfvj1bYh5+2EnrW72a faRxRAXQtFMKM18LI0aw+fbAAf374icVIVhc3DRYc9s2jgvyc5HpGD6cz5c3AyGqxcPN+eez33zO HBY5L7zA9WCioCs77KXQRMXQoRyLcvhw49e9i4m5EX+3H2HxOEFZC0KuRQXQtMz9Rx+ZD1LHHsuW iltvBZ58srFVy0vcth93HE8sli3jY3j4cHaWCp37Q9JKJeYubL9SrwRIzlKxeTP3YW5RIefFa6lo VaKCiAYT0Z+JaDUR7SWiFUT0w8x6IIkh9QK8QU9xRcW8eezbyuaG7t2bL5KFC4NFRZs23HGZiIr6 ep45m8ZKRMF0pdL333cGv+7d+caLa6nwc3/4BWm6ueoqHggkDXLOHJ5R6oqghbUBaNophQXaCSNG 8PM52SEAACAASURBVHXnF7C6bJkTeyF4TbxiUo4qKoCmgi4bUTFiBO/3xRe5GFavXmhU3daEsEXF DhzgY1tIomLQIBan3kJmQYF5YfVlwtaNCbNUKJWMqHDXedm9m+8300FqwgS+T37xC2elWz/iCkdx D777riPIg7I/gOiWCsCZmAWJhO7dWdTs2ZOsqOjRg9vf0NDY/VFayuNDqxYVAEYBIAD/CeBo8Gql 1wH4SZJfWlbGJ8Q9Ozp82L/8tvezO3c2Nn9nE08h9O7Na2MoFSwqpA2moiKp5W5NFxVbu7Zxeqxf BohJW/3cHyai4sQTefb/k5/wMZ49mzskPzeTH36DYBT3B+DvAlm2jGfCbhPrSSexGJDsivnz+TeH WaDcJCEqALZWPPMMFyK6/vrovtswUWFSvjnfSE0Pb62KMEtFWEppNqJi5062GiUhKsRSIe03dX+I 6L38cuBHP+L+VleITpZHiHOOS0rYHVVZCUydyvV4JBjfj6iWCsC514ImPu4JhwRAJxEg6W6D21Ih 2Ymt2v2hlJqllPoPpdQrSqm1SqnnANwN4PNJfq8uLkEqWppYKtyfbWhg03TceAp3m3bv5gszrDiN aQGs7duTExUm7o8jR3ggdKegBYmKJC0VRMBPf8rlyF94IV48hbQB8LdUhLk/+vXj9gaJCm8Wiqzb 8q9/8eP8+Vx+PiiOxEvXrnyNJSEqNm3iqPPrr4/++TBRUUjVNAU/UZGNpcJvPSKhUyc+336iwqTM dRzc7g8RtaaDVL9+wBtv8MKPkvaos1aI0Ijb9uOOA2bN4mypOXOcdYL80FkqDhzgYOtsLRUAX8tz 53J8UZjVJA7ShrIyfU2U1m6p0FEKIMDDmj1+UbJAdFGxfDkPrrkQFQDPqIPSKmVbU0tFEoFCgJmo EBeTOwVt+PDcBmqaxFQIF1zAA/S113IHmYSoCLNUELHlJkhUeEVl3778mqw5MX9+NNeHoMsA2bw5 Wl0JL2ecwZkgl14abz9hy58XoqgoKeHz7F1sK8hSITNIvyyXMFFBFFwAKylR4XZ/xKl5cMopbHU7 6ij+DboA12zP8VVXcY2ZV14xSz3WWSrkeZilIiymQvb11lv825NA+km3lUJwi9cjR/jctWpRQURH AfgGuEx3YugsFVFFhZw4icrPdm0WaVOY60PaYCIq0rZU6Er6DhvGnbF7/YuGhuBlz4XSUp5NuKv0 mVoqAO7U7rqL29WmTbTVNIXOnXnG6O2Udu3ifZqY//0yQA4eZMGls1RNmcJFsfbu5dleLkTF/v08 mGdjqejUiTvzX/0q3ufbtOFrqTmJCoCtFVEsFeXlfLz9slz27Ik3wxYkviPXA4jX/SEZIVHp2JFn 7jpRYVJePIhzzwWeeMJ8AqUrJBaWrWHi/pD3PvqIA9RN+vI4yPHXrTbrdn/U1vJvbBGigoh+RkQN AX9HiKjC85n+AF4E8JhS6n79nnODX0ALEK703SuVAhxPMWJE9oN3UqIiTUuFn6iQJdCFHTt4Bmci KmR7wTSmQjjhBA4mPOOM8E5cB5G+VoUUvjKp0eAnKlav5tmFTlSccQZ3yLNm8fGLIyqk+Jgg5uxs RAXA12w2Zl5JkdNRW8tCLU6GUpJ4RYWs7RFkqQD84yrCLBVA8PofmzezRSDXgYG9enHb9u3j66Ws LNyS6sfIkXr3R76FY2mpU6xO0K1Q6qZ7d75/dCtHu/cLsMg+dCg5UWFqqUirmiaQzNLndwN4IGSb j43gRNQPwGwAryulvmr6JdOnT0eJJ9Ju2rRpmDZtWuDnioqaLje+datTpCaI9u158HCLimyDNAHe xymnmIsKKekdNIglGahpIio2buRZvbuzkKDN5cud4EHTnG53Wp3sc+9es7LBbh56KLjccRg682lY SqCbESN4QNq3r3HRLpnF+YkKAJgxgwWxd4E4E4YP58FHrDtxC1/lmqCqmlJNM06l2iQZNKhx7ZDd uznYO8hSAXC/oVvXZ/fucFERZKnYtMm8bHsU3Ot/RKlRoWPkSH1aaU2N2bofucLdj3jdb0H95Qcf BBfZa9+e33/xRX4Mqg+UDT16AD//OXDxxU3fc8dUiKh4++1K/PSnlY222xG2kEyW5FxUKKXqAASs yeeQsVDMBvAugK9E+Z4ZM2Zg4sSJ0RuIpnEJUQJaRA3u3MkdS9Q0Oh0VFRzUZPr9hw+HWyKStlSE pZRu2sSdkDugcNAg7kAWL+YgP8BcVOgsFVHcH0JxcbQgR107dKLCZHEvwDGlLljA4qBjR8ff3KWL fpAvL+eZyWuvcWcVZ8VOEXGrV/P3NhdRUWiuD4AtFU895Tz3W0xMCKuEa2KpCBMVUcW1CW5XcZQa FTpGjQL+8AeexbvT3JNIhQ1C14+EWSoAM8tmaSlbYU8/PZlUfoD7iptu0r9XVsa/a/9+R1T8539O wze/2XiiXVVVhUnZ+uwDSLNORT8ArwJYB+AmAGVEVE5EiRtsvBkUcUTFyy/zDXLhhcm00Q+vC8aP tFNKdesEFBXx4Lh4sfNaHEuFENX9kQt0oiJshVI3Yok48UQeSK69lp9LkKbfbFMCS+O4PoCmaaWb N3PHl0SEehSCRIUI00Jj4EDuP/bt4+d+i4kJPXvytZ+N+yMNUeFe/yPbTIKRI3ky5A0Wzrdw1PUj 9fVsAcy2L5E+LKkgzTDciQRbtphZ35MgzUDNswEMA3AWgA0ANgHYnHlMFJ2lwlQti6h47jlgzJho 5ZJzgcn6H1JKOklLxb59TasKuvHr6MaM4TVBhKiWCndnECX7I1f4xVSYuj/Kytji8NhjwNe+xjUe qqvZJRSUTiwukLiiok8f7mDcoqJPn/RdC336OPE3XhYt0vuO00ZWdZVVXsMsFeJyDbJUZBuomaSl IlfuD6BpsObWrfkVFX6Wiu7ds78XZN9JxVOE4R4b0konBdKtU/EXpVSx569IKZWFcdqMbC0Vmzfz 6p5R1szIFSaiIixFKltkAA1as8FvmeSjj2ZLhaTX1dc7KXNBiCUgW/dHtugsFSZrDrg59VT2id55 J4ui3/5Wn07q5qyzWJCdfXa8dhOxm03WhMm2RkWuGDoUWLOmabrl7t3sqvFbEC9NvLUqwiwVQPD6 H6aWCr8y3RJTkWs6deK/XLg/+vblfsMbrLl2bX6vQz9LRS76SpkYnXRS9vuKg5yfBx/kPrbViYo0 8c4a1q1zZh9hlJVx0E7UhbhyhS57xUu+REWQCyTIUrFrlzPLq6/nGz0sqry4mL/Xa6koBFER1y/c tSu7P+69lzvuIFHRoweXcdelkply6qlsJQEKS1Ts3t10XRJxkcUJSk2aAQP4UbKY6uqc9Fg//Nb/ OHKErYpx3R/79vE9lISlAmCxvGYNf082gxQRX99uS8WWLcCHHzpWuHzQoQPHJLmPZa5q+vTowW7G fC81LvTrx+vv3HcfT3rTch22SlFRVsYdwZEj/Fhfb172uKyMZ1W9evkvUZ4kuuwVL0mukgeEi4oD B1h0eWMqAGdQlEFj5UrzDtGdVqdU4cRUZBNsdsMNTtn3sGqq2TJ5Mrs/Nm4sLFEB8MDlZsECHoiy EVFJ0aEDn2+3paJHj2DzuZ+lYs8efjQRFbt2OYviCRJwm5So6N2bxSyQ/SDlFRUvv8yP55yT3X6j 4r2HcxXUfsstbCVIi6Ii4P77+Tp79FHgjjtSakc6X5suvXs7ueVSM0CX6qVDBo8LLsguiyAbwqpq pm2pkBoIuo5uyBAWAosW8Tl44QUuYGOCuzM4eJBTQ9OKqRBz/aFD/DyuX3jAAOCSS/j/KOt5xOH0 0/nxX//ic1TIomLhQp71pRFoZoK7VkVdXXiNCL/1P6KICqDpPZd0Fo9bVGRrTh81iicTEov10ktc ODDfM3uv1SdX7o+jj45XVC/XdO0KTJuWnpWvVYoKd5RsXFGRhuvD3QYTUZGUpULiG/zSSnWFrwR3 Bsj77/O2phk0br/y3r38mIal4vBhJ54k27ULAM47f+CB5AVSWRl37LNn8/VTCKKie3c+r97y7QsW FGY8hTBokOP+2LYtPItm6FCOH/AGN4uoMAnUBJq6QILutVzgnsBka6k4/3y+f598kicEL78MnHde 9m2MSlKWCgvTKkWFOy1zxQq+WUyj9086CfjhD4FPfSqx5oVy1FHAO+/4F3HKVYqUHxKUqFt1EHBW 6fPr6I4+mi0Vzz3Hx910CXK3+0M643yLCulYxRqTi3UX+vcHvvzlrJplzOTJwNNP87VTCKICcII1 3SxcWJjxFEJUS8WYMewW9KZUmloq5FzJvSVs2sTumKSsknKvt22b/cA7aRK7On76U16IsbbW3EqZ S5KyVFiYghAVRNSOiN7PlPFOqBaZg9dSEcXs3LEjcPvt0Zd5ziVXXsnBpbNn69/PVYqUH50783Hw s5Zs2sTBUH6d0JgxbKl47jnuZNq1M/tenaUi3+4PiRORzj2pxZySYvJkJyiyUEWF5NkXsqVi4EC2 VCjFAjPMUiECSVwJgli8wq5jdzVaN5JOmtS9LhOwsrLcfMdtt7EVavp0tnimkSlhLRXJUhCiAsBd AKoB+Kzjl1u6deOBTCwVSfuyc83JJ7ML4c9/1r+ftPImCnbBSOErv07o6KPZdfLOO9GKh7ktFWm5 P8T6ImbnbBdEyjeylDpQOKJi2LDGokIG3kK2VAwaxILg6qt51h2WwVBW1jg+QTC1VHTqxELGKyqS SicV5LrOVSbBaacBn/gEVxD+5CeTqzwZhNtS0dCQ7OKLrZHURQURnQ8uhHUjgLyU4iFyfIXNUVQQ Addcw6WCdS6IfNwkYaIiyMc7Zozz/wUXmH+ne4aRlqjo0oVFqVgq8r12Qbb06+csRV0o1pWhQ9ny JpkNCxaw6C/k+1JqVTzyCIv7L30p/DNjx8YXFQDXGdGJiqTiKQDH/ZGrmgdEbK0A0omnABr3Izt3 mi1oaDEnVVGRKcn9vwCuALAvn99dVsYm+J07C7vz8uPKK/lmeOSRpu/lKu86CL9odiC8oxsyhN0n xx8frbNyuz+idMa5pl+/xpaKQhmcTTn9dD7ubZJYTjAGQ4dyFo0c04UL2RJXKO3TMXYsxwPMnAn8 x3+Yf8ZPVJisLZGGqBBLRS4LKZ13HgdrXnll7vYZBbelIulMudZI2paKBwDco5San+8v7t0bePNN /r85iorevYHPfAb44x+bDu5pWyr8qmkKRUXA5ZcD118f7TtLS1kENjSkZ6kA2LXjjqlobqLi+99P N5/eizettNAzPwAOMH7ppWiWtrFj2TIqdUkAFhVFRWaLxFVU8OfdAdpJ1xvJtfsDYGvFRRelF5fm tlQkXdOnNZLzuQAR/QzAzQGbKACjAZwHoAuAn8tHo3xP3KXPBSm3DTiLLTU3vv1t9ksOGsS1Dn73 O1bh9fXmKbJxKSsD5szRv6dbTMzLn/4U/TtLStg6s2tXuqKiXz8nBbI5ioohQ/ivUJC2rFnDgXsL FwKf/WyqTUqEsWPZxbNsGTB+PL8my56bBEFWVLAgqa7me37vXh4cm5P7oxAoKeE6N/v3c5ov4FRJ bWlUVlaisrKZL30O4G6wBSKINQCmADgZwAFqfEfNI6K/KqWuDtpBNkufA44C79ev+fjDvZx8Mncw 993HfspJk4BvfjNdS8Xu3WxNSKKjcy8GJGbjjh1z/z1h9O/vlLveurVxjIglOh078kx4zRqgspKv oTTrwCSFXCcLFzqiwmTdD6Gigh+XL2dRkXQ1TYBn8JdfDpx5ZnLfkW/cixMuWsTpwC1JNLnRTbST Xvo856JCKVUHoC5sOyL6LwC3uV7qB2AWgIsBvJPrdnmR2WVzdH246d4duPFG7ow//JBfy0dMRVkZ d4jeTlHqNyRhknV3Bnv38mAUtmZIEkhMhVL5X7q5pTJ0KNdw+Mc/2KVQiOW5s6WkhAM83av0RhEV Q4ZwnMny5WyhTLrwFcAWFF3cVnPGvajY4sUs9tJerbclkVoolFKq2v2ciPaAXSCrlVJ5Wf4caP6i Qhg3jn3RDQ08k8+HpQLgQdXdKUo2ShIDrbszSGMxMaF/fzaf1tU1T/dHITJ0KPDMM+za+vWv025N cniDNaOIijZt2FUrwZpJl+huqbgtnosWpbdUeUsl7UBNL3mpUwG0HEuFMG4c3yASyJgvUeF1gYio CCsGFAev+yMtUSEzw5Ur2VRvRUX2DB3KgmLCBGDKlLRbkxxjxjQVFSaZH8LIkY6o2LSJrXWe0DJL CHK86uo4vsW6L3NLwYgKpdQ6pVSxUurDfHxfS7RU7N0LVFXx83y4P4CmokKqNSYhKqQzqK/nKPg0 LRUAr10CWFGRCyQD5MYbW7YpeuxYjh2RSpoSqGmKO620ujrZapotFZmczJ/PpdNboqstTQpGVOSb sWOBSy91Vm5s7kgK3r//zY9JWyokKlxnqeja1bz0dhQ6dODUu5tvBh57DPjqV3P/HSb06cMduRUV ueOCC4CbbgIuvjjtliSLDGCyBHgU9wfAomLNGk5pfvDBwlgVs7nRtSvfv1JSwIqK3FLA5WWSpUsX Dm5sKfTpw9YByUpI2lLRti1/n85SkYSVQujZk2d3Tz/NdTrSoG1bFhIiKmygZvb07curtbZ0xHUm tWX27AlfjMxNRQW7N7/wBQ4Uvuuu3LexpVNUxFVx33qL+8lc1uCwtGJR0dIgYmvFW2/x83xUiNOl lSYtKp54gjuBYcOS+w4T+vVzsm2sqLCYIteKW1REtVQAwNy5wF/+Yq1kcSkt5dLwn/iEdR/lmlbr /miJjBsH7MsUO8+XqPBW86ytdVwjSXDKKekLCoDjKvbt4+OchKvH0jJp145nxyLGowZq9unDsUXn nJNemeuWgMRn2SDN3GMtFS0Iiavo3Dk/q//5WSrCqmm2BMSMbWeKlqi4xXjUQE0i4OWXOcDczrDj I5MuG0+Re1K3VBDRhUQ0l4j2EtE2IvpH2m1qroioyNfiODpRkbSlolAQ4WRFhSUq5eWNLRVRK/qe cIJdqyJbxFJhRUXuSdVSQUQXgVcpvQXAbABtAYxNs03NGTHl5avDSSOmolCwlgpLXNyWijiiwpI9 MvGy7o/ck5qoIKJiAL8G8N9KqQddby1Np0XNn65dOd8/n5aKmhqORi8q4mj01iIqxFJhgzQtUSkv 51oThw9zZVYrKvJPSQn/2WqkuSdNS8VE8HofIKIqAH0AvA/gO0qpRUEftPhz2mn5Ww+jrIxXXayv ZyGxaxdw6FDrcH9YS4UlLmLhk0XxogRqWnLDFVdwrSIbl5J70hQVw8BrfdwOYDqAdQBuBPAqEY1Q Sm1PsW3Nlvvuy9+N4q6q2bNnstU0Cw0bU2GJS3k5W/h27uTn1lKRf048kf8suSfnooKIfgbg5oBN FIDRcIJE/0cp9XTms1cDqAbwRQB/Cvqe6dOno8RT9F63zGtro00eZaIsF7x1KzB6tLPuR2uwVPTs CXz968DZZ6fdEktzQyx8GzbwcysqLElRWVmJSk+Vxx07diT6nUkMQXcDeCBkm9XIuD4ALJEXlVIH iWg1gEFhXzJjxgxMnDgxdiMt2eNd/6M1WSqIgN//Pu1WWJojIsbXrOFHKyosSaGbaFdVVWHSpEmJ fWfORYVSqg5AXdh2RPQegAMARgJ4M/NaWwBDwK4QS4HTrRsX82mNosJiiYuI8dWr+dGKCktLIrWY CqXULiL6fwDuIKJqsJC4CeweeSKtdlnMIWqcVlpby0sxp7V6qMXSHPBaKmygpqUlkXZFzRsBHALw EICOAN4GcKZSKlmnjyVnlJcDmzbx/60lndRiyYYuXXjFXWupsLREUhUVSqkjYOvETWm2wxKf0aOB hQv5fysqLJZwxMJnRYWlJZJ6mW5L82b8eGDBAi6A1VpKdFss2VJeDlRXA8XFdkE6S8vCigpLVowf z0V8Vq2ylgqLxZSyMq5A27mzLcBkaVlYUWHJivHj+fH9962lwmIxRYI1bZCmpaVhRYUlK8rKuH7+ Bx9YS4XFYoqkldp4CktLI1VRQUQjiOhpIqohoh1E9BoRnZFmmyzRGT/eigqLJQpiqbCiwtLSSNtS 8TyAYgBngBcY+wDAc0RkV1RoRowfD8ydC+zbZ90fFosJ1lJhaamkJiqIqCeAowDcqZRapJRaBeAW AJ0AjE2rXZbojB/vrPthLRUWSzjWUmFpqaQmKjLlvJcCuIqIOhFRGwDXA9gC4L202mWJzoQJzv/W UmGxhCOWChuoaWlppF1R82wATwPYBaABLCjOsxU1mxcjRnCFwP37raXCYjHBWiosLZWcWyqI6GdE 1BDwd4SIKjKb3wMWEp8AcDxYYDxHROW5bpclOdq0AcZmHFZWVFgs4fTsCRQVWVFhaXmktvQ5EZ0F 4AIApUqpPZnXv0FE5wD4EoC7gnYwffp0lJSUNHpNt8yrJT9IBkjXrmm3xGIpfIqL2VVoRYUlSSor K1FZWdnotR07knUEpLn0eUfwiqQNnrcaYGBBmTFjBiZOnBirjZbc8/nPc2VNWx3QYjHjttuA449P uxWWloxuol1VVYVJkyYl9p1pxlS8BWA7gIeI6McA9gG4FsAQcKqppRlxwQX8Z7FYzLjhhrRbYLHk nrSzP84D0AXAKwDeBXAKgKlKqQVptctisVgsFks80l76vArA+Wm2wWKxWCwWS25Iu6KmxWKxWCyW FoIVFRaLxWKxWHKCFRUWi8VisVhyghUVFovFYrFYcoIVFZbU8RZnsTRv7PlsedhzajElMVFBRLcS 0RtEtIeItvlsM5CIns9s8xER3UVEVui0MmyH1bKw57PlYc+pxZQkB/C2AB4HcK/uzYx4eAGc1noS uDT3lwH8KME2WSwWi8ViSYjERIVS6g6l1G8A+BWyOhfAKACXK6UWKKVmAfg+gK9nlkG3WCwWi8XS jEjT1XASgAVKqVrXa7MAlAAYk06TLBaLxWKxxCVNi0Af8LLnbra43vvA53MdAGDJkiUJNcuSb3bs 2IGqqqq0m2HJEfZ8tjzsOW05uMbODknsP5KoIKKfAbg5YBMFYLRSanlWrQpmCABcccUVCX6FJd8k uWqeJf/Y89nysOe0xTEEwJu53mlUS8XdAB4I2Wa14b4+AuBd+Lfc9Z4fswBcDmAtgP2G32WxWCwW i4UtFEPAY2nOiSQqMiuL1uXou98CcCsR9XLFVZwDYAeAxSFteDRHbbBYLBaLpbWRcwuFkFhMBREN BNADwGAAxUQ0PvPWSqXUHgAvg8XDw0R0M4C+AH4M4PdKqUNJtctisVgsFksykFIqmR0TPQDgKs1b U5RS/85sMxBcx+IMAHsAPAjgu0qphkQaZbFYLBaLJTESExUWi8VisVhaF7YktsVisVgslpzQrEQF EX2diNYQ0T4imktE3uwRSwFCRLcTUYPnb7Fnmx8R0SYi2ktE/0dER6XVXktTiOg0IppJRBsz52+q ZpvAc0hE7YnoD0RUS0S7iOhJIirL36+wCGHnk4ge0NyzL3i2seezQCCi7xLRO0S0k4i2ENFTRFSh 2S7xe7TZiAoiugTALwHcDuBYcHGsWUTUK9WGWbQQ0XGZBeV2g8/ZSnDKcJ/M36mubW8G8A0A1wI4 ARxfM4uI2hl8z4NEtCtHbX6QiNbkYl+FChH9MDNA9Ij40c4A3gfwNXA9Gu9+Tc7hrwFcCOAiAKcD 6Afg70T05UybBkX+QQbIb/a8tpaI7k/i+woNIpqcOb6nu14OPJ8ZXkTje3aa533t+cxh0y3mnAbg dwBOBPBJ8NpbLxNRR9kgm3s0UkuUUs3iD8BcAL9xPScA1QBuSrtt9q/JuWoDriOyGMA1AJ4E8H7A 9psATHc97wZgH4CLDb7rAQA7c9TuBwCsSvv4BbSvI1ignZ7FPm4HcARAjyz20QBgapRzmHl+AMDn XNuMzOzrh5k2DUrouN0O4LDntdUA7kv7nObpupmcOb7a68bnfD4A4B8B+ww6nyek/Ztb+x+AXplz carrtWzuUeNz2iwsFUTUFsAkAK/Ia4p/8T8BnJxWuyy+DAcwCMAvlFJ/Bi8qNzxjal1FRI9kMn9A REPBsyD3ud0J4G3k/9xeA17krlDpBB4gz0i5HY0wPIfHgcWme5tlANYDSNrV9WPwsXMzEjxjs/hz RsaUvpSI7vFYtybB/3zaPjl9SsEWqG1ATu5R43PaLEQFWHUVQ79WSJ/8N8cSglRG3ZF5nAte1v5c ANcBGArg30TUGXz+FArg3CqljqjCrpFCaTfAh0bnkIhkAHefw3IABzMdmZst4EUEE0Mp1aCUOuh5 7ZBS6kiS39vMeRFcEuBMADeBrR0vEJFcg33gfz5tn5wimXP0awCvK6Ukds2knw26R43PaXMRFZZm QqY+yavgC/jJjC/7ZqXU3wH8HsB3/z97Vx5fVXWtvxXCEAwEQkgYwiAgoNYJVBzqgLNtxVarNWrr UNvX1mpLn6211Q62vvpsLfra2kltHbFqa0utVXEW1KpEEBlE5kEgQEJISEgI2e+PdZZn3333Offc m3vvybC/3y+/m3vuGfbZZ5+1v/2ttdcG8AkAgwFcKIcBeFM7xxjvt0lE9CUiWklEe7xApCMjlOFw Iqohohe0Dg5EdDYRvewFM9V756vSfk+KqSCi67zYkO1ecNPbRHR+xLr4OBE9SkTrvPKvJ6JfElE/ Y7+XiOgFy/EflcerkxpwvUpcRDsR/UDb/xQiepWIGomojoj+TkQplRciGuPV8btENFTbfoF3v01E tI2IHiCiEWYZwYohADxERLsAPKjtMoSIngZwN4B+3r0eF6FMM4joSU/d2uOV70YiSrJZRDSNiJ4i olrv3hcR0bXa7xnHVBDRRV4dSJt5V85NRPt7z+AbluOO8377nLbtZO9czUT0ARF9OaBs7UT0f0R0 LhEt9u7/PSI609hvtKcgLPee0XavvY2JcF/W+5e2qJR6VCn1pFJqiVJqDoBPgf3wJxPR5QAecevW rQAAIABJREFUAg/09GO/5+0zLtX1HXKKuwAcBOCiOC7eVUjFdrBPsMLYXoHwdUIc8o/fAbgFTBTu BHCp9x3wAsKUUvUAVoBl7y3evr2SzgSMBHCdd87vg/PV/5WIbPsCAIhnBD0PYAGAs5VSTd72ywE8 CZYF/we8MN47YPVEoJActHYtgGoAN4EJ0V4AjxLR2WGV4OECcBzEXeAAqacBXAPgPmO/oEA5vTzb wCoPAfgbuF4v9f4HEZ3mnb8M7CK5HcBxAOZRSAAkEY0H8AqAnQBOUkpt87ZfDuAv3v1+F8AfAJwH 4FVLGXuBbUkDgP+GH9g1CTzSLQb76BWYTL6gkcMK+IqWjsu9890OfgZvA7gZwM+M8p8O4GWw2+oO AN8C8AI42Ewvo1nHKRP0eOd+GLw0wXfAbeZFcL1CKbUGwHzwWkQmLgGwC8A/vHMdAR79Dwa3pXu8 z3MDynICgN8AmA3g2wD6gkn6YG2fowAc4+1zDTiR4KkAXjSJqwVhbS55I9/rdgATlFJ/Bi+z0JuI Jnn3dwiAHwBoRA5TQDuEg4h+DR60nayU2qz9JHY2rA/dAqAPEQ0M2Sc14g4oSSPwxBaouQHAt+Mu m/tLelYngYN7zjO2vwg2+MVgX9/V3vYmADu0/Q4GG7d6AAO17eeAyeUntG0fBWoCOB7cOf4DQG9t n4HeueYD6BNS7j8BWG1s62t87wXgXQBzI9RDX8u26wG0Aag06yVVeQAM8er1B5Z93wGwGUCJtu0Q 71p/0rZ9FKgJ7og3gjsI/bhCz4gs1OsLbKzaoQX2eWXcByYAZhBYO4AF2vcWMNFaBSZAgYGaAXX3 W+86vb3vBeCAy1UABoQ8hx8C2GdsWwPg3hTPbxaAuhT7fMkr+0Sj/mqgBYICmOOVvULbNg5Aq6Vs 7eAAurHGs2wH8LUUdXS0t98lxvuYEKip37/xPIPaYqV3jk9538eD39Fq8EyDarA9doGaMf2BleAN AMYF/B4UqHmB9r1nBGp6+CWALxHRFzxJ93fg4Ks/x1oqh5Qgop8TT2frC264T4BHwI94uywBMIiI zvFGPL/0tj+gEv17r4LJZJK8SkQngzuquQDOV4mxEaeDicytyvCtp4JSqkW7xiDwSPNVAFPSPLY/ EQ0Bd+AF4GnRWQERDQNwGJg8fDTqV0otBtfHJyyHHQJ2U60GcLp+HDhgqxzAXVJfxPEvm8CdEQEY R7yej7iX/g/Ajdoz/Ie33/95990b7Bb5BXhW0EkA7gUTvQSXk1d2ve6KvXPM864nLp0jwOrVHUqp rEwrNrATwH6m28HAo2BDrKsVZ4EJ4IMA4LlsTgXwd6XURz5tpdRqsHphw1yl1Fpt38Vg5WOctk2v o0LiQMrVXrlTtU8CMJiIDve+y/PsC6CAiG7z3EpjiOhUAH8Hq4vPeNdeBW5bMr3/UO+685VSb8Ih ryCiu8Bt8GIAu4mowvvTFas7kPiO3g8eVPwD+Chw8x4Av/RcdVPhvaPpPNOcLSiWbSilHiXOSXEz WI5ZCOBM5cm1Dp0alWAZeTiYTPwNwDGKV5wFgPfArpDfg90Tb4FHQev0kyildhLHiekSMMAuhn+B JfLPqeS1Y8Z7n0vSLTgRfQrsejkcbHAFKdenIZ7h8hOwwqKXWSG7wYniQ19h+W0ZgDOIqEgp1SxF A/BPsBpxlvJcRMb5lHG+I8GjWAnUu937XAWervl9ItoL/xmu8M7xJ+PcBJ4ZBPBo/r8AJLmSiOgg sNtsOpiICvS6k9Fy2s81Iu4CKytPEdGH4EUQH1VKfbRktFKqnoj+CTbmP/Q2XwJgk1LqRe97ObiN rrRcw7YN4BGniTpo7cjrML4HdhWNhP9sorSvvgA+DWCGt788zxoA74NJwhfAz/JDMJn4gUHWzwGw HMCB4Pd6OYCrU1zXITf4Cvg5vmRsvwJMHqCUuo04xkze0VfBLmJ9oDUTrEg9Dm4jTyPNZ9plSAUA KKXuAr/oDl0ISqkqACAvGFEpdbGxSy+wzDzO228MePQaFJ1vzoLYA+ApsH/6bDDB6DCI6AQwi38J wFfB7oW9AK5EciIg89gCcADjIHAcwPvgZDMjwTEVukoY5N8OjB3pIBTYaFwGjsv4Q8oDlHoZPIL9 G4DjlVIVwEeBucO8fX4EdmVIsrrZ4BiLRQGnfVkptY8o8XESUQn8OI8bwaPvPeBpjLciT7FgSqlt 3kj+THC7OhvAFUR0n1LqCm3X+wF8loiOARPkc8BSdEcQpe3/GvwMZ4Hdw/XgZ/sXpK6jZrCydWXC yYleAdCulDorQhn3A9APTLBfV0pdEOEYhxxAKRXpndDf0YDfW8DxOddkWpYuRSocujzqwNNJTaSM Vk8BBR4dzgHwGBGdpbyVcD2sAhvjj4E7qKg4D2x8z1RKtclGIvpihGMPAXAAgM8rpR7Sjj3Nsm/U egkiH6LoTLL8NhnAdk2lEHwb3HHdRUS7lFKPaL+tA9fXJCSPfCbBUJACsMr7bFBKJc1sSYGTwSPy c5VS82WjF1RqXkOea7rXiATvuf/L+wMR/RbAl4noJ577AuDR3HZwG3wTrEroM2BqwKTIlo/jgA4U 73wAf1ZKfUc2EFFfMJFNhbqA/cbAf3apcBfYrXgDgFuJ6JtKqTsiHuvQTdGVYiocuj5WAZjs+ccB AJ4f9/iOntgz/ueBXSdPUuLU02fBQXI3eEY3KvaBO/KPyDcRjQUrIlGOBZLfsW8imRxErRdxUyR0 BkopCaq8TI/cJqKPATgDduVGgZM/PQ7gfs/NI3gb3BF+hTjxnJzvbLDU/aTlfCYWePd1nRePkQAK T6+/D0wWPqo74lTCXzP2qwYrWt/01I2sguypzBd7nx+1I8X5LmYD+BzYFbFYKfWe9ns7WLX6tBf/ IuefAI6/yBT7kNy+rkU0hWsVgGOISG/bnwIwKsqFieiz4Gnf1yulbgPHR/2U3Jo9PR5OqXDIJ+4F T/l7lojuAcfG/BdYMjanMaUNpdQezzC+AOBpIjpJ8Tz7BiKaCeCPAN4ioofBI7XDABQZUraOf3nl fcY7pgLcsX0A9jmHYTnYcN9ORJXgILvzYR8dRqoX7/6WAvgcEX0AnkHznlJqCVh5eArAG945+oOn sdYB+HFAfSkiuhQchPcYEX1CKfWiUqqNeJ2Ae8FJymaDXRzXgpWelKNR79xXeWVa4rlJNoHdP9PB Un0QOXvNK/f9RPR/3rZLYZAx7xpfBStUC71rbAarMwcppaJM+w3D3R6xeAEc0DYWXKfvKKWWGfve D66fk8HTT038CEzwXvPUjkKwr/o9cDvMBE8C+DxxbpCl4KyHp4JVExOmy/BuAJ8Ft+1HwfEplyI4 xsM/ES8w9VsAz3suaYDrZTrYtdfhQYJDF0a2p7W4P/cHfwrbeZbfqsCdcjN4NHsajDU3wBLsPmjT n7Tf9gG4Sfv+JwD1xj6l4BHlJmjTq8C5C14Fz6WvA8/EuNA4lzml9HIwQWgCBwR+AZYpigH1MAkc 4FYPzkr3W7BUvw/AF9KtF2+/aWCJvdk7zw+036aDYxHk/p4AMMk4/qMppdq2fuCOsx7AUdr2z4JV iyZwnoz7AAw3zpdU/8bvhwJ4DKx8NIFJyWzwPHrZ5zIkTyk9BjwzpBEctPg/Xp0krWEB7kyfBsdg 7AJPr/2qcc/m2h9RppR+Bjw7Y7NX32vAuSPKA/ZfDI65GR7w+8lefTZ7z/oqAD8HsNvSxu+0HJ+w XgmYcN7tta16MAk+wLJf0pRSb/s3wSmYm8C5Po4AB+M+n6JeHvfaV6WxXaZ8X5cLu+L+usYfeY3B waHHg4juB89KSVoy2KF7gYjWA3haKZW19T+IqBqcb+X0NI55Aqyq2OJhHBy6HHIaU0FEJxDRHOJU u+1ENMOyT+j67g4OecRw2KVjh24EL45gCLL4rL0YnsORnC1V38dMz34AOIfIi/YjHBy6HnIdqLkf OIDsa7BErlO09d0dHHIKIjqEeA2NE+GvY+HQDUFEZ4Bja/pBW42xA+c7mIguAycN2gROhhWE1UT0 P0R0FRH9FOx+2wN2gTg4dAvkNFBTKfU02NcpK6eZ+AaAnyilnvT2+QLYP/hphL+cDg7ZxHlgcvsw OA+CQ/fFd8FBid9TSnWYVIDjTm4Cx91UqfCMrf8GL/I0DJyF8zWvHFGncDo4dHrkLaaCeCW+Tyte 8U7Wd18F4HCl1Lvafi+Bo6tn5qVgDg4ODg4ODllBnHkqoqzv7uDg4PARiOiLRHRK3OVwcHCwo8vl qfASBJ0JYC3YH+ng4NAzcCZ4+ukXiUhfMOttcJ6PV6xH8SDlSfjTdm1IdQ4Hh+6CfuCcK88of/2l rCFOUqGv766rFRXgeeZBOBPAQyG/Ozg4dG/Ms2ybFeG4R1L8HuUcDg7dBZeA48iyithIhVJqDRFt AWeAexcAvBTD08AJZoKwFgAefPBBHHjggbkuZqyYOXMmZs3q/nbO3Wf3Qk+5T6Dn3Ku7z+6DZcuW 4dJLLwW8vjTbyCmp8HL+T4CfInact6ZBrVJqA/z13VeCb/An0NZ3D8AeADjwwAMxZcqUkN26PkpK Srr9PQLuPrsbesp9Aj3nXt19dkvkJHwg10rFkeDELsr7u93bfh+AK1W09d0dHBy6EFpa4i6Bg4ND XMh1noqXkWKGiUqxvruDg0PXwdtvA3PnAjU1QHl53KVxcHDIN9zS5w4ODlnDli2AUkBtbdwlcXBw iAOOVHRiVFVVxV2EvMDdZ/fBnj0AUOV9dn/0hGcKuPt0iI4ut0qpNz99wYIFC3pSQI2DQ5fAgw8C n/888PrrwDHHxF0aBwcHE9XV1Zg6dSoATFVKVWf7/E6pcHBwyBqamxM/HRwcehYcqXBwcMgaxO3R U9wfDg4OiXCkwsHBIWtwpMLBoWfDkQoHB4eswZEKB4eeDUcqHBwcsgZHKhwcejYcqXBwcMgaHKlw cOjZiJVUEFEBEf2EiFYTURMRrSSiG+Msk4ODQ+Zwsz8cHHo24lz6HAC+C+C/AHwBwFLwWiF/JqKd Sqlfx1oyBweHtOGUCgeHno24ScWxAP6hlHra+76eiC4GcHSMZXJwcMgQjlQ4OPRsxB1T8RqAU4no AADwlkU/HsBTsZbKwcEhIzhS4eDQsxG3UnErgIEAlhPRPjDJ+b5S6pF4i+Xg4JAJHKlwcOjZiJtU fA7AxQAuAsdUHA7gTiL6UCn1QKwlc3BwSBuOVDg49GzETSpuA/AzpdRj3vclRDQWwA0AQknFzJkz UVJSkrCtqqrKrTLn4BAj3OwPB4fOg9mzZ2P27NkJ2+rr63N6zbhJRX8A+4xt7YgQ6zFr1iy3SqmD QyeDUyocHDoPbANtbZXSnCBuUvFPADcS0UYASwBMATATwN2xlsrBwSEjOFLh4NCzETep+DqAnwD4 DYByAB8C+K23zcHBoYvBkQoHh56NWEmFUmo3gG95fw4ODl0cjlQ4OPRsxJ2nwsHBoRvBkQoHh54N RyocHByyhuZmoKDAzf5wcOipcKTCwcEhK1AKaGkBBg92SoWDQ0+FIxUODg5ZQUsLfzpS4eDQc+FI hYODQ1YgRGLQIEcqHBx6KhypcHBwyAocqXBwcHCkwsHBIStwpMLBwcGRCgcHh6xAZnwMGgTs2wfs 3RtveRwcHPIPRyocHByyAlEnBg9O/O7g4NBzEDupIKIRRPQAEW0noiYiWkREbqUwB4cuBkcqHBwc Yk3TTUSDAMwH8DyAMwFsB3AAgLo4y+Xg4JA+9JgK/buDg0PPQdwLin0XwHql1FXatnVxFcbBwSFz OFLh4OAQt/vjHABvE9GjRLSViKqJ6KqURzk4OHQ6OFLh4OAQN6kYB+CrAN4HcAZ42fP/I6LPx1oq BweHtKHP/tC/Ozg49BzE7f4oAPCmUuom7/siIvoYgK8AeCC+Yjk4OKQLp1Q4ODjETSo2A1hmbFsG 4LxUB86cORMlJSUJ26qqqlBVVZW90jk4OETGnj1A797Afvvxd6dUODjEi9mzZ2P27NkJ2+rr63N6 zbhJxXwAk4xtkxAhWHPWrFmYMsXNPHVw6CxoaQH69gX69OHvra3xlsfBoafDNtCurq7G1KlTc3bN uGMqZgE4hohuIKLxRHQxgKsA/Drmcjk4OKSJtjagsJD/5LuDg0PPQqykQin1NoDPAKgCsBjA9wF8 Qyn1SJzlcnBwSB9797L7o3dv/7uDg0PPQtzuDyilngLwVNzlcHBw6BgcqXBwcIjb/eHg4NBN4EiF g4ODIxUODg5ZgZAKialwpMLBoefBkQoHB4esYO9eJhRE/OkCNR0ceh4cqXBwcMgK2tp810dhoVMq HBx6IhypcHBwyArE/QHwpyMVDg49D45UODg4ZAWOVDg4ODhS4eDgkBU4UuHg4OBIhYODQ1bgSIWD g4MjFQ4ODlmBzP4AmFS42R8ODj0PnYpUENF3iaidiH6Z7XMvWwZs3Zrtszo4OAjc7A8Hh/xhzRpg XcqlN/OPTkMqiOgoAF8GsCgX57/4YuDWW3NxZgcHB8C5Pxwc8olrrgGuuy7uUiSjU5AKIioG8CB4 hdKdubjG1q1AXV0uzuzg4AA4UuHgkE/U1QE1NXGXIhmdglQA+A2AfyqlXsjVBWprgd27c3V2BwcH RyocHPKH3bu5X+tsiH2VUiK6CMDhAI7M1TWam4GWFkcqHBxyCReo6eCQP+zezX1bZ0OspIKIKgHc AeA0pVTOxjXC5hypcHDIHVygpoND/rB7N7AzJ8ECHUPcSsVUAEMBVBMRedt6ATiRiL4OoK9SStkO nDlzJkpKShK2VVVVoaqqKmlfiaVwpMLBIXdw7g8Hh/xBlIo9e4B+/ez7zJ49G7Nnz07YVl9fn9Ny xU0qngNwiLHtzwCWAbg1iFAAwKxZszBlypRIF8mnUrFhA1BZySs1Ojj0JDhS4eDAit3WrcDIkbm9 TlMTf9bVAcOH2/exDbSrq6sxderUnJUr1kBNpdRupdRS/Q/AbgA7lFLLsnWdfJGK6mpg9GjggAOA Dz7I7bUcHDobHKlw6Ol49VUeVI4dC2zfnrvrtLb6MUudLVizs8z+0BGoTmSKfLk/Vq3yPxcsyO21 HBw6G1ygpkNPx8svs0rR1saqda6g92WdLVVC3O6PJCilTsn2OYXJiVyUK2zd6o/QGhpyey0Hh84G U6lw74BDT0NDg98H5DKHhE4qnFIRA4TJ7dkD7NuXu+vU1AAVFUBxsTOocaGxkZ+zQ/7hZn90DjQ2 ds6phj0BDQ3A+PH8fy6XhejMSkWPIBU6k8ulWrF1K5OKAQMcqYgL558PFBUBb70Vd0l6HlxMRfz4 17/Y/nzve3GXpGeioQEYOhQYONApFd0aOpPLZVxFTQ1QXh5MKtragG9+E9i2Lfw899wDzJ2bmzJ2 d0gsyzXXxFuOnghHKuLHZZfx53vvxVuOroqHHgL++c/wfZYuBW6+2f5bQwPb//Jyp1R0a9TWAoMH 8/+5JBWplIq1a4E77+QI4TBcdRVwxhlA8IRahyAUF/NnKuLmkH24QM14sW8fsGNH3KXoumhqAi69 FJgxI3y/f/4T+NGPgPb25N+EVFRU5EepGDzYKRWxoLYWGDWK/49TqZDsZ1EbweuvZ69sPQX19fyi 5Ti/i4MFTqmIF2JzXPvPDI8/zp+jR4fvV1vLAz6bjddJRT6UilGjHKmIBXV1+SEVqZSKqKSiqIg/ 7747u+Xr7mhvZ2M6ejSwa5dTevINRyrixa5d/Dl6dOdM39zZcc89/FlaGr6f2G9bHevuj1wqFRIb WFnp3B+xoLaWKx/IHaloauKo644qFW1tfuT2sqyl/+oZaGxkIjFqFHdobhZI/tDezn9u9kd8EHVi 9GinVGSCpUv5M1XdRSEV+VAqCgo4k6ZTKvIMpbiRjBjB33NFKoSVdlSpkNFGZaWbQZIudKMK+HWp Y/FiTlDjkF1I/IRTKnKPf/zDnlhJVyocqUgfDQ1sd6OSCptCYCoVuVJLd+8G9tsPKCnpfM+625OK tjYeQZWV8fdckQphpWFKhTTCMFIhDWTkSEcq0oWQNiEVtpft1luBq6/OX5l6CoRAOFKRW7S3Axdd BPzxj8m/6aS6pcUpdelg716us5EjuR7DyECQUqEUq6WiVLS15c41IaSiqKjzPeduTyqkwnM9+0OU io66P8QwVFZyA3WIjihKxebNwMqV9shth8whBMLN/sgtNmxgm7ZlS/JvulIBdL4RbGeG2NrKSp5F E5bPKIhUNDWxXRGlAshdXIWQin79HKlIABHdQERvEtEuItpKRE8Q0cRsXkPiE4TV5YpUbNnCK5MO HZo9UuGUCjvuuAP405+St0chFVu28IgkKC//Bx8Af/5zVorZo+CUiuxAKWDWrODFqGShQhupqK/3 /ezy3cRPfwo8+mh2ytqdILZWYu/CCFkQqZBziFIB2J9TNqArFZ0te2rcSsUJAH4FYBqA0wD0BvAs ERVl6wLC4vr144eQq4yaa9eydFZYyI1q9+7k0XA6pGLkSF+S64kQt5UNd94JPPZY8napX5npYzMM 8pKvWGE/9333cZ6QIKOyYwfw61/nNt17Z0Z1NXDFFcnycFRSsXs3cN55wIcf5racnRW7dzNpaG21 /754MfCtbwFPPmn/XdptkFIxcCAwaBB/twUS3nef3XUChL9z3R1CCGS58qD3v6Ulcclx2zkGDPBt 0Nq1WS3mR3BKRQCUUp9QSj2glFqmlFoM4HIAowGktdj7okXBL4NJKnKlVKxa5ed8HzCAP81ryUse 5mfTlQqg57pALroI+PKXk7fX1PCLakvyU1/PpG7YMP5uKhUtLX7dB5GKmhomDEHBnHPmcLbO//mf SLfR7fD886zkmKTADNQMmv3x1lvAE08A//lPTovZKaEU8NWvMml48037Ps89x59BsnkYqaivTyQV to5xxw5+BjZ7edppPTe9t+7+AIJJhW67w5SKoiImKLJydbahk4rW1vD+b/ny3JQhCHErFSYGgZc+ jzxJ5v33gcMPD+4EhFQUFeWWVKxenUwqTPdFXR0b28bG4JFKfT3Qp48fWNoTXSCbN3PH8/77yb/J mh42ebi+ng1qnz78spmGQZ/iFUYqAN+428oGcEa9XBmMVFi+3C9HviH1s3hx4vYgpcJUNOS4XM7h D8PKlbldkjoMzz8PPPAA/x/0/NIhFWbd7trFswFKSvi72f4lcLC+nuvBxPLlnBsnyDZ1Z0R1f4jK XFgYTioA7g9Wr85uOQVNTb77AwhWKx54ADjiiNzmZzLRaUgFERGAOwDMU0otjXrcK6/wZ1BaZvE3 5UOpGDeO/w8iFTt3AmPH8v9BakV9PRuFoHPkGi0twEsvAe+8k9/r6nj4YWbetmcaRip27vQN6sCB yUqFjO7GjOkYqRgwgMuXK4MRBqWAT3wCuOGG/F8bSE0q9EBNIHkEFTepuPxy4ItfjOfaK1Zw/fTt aycVra3+4CiMVIwdy/Vt2hBRKsR2mJ2evr+plLS38zu1Ywfw739HvqWsor2dswjPm5d/N0xU94eQ ijFjwt0fAPcHuVQq+vfnfg0IJhU1NfxbkDKWCxTm71IpcReAgwAcH2XnmTNnoqSk5KPO75ZbgH37 qlBVVZWwX7bcH83N/JJKEJSOnTu5saVSKnbuBA45hEcJtbV+MI+OuEnF/ff7bod161KnrM0FZs/m oFcbcZCXY9euxAyOgF93gH3+tpCKE09kw2XD1q3sD122jI2GzBoSbN4MHHQQy/dxJJ157z1gzZrU Wf9yhXSUCtneq5e/X5ykQim+fnOzH3+QT9TW8nPr399OKt59l0ego0bZEye1tvKzv/RSdgFu2ZLY DkSp6NWL781s//r79OabfB5BfT27/Yj4/Tv33A7dakZ4+WXglFP4/+ef9//PB8TODh/OdZCKVIwb F02pCIqNAdi+ShxeutDdH0AwqXjjjdkAZuOrXwUmelMg6nM8LahTKBVE9GsAnwBwslIqkrA7a9Ys zJkzB336zAEwB1/4wpwkQgEkkor+/TMnFTfdxAm0bOtxyIg1CqkQNSOoQ5LRtiyMle+YCl0a3rQp v9cG2PAvWQIcfDDXkRkQuXgxEzMgOa5C3B9AsFJRUMDusqCo7Joa/h2wk5otW4ADDmDDHQepkBUU ly+PJ6guE1IhaG/3V8+MY8G3zZt9MvrMM/m/vpCKYcPs7U/q5PDD7aRr+3auw6lexJl5DlEqADup lvZ8yCHJz0+u/bGPxbfC6caN9v/zgcZGbrNFRVyHQWnOU5EKIu7sAe4Ptm+3z0J7/HFWnO6/P7Py 6rM/gGBSMXJkFYA5GDNmDubM4b9Zs2ZldtGIiJ1UeITiXADTlVLr0zn2ww/9Dt324IDEmIri4sxJ hbzA55yT3NGJxBXm/mhp4RFSKlIRt1JRU+NnHw2a1pbr6+/ZAxx5JBMMkzjs3AlMmmQvn+7+KCmx k4qKCv6tuTn5OUqq9cmT+bvtGW3ezPVTWhoPqXjySVZPdu/Ov+EF+PkMHsxKjp6HIgqpWL+e63fw 4HiUCkl7P3hw6uWtc4G6Om43w4fblQppT5Mn2+tHBhgHHMCfJqkQpQLgT7PTk3dp4sTk34RUHH00 qyFxrJuzfTt3lAMG5L99SCZMIDxLZW0t9yPl5XZSUVzMxALwbb3pJt2yBZDxb6bk2lQqgqaVig18 7bX85Y2JO0/FXQAuAXAxgN1EVOH99Yty/KJF/GmT+gR6TEVQ/ggAuPde4K67gq8lo8IdO5LVg1Wr uCGKFCkqg34taYBRSYXtHPnAtm3AgQfy/3GQCpmCddRRfnkE7e1c9/vvz99tSoUeU2FzfwwbFjw7 R64VRCqU4s5g+PB4SMW+fRxTcsUV/L0ja8N88AHPYklH7VCK6+ikk5gk69PlbLM/gERSIVHoJ5yQ fqfR2MhuuY4s7b1sGZfv4ovjmX0iSkUYqejXj0ewthTPYneGDWP7kIlSQcTxAKZdkbYnFXQKAAAg AElEQVQ/bRqT6zhI3/btHKBeXp5/JUsIAZCaVJSWsiJqi6kQ2wL4yrUZV7Fxo/++hKU4uPHG4PiW hgZ+1qncH+Lma2zMXwxY3ErFVwAMBPASgA+1vwujHCwGZty41EpFv352SVxw773Ar34VfK2GBt9Q mi/k8uU8ehCGWlTEMruNVJSXM8NMRSr69OG/fLs/RKkoKekcpEIvg9SFkAqzfLr7I0ipEIOsn08g hjSIVOzaxSR12DA2LPleHbCmho3RiSdye+4IqfjFLzjfxvo0tMGGBiYT4pvV6zcoUFMfHYmhDhqJ h+GNNzi/gi3pWVQsW8bv6bhx7NrL92g8CqkYPJhtRFtbsM++uNjuQtGVikGDkjvGHTt4++DByTZM CMeRR/L3OIKQhVQMHZp/UiPptYFwUlFXx3U4aBAfo7dvk1QMGcJ1bU7plLovLAweNO7dy+/oX/6S /JtSPllIRSrq61MPZLONuPNUFCileln+InmahNlXVISTil69+AGGkYpVq3gKY1An3tDgRwabDaG6 Gpgyxf9OlKyKiIEYNIhjO4LkKn20Haas5Ao1NWzUhg6Nj1QMGgRMmMDf9RGL1MXo0UzawtwfNqVi 61a+tyAVSILjxo5lQmeSBukI4lIqxN0xahS7gDIlFc3NvrGyTdsNghh6IXW60hPF/SH7778/P7t0 EohJOe+7L3MysGwZq3CVlVyWfKexFtIwfDi3azOPh7hHJMWzGawptqm4mG1eKqXCJCXSadvs4LZt fG157+IgFdu2sd2JS6mIQipkKqcEcOv7maSCiKdzVlcnXwsIX99p2TIm8LbZI3v2MJkZONCPqQhz f6SacZhtxK1UdAjyEqZyf0jFB5GKxkZ/3re4VEw0NPixBnpDaG7mJXMleEpQXJwobUn5hF2GMcs4 SYW82GVl8ZGKsWP9KHYbqRBXkymFm4bBfNa7djFhkX2ClIqhQ+2kQYx4XKRCAmcrK3m0H0QIFi8O l/fnzOF21qtX8jnuvhu44AL7cVI/MvLJhFT068f1p5S9/trbWYKfOzdx+/vv88DgvfeSjbSOuXOD 1ZcVK7jeZHCQ70BkXakAkkfj8nvQuhE6qSgpSY7ZamkJtx07dvB7PWAA2x/92Wzb5v82dCjHVeQb cSoVUUnFnj2+6g0k7tfU5A9YBFOnAgsWJF8L4P4kyL5LG7flExG7FtX9IaSiRygVHYUwf1sHIpBG APi+JXOEpLNyswEIgkjFokV8Pl2pAJjI6KRCmKTMLe6MpKK1lYlaeXl8pGLNGn4JCgq4DDqpkGc8 YEBy+ZTyg5cAO9EUv2mY+6O0lDtEG2mIW6nYtInLVlbGHWPQDJb//m/OxxCEN99kf6+NmDz1FPD3 v9vTw5tKhV5/UUhFYyM/n6FDE8+nY9UqLp+NVJx9NhOhoDn3LS3Apz/NK9GaaG/n+ho50icV+Qx0 FRIlsz+AZBeI/C5TzYNIxX77cRvWbYPe0cg+ZsyQdNq2IHAZTAD8fON0f8iy4flE1JgK6U9sCkFT k79dMGUKTx3VB0ANDWzfystTk4otW5KfYzqkor6e21vfvo5URIK8hGFKhUkqAHugJcABTEGjoCBS UV3NIyiZ5ijo399OKoqKgklFWxs3ICEVxcX5jamQTjpOUrF2rd9pmS4YqfeBA7l8+ova0sIdh5CK AQO47nSpXEYjQe4Pcf0ATFZtpKJ/fz4+LvfHiBG+QbIZXqWAt99mP27QSHz7du64Jk1KJhVLlnA7 XGpJP1dTw9eW3CW6sYsSqCmkL2wFx4UL/XLoeP99zg8yZEhwsOYbb/A79/bbyb/V1TH5Ly/33+N8 KhVNTUzadaXCRioGD2Y1rbAwuX4aGrj+CgqSBxxiJ4QwBJGKIUN8O6gfv327TyrGjYufVOTb/RE1 piIVqejfP3F/UbD1fkXsUNigsbqa+yMg+VnopCLM/SGxFyUl3K6c+yMCdPdHmFKhuz+A5H1XreKO 4swzg0lFY6NvDPSGsGABz+3u2zdx/0xIhZQrLqVCXmRxf5gvdkMDJ6jJVYCbUszqRa4LUyqGDEkk HGJAhVQUF3Mnoo+4TVJhEjZ9tGYLxBTSQeSTjkzqYvnyzI7btMlPI1xRweUzUyqvXu2XOygrqMjg JqnYs8eXW6Vz11FTw/Xet29yEHFUpUKm48n5TNhIRXMzuzQmTUomkzrkfhctSq4XiU+oqOCyl5dn plS0tGTW4cozKS0NVmrEnslqxzalQtqukGb9N8D/3UYqdPcHkKxUyNIA48bl1v3R1gY8+2xikGN7 u1++oUPZduYztXS67o+opGL8eD6vroCnIhXt7fwenH8+fzfjKnRS0aePXy4TMm1+4MD8DoK6NKmI 4v5obvaVCumszX1XruQApYMOYr+rOc1OpjKWlbGx1I9//30mFSbMYMzmZj62V69gUiENWWYw5IJU zJ8P3HabvVMTIxakVNxzD3DyyUy+OrqstVLJZdi8metFSMXQofaYCpv7w0YqAN/YtrZymYuL/X1M UqEbFttLKEZffpfcI1HR0gJceSUHC2aS9GbTJl+6l47ZJH4ySt9//2BSISPCSZO4Y5W6k4RaBQX2 2CKddJmdVpTZH6JUDBjAxtA2Gl24kK+/bp3/vD/4gNuKkIogBW3uXL7v1tbk5E562waYnGWiVPz0 p2wrfvCD9IihtKXSUj9o3CStorwCyaQBSBxNm+6PKKRCD9QEEu2Y6f7YsCGZmGVjMFFXx6P3M88E nn7a375zJ7c9USqkTCZaWzlFvSwBny3Y3B+2+w0jFXr8nqCggPsHfQbIrl3hpGLTJn52p5zCz9GM q9AHn0Sp+xMhFU6piADd/bF7tz25h839YVMqxo/nv5aWZFlSXk5bQ9BHjzpsMRXS4FI1glTuj+uu s6/gGQWzZgHXX2/3O+uBikOHciPU61R8+HPndmzlu7o6jor+2c8Stwsjlwh0k1Ts2sWdUd++TLz0 6PZUpEInJAUFvJ/5QusxGVFIBZAe+//hD4EHH2RZ0zZVLBU2bkxUKoDkGQJvvcXn/+xngxfZ00kF 4BtoUQdOO82uVOzc6RPeIFKRKlBTkgOZz0+waBFw+un8v7hgpHwTJwaTiqYmvvdrr2XibrpAdKUC YHKWrlKhFPDIIzwt9Sc/4WnoUSHtRGYNmEZej7kA7KRA7/iC3B86qWht9d9fpcIT65nuD1ENdXzx ixzX0pEFx158kdORA4ltV56p2B4gWamRVV5vvZUHOOlCKeCMM3gqtQnT/bFvnz2HRLpKBcBtTV/V N5VSoWdoHj8+WKmQ8hYVpVa+be7cXKFLkwpZm8HmIxREIRVr1vCLJFHt5kPUOyS9ISjFjUV8tDps 7o90SYWt0a1fD9x5J0fppzMdUPDmmxy4c+ONyas1btvG5d5vP18K1Rtiba1/r6bBSQeXXMKdxx13 JBqolSu5w5HnMHhwYscjCV+A5Oyo6ZAK+d0kbNLpybVNZq+vBZIuqViwAPj5z4Ef/5gDKZ97zt6p BmUzVMquVJiG9+23OdfA5MncadoCLoVUSGyEdK7vvcek5aST+PmY5dCDiM3627uXn52s8xEWqAkE J2fatImzDRL5JGfDBm6XQ4YEk4p163ikO2UKjwxNUlFTw4RU2k+YUrF3r30l08WLuY3eeScrTjNn Rl8tVlcqgGQjL4MiaV+27L+m+6OhwX9GehCnHC/nBbgd7NvHx5l2sLWVbZVcW94/3QWyZQura08/ ze03U6xbx89y0KBEN5YMHsKUinnzmMhVVGS2QNbTT/OA6Mc/TiYMpvsDsLtAMiEVI0akRypWreL2 v//+9viWXbt4YCUu93797Iqp7iZx7o8I0Jl9kFsDSB1ToRQb1VGj/ADBqKSitpZfSDH0OnJFKn75 S94+bBh3Uulg82Y2lj/7GZfFHGnpgYpCKnQDvmMHr8nRp09iNsV0UFPDWeKuu46Nhp4ueeVKrkud BJoR7kGkICqpCPJJy76mUqF3rOJuk99lWxT87W9cp9/+NnDeedxxmamiZV0Rm4pRX8/3aJIKU6lY u5ZH9GPGcNnNznHvXj5XWRkb5169fFKxbBk/3/HjmfCY75NOKmxKhb64W5BSEUYqhKgecgi/i6JU iEJDFE4qAL7viROT2+fWrXy/kqAuTKn43/8FDj00eZbYX//KneEpp/C719gYfQ0RaSei9Jik1SQd ++1nb596+9VjhuRZ6EqFvl1XMsxAZZNwV1ayi0bvzO67j5/p1VczucjUFbJ2LT+jIUMS3x15pmVl vu0xCfPvf88q5rXXMmlMd+2b//1fVufq6hJtX1sb22fd/QEEk4qioo6TCllNtrk5WWFftYqfQd++ 3C+Z5NdcDM+5P7KEpiZ+GOL+AOyNQI+pkEajG8vaWn4xR47khjJyZHRSIQ87SKkI8rel4/4wScW/ /sUj/a9/nZcIT2d2iCwbfsopnKr47rsTDeeWLalJhYxwM1UqpKO48krOR/DQQ/5v4oYSDBjAz0oM mD6aEKMrv5mkIsioRlUqSku5Q9Q7zo64P958EzjmGDbWI0eyX9nskGR68n33JR+v58gA2OCUlCQa XqV8YiiR4+ZzktFhWRkTiuHD/XYsip3Iz+ZIUc9YatZfW1siqbDN/tA7RRup0AOFx43zicHGjT6Z MgN0BWvX8v2MHGmfGaMTZoDve8eO5Nggpbj+d+5MJibPPAOcdRaT6tJSjo2Jmu67tpbrTpScKKTC 5v7Q269sA7hue/XyR69m3JCuZBQWsi2SY83pqIWF/I7rpOLBB5kMn3EG7693kulAArHNPDPyTEtL /frVVaAdO3gRri9/me1GQ0N6Su2KFewO/PGP+R6eesr/zbQNUZSKwkL+SxVTAXCbrKvz99WVCv36 At0OjhyZOano0e4PIrqaiNYQUTMRvUFER6U6RipMAjX1bTp090evXvwy6vvJaEV81TYfVhCpkBfL Rioyjano08cvr200vXUrdxgXXcTn1F+OVHjrLR6tjRoFfOlLfO96MJ8oNoC906ytZaM+ZkzmSsXS pdz5TJjAQZ+6TC0BswIZjUldme6Pfft894k5Uovi/jAJm6lUyD0LdPeHdK5R2H97O5OKadP8bdOn s39ZH/GJ3D93bnKnqHe4gvLyRKWisZHbhDxjIJlUiPEeMoQ/9RG7GHy5hi0NephSoS/hHBaoCYSv ollWxuWQNqa7fcrK+D5Nt46+jLRZL4CfTVUQdI9vvukHxukzUHbt4rY6fbq/bdq06DK83naAZDna JBVR3B9AIqnQF7MySbX5fugz5sx3A0iU3Zua+L2dPp2VLMA+5TgKgpSK2lpuE9KGTPfUI4/w+37Z ZX4q8XRcII8/znUyYwYTJvO9AdIjFQDbcyEKSoUrFYDfX5ikwrRDOqmorGSCq7cFk1To5dChx16I UpGP1PSxkwoi+hyA2wH8EMARABYBeIaIysKOkwrTlYpUpAJInn4qBlWMVipSoUvy0khk9KgjU/eH NGi5XkuLP5pqbuZrl5fzSz9lCr8sUfH667wKoeT4nzgRmD3b/33DBr8zsjX4HTu4vseMyVypWLKE r9u7N3DYYXxNcTOsXJmoVJjP1XR/AL5ByIb7Q+/0pAMQ0rBvHz8f2S4ENUqq5xUruOxHH+1vmz6d 28+KFYl1M348P58nnkg8h5AKvWOsqEgkH/oMh759uV2GKRWAb7x37uR7GTPG/82mVOikwoypiOL+ SKVUyHLOehvTA1SlbOa00nXrfHWmooLPpcvjNTV+kCYQrMY8/ji7FgcOTCQVr77KbUAnFUcfzUGH UWYAme+2qVTI/9K+org/ZJv5mxwP2N0fcnyQUgEkTit97z2uy8MOY7LXr19yHpGokOdkKhVmiutR oxJddw8/zDNGysu5HidPZnsWFY89Bnzyk9y2TCXLtA2ZkIq9e7l9ZItUSFyLLftrOu6PoiJ+FwcP 9mNnco3YSQWAmQB+r5S6Xym1HLzIWBOAK8MOkgeuB2oGuT90ScokFZs2cQchWe7SUSo2beIGqhtT QbZIhX59MYBiHC+4gN0htmA8E83NHOgkRpGIXSB/+xv/Jv53Md59+/J96Q1elIqxYxM7K/FJRsHS pTx1F2AjBbBhrq3l+zeVCv3+TaUCSCQVffr4I51+/XiWR9RAzfb2xDS7plIhU8xkOxA+n12HSORH afrbCSdwu3vxRX/bkiXA8cezQTGnzG3bxvvro13TOMr/0j7M5wQkqgGAL6/qMQk215c+ewBIHklH IRWpAjX1aY1jxvD1GxvZGOtKhVk2IDG/SXk5P099JGy6P4JIxYoV7Jo6+ODEjvPFF7kMevucNo3b fljacEEqUlFby+9kUP0CiR2vTamQugWCSYWecTaqUrFokT81slcvdvtEVSp0F2V9PZPXsWOTk5iZ pKKy0h/wrVnDS3dffLH/+/TpwPPPRyvD2rU8m0nSz8t7o7tVgcS6JUpun0oFkwqx9Tb3h5lsLYxU 1NXxn65UAInxP+m4P6Q9ZTJbLVPEvfR5bwBTAXzUPJRSCsBzAI4NO1YeRGmpn2UuU6Vi2DDf1zl+ PFe8XvmSVrWoKNn9YXN9AMmSlJ7CNSqpMDtOkezEOB59NJ83ykqT8+cz+ZDpegBH2Tc0cFS0BALq 02P1e21q4jKL+6Omxn+RLr6Y4wXMgKNHHklOe75kiS+hTpzI5GXRIj8vgkxzBJJn9ehKhc1o6kaV KJE4NDb6RAlIdn8IsQpyf5gjSSlfFFLx2mtsiE3COHUqj4ABvvbSpVw3ukEVSOKpAu2NrahIlHHN 9mFTlLZv53OI+0aupZOK3r35d73DlYCyXAZq6gmYRHVYsIBHWKZSYSMVulKh14f8rysVQTMMRBUx ScWrr7K7TtwLAHey/fvz800FfbEvwCcVoqZIELA831RKhRlToatAcrxsl2P14/R3W89UK5g4kQnA +vX8bk6a5Nuvgw5KVirmzk1OrV5XxyTs+9/n73obM90fNlIhSsXjj/O1Z8zwfz/9dFY2o7hhZfq7 kPqKCm5T0v5M90dBgf3dFlerjVToyzCYGDiQ6z2KUiGuNyGvUZSKMPeH7Cf2LB/BmnErFWUAegEw PKDYCmBY2IHSgCUBiAT1mYhCKvSO9MAD+VPPwyCNwLyOPoIyIUqFsOFsKBVmAp+gYDwb5s5l8iQd OsCG44AD+Dd9BUz9+nKvMqooLfVHhOvX8zS7xx5jtUGfO/7cc0w2brnF37ZtG/+JUlFYyIZ50SJe 5GrkyMR053L/+ogqzP2hkwog0TCbRst0f5g+Z3kOYaQiLOmajhdf5A7JxGGH+SuNbtjAZQwiFfoo XmBTKgoK/HgJW+yLpGqWzmvkSL6HJUtY6ZGO18xmmiqHikkqzEDNffuSI+xtMRW6UgEwGZZySrlk X0FrK7+Lcow53Xb3bv7TlYriYiaZYaRi+XIutxA+UdYEvXuzsqSrTUHQR40Av0eSRhlInFkE2AM1 O+L+MNu3zf2hHz99Oj/Df/6T30/93g86iOtD98//93/zuiv6yrm33MJk7s472X6IndIDNeUc+oAB YDu0fTvbyWef5fKY5SsoCE7wpmPDBt5XBoBm+zDdH4C9fYrNDlMqbKQC8GeAtLby4C6IVEj9TZ7s X6O0NHOlQq4hbev3v2d3Vi4RN6nIGC+8MBOlpTPwmc/MwIwZM9DSMgNvvDE7aT99Silgd3/oxGDi RG6Aurxnyo66+yNIqejfn18YcU1kk1SI4R01iolOVFJx2mmJIy2Atz33XHLAqnmv0rkOGeL7+5Yu 5UQ0Y8aw6vHTn/I9S0BV797cKYjhkBdGSAXAxur113kRqxkzEstnUyrC3B8mqdAlZD1xkPxmS3Ms 5+jVi0frQiaCSIVNqWho8EclmzaxK+OUU5L3O/BAP4ulZIBMh1RITIWMdrdu9Wd1APxcNm5MnOEj OSoE8rxfe81fUh5IXnfFJBVmp9fWlhioKTkrRL0So6srFbt321fKBPid7NXLVwGknAMG8HX0sm3c yG0sSKkw3UJSPjO5WksL71tZyWR3zx52hW7axO1DDL2O6dNZxdi713ch2kaNNvcHkNi+dNeatF15 d9rauDxBSoVJKvr25WepKxWSfRFIdn+I2isYNIjv7eGHk0nFwQeziiEzknbu5I6qrc1PyrdrF/Cr XwHXXMPff/Urfv+Livg5DBnC9S3tQndtAv7zXrmS6/e00xLrc9AgVh6efRYpsX4922khvUGkQic1 mZIKm/sD4Otv2pTsStevD7BNHTMm0ZaZM0CikorGRqCpaTZmzJiBb35zBvbbbwb+8IcZ+PGPZ9oL mSXETSq2A9gHoMLYXgEgYA1GxptvzsKOHXMwZw7/jR07B2PHViXtp08pBVIrFUVFPEdeZ9w2UqEU T3myBWkCPmOVxmaSCpvh2bkztftj8GA/33ufPvZgPBMbNgDvvMPZ8Eycdhp3evPns1HR70cnFbpS UVnJCsfjj3NMxte+Blx4Idfl5s3cQX74IScHqqlJjKYvLORjBZdfzoZ73Trg3HMTyxamVNhGYjZS oY/kdKORKs+F3KuQKTM6H7AbnuXLeZ+RIzmDpoxibUrF5MncDuT5DB7MBkWCJ/VAwyCloq3NT6Jl BiOOHs2/66uZmqRCCPX8+b4CBSR3uDZSEaZUAPxdSIM5Uhb3S1Cq6MJCrof585lcSEdgy1VhqmzF xfyOSadhKnz6PepKjxDBykrg8MP5/3fe8VVLUTF1TJ/O9fD228DnP891PmxYcrtIRSr0bJoA1297 u99ZmBK9OS3UJBXi/tNJhT47xFQq9E5KcO65TOp69fLXoQD8QYG4QF5/ne3ht77Fz6u+nmMYWluZ ZFxyiZ846+ST2c6Y7kVboCbAOVtaWpJJBQB84hN8zlQxZevXJyqwJumU6bh6P1FSkpycLhtKhe5q ssWtLVuW3M7MQUZU90djIzB+fBXmzJmDf/1rDhob52Dv3jl47LFZ9kJmCbGSCqXUXgALAJwq24iI vO8RPJU+glJaB7k/Ghs5f/+aNckuDDMQSW/wAwf6o4Zt25INlcBMjmKSira25BiEKEqFeb0oMzH+ /nduvJ/8ZPJv06ezobnvPjaGescQpFQAfK7Zs7keLrjAH8ksWsQjiz59gG98g7eJhL10KRMKIUUA Byw+9hgbMLPj7d+fDVBDg7/+SrpKRZD7w4ypMDs9IJFU1NWx4Uk1mnn+ea7P664Dbr6Z/cmHHprY kQvEeCxbxp3XEUfwsZWV3Db0Ds/W1kzjaE6bFBVNn+9vIxWyDoWM9IFo7g/dvZeKVJhKkC3CXnd/ AFyenTuZfIn6ImXTSYWQAXmPiRLjTcwU3QKTOOlqXVkZd0TV1fx8+vRJJF2CI4/kNlFVxTlXbriB 7csbbyTuF0QqdNJqkgogOCZC/tdJs839p5Nu/VhTqdDbteCCC/w1OvSBwLhx3CGKjZw/n+vyiiu4 Pbz2GtuBPn04FuOCC9jOvviib4PEjshgxRZTAbBdKi+3r6/06U/zcS+8kPybjg0b/OyxQPIqsKJi 6ippukpFWEwF4Lc1W1CoqVSYpGLkSJ4+e9ttrDqmo1TozzxfiFupAIBfAvgSEX2BiCYD+B2A/gD+ nM5JbKTCjNYFuLFs2MBrI/z85xwQc9JJiccddFC4UgHwSHLv3uTRoyBMqZBPk2FHIRWmYQwjFfJS PPEEy+/6uQWDB3NSG306qX59XakoKPDPIcbhyCNZ2Rk7lhv6woVMKo46ilWPj30skVTorg/Buecy 8TFXetVjWEQK1vPdE6VHKvQXzJyua3Z6Ujc6qRg0KNk9Y8ZUvPYaT/W97TYmFUcdBdx0U/I9A2zo iop4JFxdzaQCsEd8BykVQOKIXG8f5lQ2gJ+jGHSA341584BzzuE/QRT3h1K+MW1pSXzP5Nxmxscg UtHWxnWtE54LL+S4HDMXi7lS6aZN/Gz1TkmPN6mp8RUOHUGkQsjJEUf4SsXEiYnuHUFhIccOHHkk 8Ic/8P9DhiQGb0rshN4RmIFzZkyFmWbbRir099MkDUCimmSSDr3tBikV5eVMKPT8KgATvMmTE0nF xz/OxKO8nN//hQvZTdK7Nw8W9MEI4H8PUir69+c62rCByYrptgU4/mrcOH/6dVDQ9Pr1iaSioCBR pbKRqmzHVMj7FEYq9uzhGTemjTz7bG4bN9wAXHop7+dIRQiUUo8CuA7AzQDeAXAogDOVUttCDzRg IxV79/IIV/dzXXYZN7Bnn2Vp7d13k1+aAw/kjto2ypVPmcNtG4ECqd0fQHJDMEmFKY+ZI1EgmFQ8 /DDv+9vfAq+8wsQhCL/5jT+rQ4eek2PHjsTo9BNP5Hu/5BL+TsRqhSgVJ57I248/3icV+syPqJAy 6O4XwF8ULKr7w6ZUyHH6p6lUBPm8AbvhmT8fOO44ro+bbmIX0Wc/a7+3ggIeyb3+OgdUTpnC24VU SPS7UsExFUCwUjF0KHcAOqkwlQqAjfOcOYnupyD3h+l+kvo1yTuQaOyCAmHlvPJ89Xu8+moe/esd AmBXKszYJlOpGDIkmRSY97hhQ+KCW1Om+EqFLZ5CcM01/Jy/9CV+7scdl0gqdu9mO6S/2wMH8r5B 7cusX5vfX++QbB2I/n6YvwthVipYqQiDzI7Zu5enTB9/PN/PiSfy+79oke9C6t0b+NznmKSJ2iP3 GqRUALzvgQcCP/qRvQxE7JZ57DFeR6isLDl3RXu7fcCkt49skoqgmIqhQ/lezfdID4aXFbJNpeK8 87iub7+dZ9SddFLiACCIVJgDqXwhdlIBAEqpu5RSY5VSRUqpY5VSb6c+KhE2UmE2AoCnjFZXsx9f n6KkQx6qJCbSV2eUT0kRm4lSYSMVbW1sAEw1Qb+vIPeHGYwHsJFrbeV4h6lTOXYhCBUVPFq97bbE 7ab7Qx/h9unD9XPttf62ww7jvBlbtvjqz/HHs1H+4AN+iW1KRRjkpRPjo5dBH6eiGdwAACAASURB VImlmv1hi6kAEo2yHCMwYyr0kSSQbHgk38Pxx0e/v8mT/TVARKkoK+P6lZHzzp3cPsy2NnAg7xek VEiMTCpSYUNZGdeNKA319Vx/4oYwSVkqUpHK/aGvUhmlbKlIhalU2NyUNqVCj6864ghud2+8EU4q TBx3HB8j76Sp8gD+tN6OuD/0GUzpkoohQ7hNNTQkz7yIAplW+s47bNukzZ98MpOMxYsTgztnzUpc NbekhNtSGKm4/34e/JntSsf11/N7MHMm348taVxrazIx1duHaRukfNlUKsrKmDBIDiS9P5HrSJ8S 1Na++U22oy++mGiLwmIq0n2u2UCnIBXZgOmbAuykAuARiyweZoO5euPOnf5DFKPzzjv8GWQEU8VU 6OUDEvO069DvK8j90daW2HG0tvJsj6uu4hHCX/6SGMdgw+TJyUqF6f4wR+q6cgGwEWlsZNla8mF8 /OP8+cc/8me6SoWUwUYqdMKVifsDSDyeKHGkYZIKm1KxZ48/f12SXB0bmmElEd/6Fku4w4ezxA74 cRXS/mwpumU/mQGye3fiKrICfTGjlhauhyikwkxjbapo2VYq9FUqU8Fc/8M2tXvkSF/psb03AN9j ba3f+ZukYto0bg9TpvBaNVFx3HFcLxLIaCMVch+y/khjY/LsDyB1TEVUpcJ8P/SYBnPmRRQcdBCr K3/9Kz9nUdmuvJJdQa2tiaSiT5/EDo7IV0v27vWnWeqQmVBhGDKEy3DxxTyi//e/E3+XHD5hpMI2 os8kpqKgINjOyvv0zjt+ZmaASYUEhG7YwM/ItDM6JkxIdgU590eOoHcgDz7IjTyIVKRCeTkTD5nG oysVMopcuJC/652cDl2pkKDMMFIhDUuuI5BOtb3dHqxny1Uxbx7Xxde+xnKZLcAsCsKUChsuvBD4 xS84uErIxtix3GHeeScHgkrHGRWm+8MkFancH/qUUptSYZIS/YXVsx7aZvqYa86sXs3XCJpmbMNR R/Gobt26xGDEKKQC8Ne5kBk2ekAdkEgqzBTdYZBrieHVFxMDOq5UyNLNJqnIllIxYQJv373b7jaU aynl14tJKioq+L2cNy98EGJCErhJRsqgAcOwYazq2aYrB7k/bDEVkgMkLFDTplQAPqlId0R7zDH8 /O64g5PwSWdaVMSutFmzUit2Qqpsrp10cOSR7Ca76CKe2qqn9xZSka77QxQEfQZWKqVC4rxskHa9 cGFiGxs82Lf9+mq86UDeM1nFWFxAjlR0EDqpeOstZoRiTG0BimGQ1RvFqEuQHsCd5ciR3HgHDbKn 6AYSSYU0vDBSYcsTod+XjKhsSgWQmOTomWfYYIlPM1OYSkUqUjFwICfB0TsXIjYura0cxJZKMbGV QdwfvXsnJ/jpyOwPIDx6vrSUj9u7104qzPTwZqcUFUTJ7UgnFTJ7Q1LJ65ARVxRSYaboDoNcSwxv kFIRlVTs3s3vjh6Mq48Gt2zhtmGSahvKyvi9ktknNlIh9bBqVbD7Q+5R6tf2/NJtrwB3IL17+89P X4Jax/DhfG3bdGWbUkGUKK/L+ynSe7ruD4Dfq6BAzTAMH84uh9bWZPJQVsZSfZBt1MuQDVIhOP10 tt1PP+1vW7uW68G0XancHyNHsr3Vs7KapEJfiTpoMTGBkIr33ktsY3ouHDNnUlSUlLCNkqn8koV2 715HKjoEvQMRpvrKK/yZyUhdcgXs2cN/urGrrOSHFjaqEgIRlVQEMWoxHGYKZkFxMRsjXal4+WV/ qmhHMGCAL03a3B9RcemlHKx42WXpH6srFUOGJN6T6f4wXyD53Vy3AkieWWM7Xp9Lv3lzcqduSviZ kgobdFKxYYOfWc+EjLg++IDLYxpPSboDpEcqpJ1JjotM3B99+yaSirBpe1u2cP1GabP6omK7dvE7 ZlMqAD+Wx+b+kHdtwwZu51u2ZOf5ycBD6j3I/TFsWDCpkA4qKM8E4EvnNtcIkEwqwtwfmXToN9wA nHpqYg6LdCDuxWyRikGDWKEWuw8wqRg7NrldlZdz3YlL0Kw7vW0IUikVYaRCXMV6ynkps6lUpAvp 3+S+JTsv4GIqOgQbqXjpJX9VunQhS0LrC5cJpMGFkYrevdmF0twcnVTIOiY6hFQEJfABEmeANDYy U5XZFx2B3vFGcX8E4dxzOUJbl/fTKYMoFeb1ddIQpFQ0NfFIoK0tsTONolTIM1+9mo1BkPtD2sim TdknFZKlcfRoe4crI64PPuDRubnPiBFMJoQYAtFIRd++3B6FVMjsH0Em7g+bEiRlElIRBTqpEBXG JBVlZfx8li/n/YKUisJCrt/Nm7muc0EK6+v96dE6TKVCr19ZaygoJgjwR/pBpMJ0D5oqX58+PjHL pPMZOJCz8U6dmv6xevmz2QGeeCIPqiR/ypo1dteVkEzJHWFeW2Iw9HWV9uzh5yKziMyYijBSoafP 1weOOqnIVKkQUvHSS/y5YUNwm8gHuhWp2LuXjb+8zPPm2VlqFOhLQgPJSgWQ2jjL+h9RSIWZoEVg kgrbiEsnFW+8wR1oNknFrl32QMV8wFQqdIjRbG3le7b5lAHfMOjHFxUlrmJqIyVyvxJwl4pUZFup aG1lQmBmBNQhSsXKlcmuD8DvbLds4XMVFkaXunW/s+n+MfOERHF/mAZORupAsJpgg77+h6gBJqkg 4vqQbI+2c/fqxUZ8/fpg92OmMEnFgAGJQc0A12ddnV8H5uwiMyOm2fFJpywxG+nEVBDx8Vu2MOFM 1/2RDQiptC1olilOPJFtqdhDUSpM6DlebKRi8GC236ZS0a+f358UFflLnusLRgZBBqGmUtHYyO96 poOS4cOZIM6bx98dqcgSpFHU1iYG4GQapCjyZRipSBVUlg6pMBO0CGQ0vnUrjx5tbF4nFa+8wkbX llI4XeiJvtraMlcqOlqGIKVCYipsKbYB/4WykQpJYxzF/RFEKsQI7trF9bN5c2YjDRv0BFi2efaC 8nKug8WLE5flFkh5Nm70FxOLSrIlkFBS0usdN1Fip5WJUjFihN+hpqNUyHPUSYUtXf6ECX6+iCC1 ctQort9skwpROoHkxcQEUuZly9hWmPUXRgoArof2dl+tSSf5lRwvsVhxyOSyUqmQomyUQWabvfIK t9sgpULaw9at9rolYntsKhX6M9Jn+KVyfwB2UiFEcuVKtiGZ2I+CAu4DxJZt3OhIRVYglff++9yY ZFSQTtS2jspKfkjSqOIiFbpSUV5u7xDGjOHjJUXuxz/e8XgKuTbgE5Y4SIWuVJjKkB7ECtinvALs GgCCjwfC3R9BpEKfwbB1K49YsjnSBXxSYWsbAEfh77cfj3htSoWQ6tWro+eoEAipaGjgzs28/3RI hU0J0nNopEMqiot5ZLZ9OwdiDh9uHyUecADXy/DhwflRRo/2ScV++6Uf1B0EUTolnsc2Cpf6XLLE rgKaq+zaSAXgt28zyLW01M9xYiPNZWU+qYhDqcgFqSgt5amor73Gro2mpnClYssWrhvbtYVwCjpK KuTdM5UKwF85NFP7IfdYUMDtzrbybL7Q7UiFpNeWJbQ7olQA/sPWpcmo7g/xuZmkQiLg0yUVQfLw mDF8jW3beMqSJFHqKORFE8MTh/tD1sFYujTY/REUgCgj63ff5c+gmAzAbnSLivgc8+dzZ2PruCTY MNsjXZnWvHo1G74gpWLCBI52P/xwf5Smo7iY282qVZmTClETTBeD3ull4v4YMYLbbEsLk7KopEJf VGzVKk5oZ8OZZ/J0w5deCu40R43y3R+ZTOcLQmUlv5N1dclBrgIhFfPm+Sv/6rAtCKZDnuW77yYu uqb/LrNjlLKTEpkan612mw5KS5mIb9rEbcWWBj0THHEEZ/QUu2UbWPbty89Epv0GkQpTqdBtgE4q 9DxEQQhyfwB+P5Op0in3eMgh7JKRJFs9KlCTiMYQ0d1EtJqImojoAyL6ERGlmIhkh0kqZJpTpkqF Tip69UocZUUJ1ASClQpJkiIGt76emaWt49DdH0ESrkwrfe01HtF3dCqpwCQVcSgVxxzDn01Nwe6P oMRJYrTffZfr3nzpzeRB5kga4GlqTU3Bq9GKXzjbpKJXL+50//Mf7hCCSAXAZOKdd4Lb+oQJLK9m Qiq2bg0OhtSX587U/QHwO9vWFp1UAImkwub2AdgGvPVWeG6UUaO4U1u/Prsdq640mUGuAkkd3tQE nHFG8u9m+7TFVADcvocPT47ZkGctSwrY3B9NTdyxSW6NfELKv25ddju/ww/nOpGONWhgWV7u72Mb 0YuKJeioUlFezs9AV5Tkf1nBOZNJBYB/jzKwkH6wpykVkwEQgC8BOAjATABfAXBLJieTylu+nBmo ZG7sCKkoKGAmby4kNWwYcO+9yUt1m5BOzyQVQKLBlYYbpFQ0N7NhD2pw0qAkRa2eya4jkDoV90cc SsXQoX6nYZIKcY1IDI3ZYfbrx8csW2bvTPU0x2ZyJ4EY+yBSsf/+bJg2buTrZbOOKiv9RDZB7o8o GD8+M6WiooJH2kIqbe6PxkYeGSmVvlIh55PstFEDNQF/FdWVK4OViigYPZrLv2BB7kjFqlV2JaKg wCdSkoFWR0lJ4kqiQe6PpUvtI1wZ9ASNWuX4Y49NJiT5gLwra9dmn1Q0NXG+npISO6EDfAUPCFYq JJAVCCcVjY2pScUXvwg88EDytGDAT4qV6XOQfk4G08uW8cDEXKQxH4iNVCilnlFKfVEp9bxSaq1S 6kkAvwAQsvRVMHSlYtQozlRYXm73M0dB37587OrV9s7miitS+18lI2MqUhGUowLwG/vKlcFGt7SU fcYPPcRl7UgHpKNXL35R1qxJTjyVTxx3HH+apGL4cO7MlizhZ2FLtjNiBBsFm8qiuz/0rKk6TjvN v5YNBxzAPu21a/n5ZUs+B9jISIceplSkwoQJTLZl6fmokA7vnXeYwAXNLhCjm25MhSgV1dWJ14uC iRPZbbBjR7BSEQVSr2vXZpdUyHTVlSu54wqq9+HD2U7YpmXq0w1t7o++fblOW1rsWVx19wiQvI9O KuKAXD/bpEIGVQ8+mLwCtY7ycj8exXZ9saMSDBxGKmwLDtrO95nPJG4rKWGbsXq1fXn3qJgyha9/ 0kncLpYtS85rki90tpiKQQBqMzlQGsWGDWxwjjqKR7AdCUCSxhnEdFNBApFseeFNpULkbhPHHMMN Y+fOYKWCiDPY7dvHZc5mQ5owgY1iOrMGso0gUiGjs4ULg11RUqdhpEKpYFJRXs5qRdBcfCGeCxYA hx6a+l7SwRVXsLGYNs3umomK8eP5/vbsAT71qejH6aTCRqqk/oLS4adyf5SVccebiVLxyU/6bpmO KBUTJvAo7/jjM0/iZENhIRP9J5/k6YJBpOLoo3l9HlsOF5NU2Do+adc2pUISLi1aZN9HjpX3K9+Q 64fFxWSCsjI/I+bMmcH7lZf72ZJts+WEcMqgL4xUZJrHp6DA76M6ojBPnMgEe8QI/n/jxvgGgZ2G VBDRBABfB/C7TI7v29d/MY8+OjtlkoccJXWwDXrGOHNdCVOpGDHCblhGjfKl0TB/26WX8u9HHZVZ WYMg147D9SE46yxm8aZvXEaWCxcGy/piSG0vvATB7t7NBijoOT/zDC/8ZcOECdxpvPZa9gJkBWed xWTljTc6dh4x2BMmpLf2ipCKhQvthFeUiiikwub+EPl/4UI+VzpG8NRTfaPekQ6puJhJ4bx52X9+ RxwBvPAC/x9EKn79a+C3v7X/ppOKoGWspd3bnk+vXvzeLlzIHZdJSqZM4TJOm5b6XnKB/v39gZbN /dMRHH0031+YUiEk9uKL7etDmVk1TVIhz6O+np9TpjZS7E623NbS/8URpAkAWYq39UFEPwNwfcgu CsCBSqkV2jEjAfwbwF+UUvdGuc7MmTNRYvgf+vSpQnNzVdY61myQih077AuBmUpFmMviiit4CeCw kVxREXdAmZY1CKefDtx+ezxBmoIxYzgPgwlZ3G3nztRKhY10yEg7aDG3KJDOYt++7HdK2YK4B845 Jz21qbycDXN1dbBSoZMK03/brx8Trvb24EBYWWPnwgujlwvg9n7qqTwzJ07CG4YjjuDF9QoLk1cA joJU7g8gXKkA+L1Ytsw+Ej/0UN/1FAckAdfmzdknFX/8I7e7sPYuNvmKK+y/9+/P5dNJhd6GS0v5 /CtWsNrZEVKxbl12ScU993B7mT17NmbPnp3we725/GqWkXVSAY6L+FOKfVbLP0Q0AsALAOYppf4r 6kVmzZqFKbLerofKSpZEM00bayIbpGLnTn5pbKRCFgIKS24E8JK+v/wlcMIJ4dfLxbSwE07gjrsz Gm4iJg1r1wYrFVHcHx0hFWPGcKfR1pa9WTfZRmkpcPPNwCWXpHccEa82edJJdlIhgZphSgXgr6Bo 6xRHjOD2deut6ZUNAG680XeddEZIe9h//8ymSw4axHW3a1fw4lDSroNWxpX3IltJ2bKN0lJuJ9l0 fwDRBkHnn89qWVh/oU8rbW5OPG9hIX9fvpy/d4RU9O+fvToQpaK4GKiqqkJVVVXC79XV1ZiarU7S gqyTCqXUDgA7ouzrKRQvAHgLwJUdvXZxMTB5cvYS2IwcyS9lpqP0IUOYwa5YkWyU9VHI+vXhbos+ fcJ9g7lE//68pHAcU86iQIIZO+L+6AipKCzkTqO+PjiYM24QATfdlNmxJ57IEr2N0EZxfwDcKe7b Z1cqrr0WqKrKbJbWtGnxSfdRIKQi02BxaY8SKBgWU5GKVMSRhyIKjj02uOy5RkUF8JWvhO+jTyut q0sOpqyo8KdvZtpPlJWxapTJ2kg2HHwwK3lxxVTkQqmIBE+heAnAGgDfAVBOnlallNoafGQwhg1L z2ecCkTAP/6ReQItYa7LlydLW7JYU3s7y78die7PNe67L+4SBENIQ0cCNTtCKgA2CHv3xhfImmtc fbV9e5RATcBPTmYzcqeckp0ydkaUlHCwpiTiSxfSHqVTy9T9EfZ73PjjH+MuQThGjeIFygD7+kfl 5b4LKVOl4pZb2E2YLfTuzWQtncDnbCI2UgHgdADjvD9JMULgmIuMONtjj9kDbjqCjkRGSyOrr092 fwwZwlP8tm3jBpWtaaA9DWIsg5SKceNYbbGRTVmEThZry5RU3H23vypiT0JUpUJWIu3IDJauihde yDxgTtqjJFazkYpJk7jjC5rl1tndH50dulJhm+FRXu4vKJgpqciFCvzoo9nLUJouYiMVSqn7AGR1 DJwqw2W+oTdAk1TIzBBpsJ1ZqejMSLUOi9SzLQmMGOmNG/n3TAlptoNjuwqElEmCplRKRU8kFR0Z LZpKhY2cVFUBn/1ssEpmSw3tEB2jRjFpqKnhGDibUgFwW0+V/CqfiDOwvtNMKe2O0BtgEKkIS3zl kBqplAogOKucntukpxKDjkBIgigRqZSKuHy8XRVR3B9EiflvTDilomMQuyy5PoJIRWcMZI8LjlTk EEVFvmE1RyySd/+DD3ifdNInO/g4/HCu20wip3WlwpGK9JEuqeiJSkVHUFzMsxPC3B+pcMghHECc 7dkVPQXilpaF10wFQOy6IxU+4oyp6BEoLbWv2yGNcNGi7Kd37kmYOJEDXjOBIxUdg9SfuDfMEXOU QE2HYBBxu+wIqTjsMD/zqEP6GDEiMSupUypSwykVOYYw2yBSsXChc33EBXkGQeu7OIRDVyr69Usm xk6p6DgGDeK1d/r1y34QukNqFBYysRClIohUxBnD0NngSEWOUVrKTNdsjNII33/fkYq4MGIE+5pl +WeH9GCSChOmUtGZAtm6CgYN4vY5bZpTM+PCqFF+gitzHSinVCTDkYoco7SUI7DNJW2lEba3u+mk cYGIkzsBjlRkAt39EUYqduzg+KJsJffpSZB2Ke3UIf8YPdpfG8hsw45UJMORihyjosKeaVHvxJxS ER8cqcgcqZQKmXWzY4dzfWQKaZdhC2M55BZin23EobiY/8IWe+xpcIGaOcb3v8/pXU0UFvqpuh2p iA9irB2pSB9CFLZvt+djKCzkkd327dlLnd/TMGgQ1+Mxx8Rdkp4Lsc+2uAkiXuzRtmBbT4UjFTlG ZWVw4hlZcMyRivgweTJwxhn+IjwO0dG7N8/4qKsLXoWzXz/+Pa71Hbo6TjyROy6n9MQHcU8HuTiO PTZ/ZekK6BTuDyLqQ0QLiaidiA6Nuzz5gjTSIFJhLlnbXRHnfRIBzzyTnzUouuPzlLgK3f2h36ds 767TSXP9TC+7jNPAx43u2HZtsN1nmPvDIRmdglQAuA3ARvC6Hz0GQ4awLByUt78nv8jdEd3xPqdM 4c9UpOKII/JYqDyiOz5TG3ryfYpS4aaNRkPspIKIzgYvLnYdeEGxHoPSUuf6cOjaOP10/gya7iiJ yWQ/B4euhrIyJsdOqYiGWGMqiKgCwB8AzADQHGdZ4sA3vsGrlDo4dFWcfjpw/fX+8s8m9u3jz+68 xLlD9wYR8LvfdWzF6p6EuAM1/wTgLqXUO0QUEOrVfTFtWtwlcHDoGA47jD9l+ecguNk1Dl0Zl10W dwm6DrJOKojoZwCuD9lFATgQwFkAigH8rxwa8RL9AGDZsmWZFrHLoL6+HtVBQ8BuBHefXRs33cTS sNyafp833si+6G542wC67zM14e6z+0DrO3OS+J2Uym5sJBENAZAqpGUNgEcBfMrY3gtAG4CHlFJX BJz/YgAPdbScDg4ODg4OPRiXKKUezvZJs04qIl+YqBKAPu9hBIBnAJwP4E2llHVtPY+0nAlgLYA9 OS6mg4ODg4NDd0I/AGMBPKOU2pHtk8dGKkx4MRVrAByulHo37vI4ODg4ODg4pIfYp5Qa6BwMx8HB wcHBwSFtdBqlwsHBwcHBwaFro7MpFQ4ODg4ODg5dFI5UODg4ODg4OGQFnZJUENEYIrqbiFYTURMR fUBEPyKi3sZ+o4joX0S0m4i2ENFtRFRg7HMoEb1CRM1EtI6Ivp3fuwkHEX2PiOZ791AbsE+78beP iC409unU9wlEvtcu/0xNENFay/P7jrFPyvvuCiCiq4lojfds3iCio+IuU0dARD+0vH9LjX1uJqIP PVs1l4gmxFXeqCCiE4hoDhFt8u5phmWf0Psior5E9Bsi2k5EDUT0OBGV5+8uUiPVfRLRnyzP9ylj n65wnzcQ0ZtEtIuIthLRE0Q00bJfzp9pZzVak8HJsL4E4CAAMwF8BcAtsoNncJ8CJ/A6BsBlAC4H cLO2zwDwNNU1AKYA+DaAHxHRVfm4iYjoDc7Z8dsU+10GoALAMADDAfxdfugi9wmkuNdu9ExNKAA3 IvH5/Up+jHLfXQFE9DkAtwP4IYAjACwC8AwRlcVasI7jPfjPbhiAj8sPRHQ9gK8D+DKAowHsBt9z nxjKmQ72A7AQwNdgCZCPeF93APgkOA3AieC0AH/NbbHTRuh9evg3Ep9vlfF7V7jPE8A2ZRqA08C2 9lkiKpId8vZMlVJd4g+84NhK7fvZAPYCKNO2/ReAOgCF3vevAtgu371tPwOwNO77sdzfZQBqA35r BzAj5Nguc59h99rdnqlWvjUArg35PeV9d4U/AG8AuFP7TuDVh78Td9k6cE8/BFAd8vuHAGZq3weC 1zG6MO6yp3GPSfYl1X1531sAfEbbZ5J3rqPjvqc07vNPAP4WckyXu0+vjGVeGT+e72faWZUKGwYB 0CXzYwAsVkpt17Y9A6AEwMHaPq8opdqMfSYRUUkuC5sD/IaIthHRf4jIzDbaXe6zOz/T73qSYjUR XUdEvbTfotx3pwaxa3IqgOdlm2Kr9ByAY+MqV5ZwgCefryKiB4loFAAQ0f7gka1+z7sA/Add+J4j 3teRYGVN3+d9AOvR9e79ZM9lsJyI7iIifT3Sqeia9zkIrMzUAvl9pl2CVHh+n68D+J22eRiArcau W7Xfou7TFXATgAvBstbjAO4ioq9rv3eX++yuz/ROABcBOBnchr8Hf80boGvek4kycJp92310lXuw 4Q2wK+pMsAt2fwCvENF+4PtS6H73HOW+KgC0eh1T0D5dAf8G8AUApwD4DoCTADxFRLIW1TB0sfv0 yn4HgHlKKYn/ydszzesqpRRxsTGl1ArtmJHgB/8XpdS9OS5iVpDJfYZBKXWL9nWRZ9C+DeDX/9/e /cdaXddxHH++JIiE0M3ipg3QcLM/TCRrYgxoMWGhrT/a+mWKRtO1VZYxloYmabkRg36AZjMNmLrh zNI2/I0NCMWQRMSQUsKmiKReRSgR3v3x+Rz9+uVe7rn3fu8958DrsZ2dc77fz/d7Pu/zPfd+3+fz +XzPp+e1rEbVsbaK7sQdET8vLN8o6U3gekmXRsTePq2o9UpE3FN4ulHSWuBfpCT/742plVUlIpYV nj4p6Qngn6QvACsaUqneu5Y0FnF8I168v6c+n0fqwzqYZ2oPJB0HPEjKuC4qldsOlEeWtxXW1e7b uijTF7oVZw+sBS6XNDCflBoVJ1QbazMf07LexL2W9Ld3PLCF+uJudjuBfXR8bFolhi5FRLukp4ET gYdI40baePc3wDZgff/XrjLb6Tqu7cAgScNK32xb+nhHxLOSdpKO7wpaLE5JC4FpwISIeKGwqt+O ab8mFZEmL6lrApPcQvEg8Cjw9Q6KrAEuk/SBQl/0FKAd2FQoc7WkARGxr1Bmc0S09zCMLnUnzh4a C7xS+JbbkDih8lib9piW9TLusaTBTzvy83ribmoRsVfSOmAycCe83Qw7GfhlI+tWJUlDSSecxfkE tJ0U44a8fhhpBP6ixtWyd+qMax1pRunJwB25zEnASNLnuSUpTXR5DFA7IbdMnDmh+DwwKSK2Fdf1 6zFt9CjVTkauHkf6BndvftxWuxXKHEG6ZG05cAqpz/NF4KrS6NbngcWk5qAvAbuAGY2OsVDHEcAY 4ArSSWRMvg3J688GZpAG7I0mXf2wC7iileKsM9ZD4piWYh4HXJzjOQE4YpsZqQAABkxJREFUJ8d0 Y3c+y61wI3UJ7Cb1UX8UuJ6UeH2w0XXrRUw/I11aNwr4FHBfPjbH5PWzcoyfAz5GutR7CzCo0XXv Iq4h+W/vVFKC+938fES9cZGa2Z8ldRWcBqwGVjY6tnrjzOvmkk6so0gn078CTwEDWyzOa0lXi02g cL4EBhfK9Msxbfib0ckbNJ3UlFq87Qf2lcqNAP6UTyovkga/HVEqczLw5/zPbhsws9Hxlep3Uwex 7gMm5vVTgcdIJ+HX8uNvdLCfpo6znlgPlWNaqutYUpb/Mum68I35j3tgqVyXcbfCjfR7AFtJl6qt AT7R6Dr1Mp5bSZfF7smftVuAE0plriQlurtJV+2c2Oh61xHXpNr/1NKtmOweNC7gvaTfRtgJvA7c BgxvdGz1xkmaAvxuUtP+f0ndlddRSoJbJM6OYtwHnNedz2oVsXpCMTMzM6tES1xSamZmZs3PSYWZ mZlVwkmFmZmZVcJJhZmZmVXCSYWZmZlVwkmFmZmZVcJJhZmZmVXCSYWZmZlVwkmFmfUpSTdJ+n2F +1shaX5V+zOz6vgXNc2sT0l6P+l/zWuSJpLmBNlTLEL6gvNQRFxcx/6OBvZGxBt9UmEz67H+nvrc zCoiaWC8M1Nt04qI1wtP3wfcGhE/LpaRNAq4ps79vVph9cysQu7+MGsCuUn/V/n2qqSXJJVPvM9K mi1psaR24HpJP5K0X9K+fF+7nZe3kaRLJT0jabek9ZK+UNjn0ZJulrQjr98saXpeNynva1ih/Ji8 bGR+Pl3SK5KmSNok6XVJyyW1FbbpdveHpPH5PXlD0st5n0cV3qv5hbKDJM2T9G9JuyStkTSpi/3v l3ShpLvya2ySNE7S6Lz/XZJWSzqhO/U2O9w5qTBrHucBe4FPAt8BLpE0o1Tm+8DfSFM5X0WamvtD wLH5fiZpNtRHc/nLgK8BF5Kmil8ALJU0Ia+/mjRN+dR8/03SDIU1HfWPlpcdmet1Dmnq5ZHAvDpj PoCkU4H7STO6jgPOAP4IDOhkk0Wk6au/SJrS+TZguaTRXbzUbOB3pKmwnyLNQPpr4CekaZ8FLOxp HGaHI3d/mDWP5yLikvx4i6RTgO8Bvy2UeSAiFpS22w0gaRwpSTg3Ip6SNAi4FJgcEY/ksltzQnER sJI05fr6iFif12/rQb3fA1wUEVtzPRYCl/dgPzWzgEcj4tuFZZs7KphbTM4HRkTE9rx4vqTPAheQ EofO3BgRt+f9zCVN1T4nIu7Py35BmiLbzOrkpMKseTxcer6G1FqheGdE9bqONswn1zuAubUTJXAi qRXhPkkqFB8IPJYfXwfcLuk04F7gDxGxppv13l1LKLIXgOHd3EfRGGBZnWVPJrVgPF2KcRDvbnHp yBOFxy/m+42lZYMlDY2IXXXWx+yw5qTCrLUccMWDpCOBO4HVEXFlYdXQfD8NeL602f8AIuLunJBM A84EHpC0MCJmAftrL1HYbmAHdSoPFo3SNt21p+sibxsKvAV8nHfqW9NVIlCsdxxkmbuJzerkpMKs eZxeen4GsCW6vu77ZtIJ8NzS8k2k5GFURKzqbOOI+A+wlDTWYhUwl9QF8RIpOTgWaM/Fx9YRR29t ACYDc+oou57UUtEWEat7+bq+vt6sl5xUmDWPkZLmAb8hDRT8FmlMRackzSGdgM8EhhWu1GiPiF15 fwskDQBWAUcB4/P6pXn7dcCTwGDgbFIyAvAP4DngSkmzgZOA2piPvnQNsEHSItLAyb3Ap4FlEfFy sWBEbJF0C7BE0kxSkjEc+AzweEQs78brdtS60psWF7PDjpMKs+axhPQ7DmtJTfoLIuKGwvqOvklP BIYAfyktvwBYEhGXS9oB/AD4CPAqaTzFT3O5N/Pj40ndDiuBrwBExFuSvkwad/E46YqSH5Kurugz OVGYkuv1SK7XI6SrM+DA9+F80oDMecCHSWMpHgbuOtjL9GKZmXXCv6hp1gQkrSBdhdEfLQENI2kq cHpnP34VEV9tTM3MrAoegGRm/c3dDGaHKHd/mDWHw6XJsB04S9JZhWUixX9PY6pkZlVx94eZmZlV wt0fZmZmVgknFWZmZlYJJxVmZmZWCScVZmZmVgknFWZmZlYJJxVmZmZWCScVZmZmVgknFWZmZlYJ JxVmZmZWif8DmUFKh7PC9xMAAAAASUVORK5CYII= " >

Zwróćmy uwagę na to, że czym większe przesunięcie $m$ tym mniej jest punktów, z których estymowana jest wartość oczekiwana i większa jest niepewność tej estymaty.

Estymacja parametrów dla modelu rzędu $p$<a class="anchor-link" href="#Estymacja-parametrów-dla-modelu-rzędu-$p$">¶</a>

Wyżej zaprezentowany algorytm można uogólnić na modelu rzędu $p$. Estymację parametrów metodą Y-W można zaimplementować np. tak:

In [10]:
<span></span><span class="k">def</span> <span class="nf">parametryAR</span><span class="p">(</span><span class="n">x</span><span class="p">,</span><span class="n">p</span><span class="p">):</span>
    <span class="sd">'''funkcja estymująca parametry modelu AR </span>
<span class="sd">    argumenty:</span>
<span class="sd">    x- sygnał</span>
<span class="sd">    p - rząd modelu</span>
<span class="sd">    f. zwraca:</span>
<span class="sd">    a - wektor współczynników modelu</span>
<span class="sd">    epsilon - estymowana wariancja szumu</span>

<span class="sd">    funkcja wymaga zaimportowania modułu numpy as np</span>
<span class="sd">    '''</span>
    <span class="n">N</span> <span class="o">=</span> <span class="nb">len</span><span class="p">(</span><span class="n">x</span><span class="p">)</span>
    <span class="n">ak</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">correlate</span><span class="p">(</span><span class="n">x</span><span class="p">,</span><span class="n">x</span><span class="p">,</span><span class="n">mode</span><span class="o">=</span><span class="s1">'full'</span><span class="p">)</span>
    <span class="n">norm_ak</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">hstack</span><span class="p">((</span><span class="n">np</span><span class="o">.</span><span class="n">arange</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span><span class="n">N</span><span class="o">+</span><span class="mi">1</span><span class="p">,</span><span class="mi">1</span><span class="p">),</span><span class="n">np</span><span class="o">.</span><span class="n">arange</span><span class="p">(</span><span class="n">N</span><span class="o">-</span><span class="mi">1</span><span class="p">,</span><span class="mi">0</span><span class="p">,</span><span class="o">-</span><span class="mi">1</span><span class="p">)))</span>
    <span class="n">ak</span><span class="o">=</span><span class="n">ak</span><span class="o">/</span><span class="n">norm_ak</span>
    <span class="n">R</span><span class="o">=</span><span class="n">ak</span><span class="p">[</span><span class="n">N</span><span class="o">-</span><span class="mi">1</span><span class="p">:]</span>
    <span class="n">RL</span>  <span class="o">=</span> <span class="n">R</span><span class="p">[</span><span class="mi">1</span><span class="p">:</span><span class="mi">1</span><span class="o">+</span><span class="n">p</span><span class="p">]</span>
    <span class="n">RP</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">zeros</span><span class="p">((</span><span class="n">p</span><span class="p">,</span><span class="n">p</span><span class="p">))</span>
    <span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="n">p</span><span class="p">):</span>
        <span class="n">aa</span> <span class="o">=</span> <span class="n">ak</span><span class="p">[</span><span class="n">N</span><span class="o">-</span><span class="mi">1</span><span class="o">-</span><span class="n">i</span><span class="p">:</span><span class="n">N</span><span class="o">-</span><span class="mi">1</span><span class="o">-</span><span class="n">i</span><span class="o">+</span><span class="n">p</span><span class="p">]</span>
        <span class="n">RP</span><span class="p">[</span><span class="n">i</span><span class="p">,:]</span> <span class="o">=</span> <span class="n">aa</span>
    <span class="n">a</span><span class="o">=</span><span class="n">np</span><span class="o">.</span><span class="n">linalg</span><span class="o">.</span><span class="n">solve</span><span class="p">(</span><span class="n">RP</span><span class="p">,</span><span class="n">RL</span><span class="p">)</span>
    <span class="n">sigma</span> <span class="o">=</span> <span class="p">(</span><span class="n">ak</span><span class="p">[</span><span class="n">N</span><span class="o">-</span><span class="mi">1</span><span class="p">]</span> <span class="o">-</span> <span class="n">np</span><span class="o">.</span><span class="n">sum</span><span class="p">(</span><span class="n">a</span><span class="o">*</span><span class="n">ak</span><span class="p">[</span><span class="n">N</span><span class="p">:</span><span class="n">N</span><span class="o">+</span><span class="n">p</span><span class="p">]))</span><span class="o">**</span><span class="mf">0.5</span>
    <span class="k">return</span> <span class="n">a</span><span class="p">,</span> <span class="n">sigma</span>

Jak znaleźć rząd modelu?<a class="anchor-link" href="#Jak-znaleźć-rząd-modelu?">¶</a>

Kryterium Akaike (AIC):<a class="anchor-link" href="#Kryterium-Akaike-(AIC):">¶</a>

$\mathrm{AIC}(p)= \frac{2p}{N} +\ln(V) $

$p$ - ilość parametrów modelu,

$N$ - ilość próbek sygnału,

$V$ - wariancja szumu.

Kryterium to karze za zwiększanie ilości parametrów i nagradza za zmniejszanie niewytłumaczonej wariancji.

Poniższy kod jest przykładową implementacją kryterium AIC:

In [11]:
<span></span><span class="k">def</span> <span class="nf">kryterium_AIC</span><span class="p">(</span><span class="n">x</span><span class="p">,</span><span class="n">maksymalnyRzad</span><span class="p">):</span>
    <span class="n">zakres_rzedow</span> <span class="o">=</span> <span class="nb">range</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span><span class="n">maksymalnyRzad</span><span class="p">)</span>
    <span class="n">N</span> <span class="o">=</span> <span class="nb">len</span><span class="p">(</span><span class="n">x</span><span class="p">)</span>
    <span class="n">AIC</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">zeros</span><span class="p">(</span><span class="nb">len</span><span class="p">(</span><span class="n">zakres_rzedow</span><span class="p">))</span>
    <span class="k">for</span> <span class="n">p</span> <span class="ow">in</span> <span class="n">zakres_rzedow</span><span class="p">:</span>
        <span class="n">a</span><span class="p">,</span><span class="n">sigma</span> <span class="o">=</span> <span class="n">parametryAR</span><span class="p">(</span><span class="n">x</span><span class="p">,</span><span class="n">p</span><span class="p">)</span>
        <span class="n">AIC</span><span class="p">[</span><span class="n">p</span><span class="o">-</span><span class="mi">1</span><span class="p">]</span> <span class="o">=</span> <span class="p">(</span><span class="mf">2.0</span><span class="o">*</span><span class="n">p</span><span class="p">)</span><span class="o">/</span><span class="n">N</span> <span class="o">+</span> <span class="n">np</span><span class="o">.</span><span class="n">log</span><span class="p">(</span><span class="n">np</span><span class="o">.</span><span class="n">sqrt</span><span class="p">(</span><span class="n">sigma</span><span class="p">))</span>
        <span class="k">print</span><span class="p">(</span><span class="s1">'p:'</span><span class="p">,</span> <span class="n">p</span><span class="p">,</span> <span class="s1">' a:'</span><span class="p">,</span><span class="n">a</span><span class="p">,</span><span class="s1">' sigma: '</span><span class="p">,</span><span class="n">sigma</span><span class="p">)</span>
    <span class="k">return</span> <span class="n">AIC</span>

Zobaczmy jak działa to na przykładowym syganle AR:

In [12]:
<span></span><span class="kn">from</span> <span class="nn">numpy.fft</span> <span class="kn">import</span> <span class="n">fft</span><span class="p">,</span> <span class="n">fftshift</span>
<span class="c1">#wspolczynniki modelu AR </span>
<span class="n">a</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">array</span><span class="p">([</span><span class="mf">0.9</span><span class="p">,</span> <span class="o">-</span><span class="mf">0.7</span><span class="p">])</span>
<span class="n">sigma</span> <span class="o">=</span> <span class="mi">2</span>
<span class="n">N</span> <span class="o">=</span> <span class="mi">600</span> <span class="c1"># liczba próbek</span>
<span class="n">x</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">zeros</span><span class="p">(</span><span class="n">N</span><span class="p">);</span> <span class="c1"># miejsce na realizację procesu AR</span>
<span class="c1">#generujemy realizacje procesu</span>
<span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="mi">2</span><span class="p">,</span><span class="n">N</span><span class="p">):</span>
    <span class="n">x</span><span class="p">[</span><span class="n">i</span><span class="p">]</span><span class="o">=</span><span class="n">a</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span><span class="o">*</span><span class="n">x</span><span class="p">[</span><span class="n">i</span><span class="o">-</span><span class="mi">1</span><span class="p">]</span><span class="o">+</span><span class="n">a</span><span class="p">[</span><span class="mi">1</span><span class="p">]</span><span class="o">*</span><span class="n">x</span><span class="p">[</span><span class="n">i</span><span class="o">-</span><span class="mi">2</span><span class="p">]</span> <span class="o">+</span><span class="n">sigma</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">random</span><span class="o">.</span><span class="n">randn</span><span class="p">()</span>

<span class="n">py</span><span class="o">.</span><span class="n">subplot</span><span class="p">(</span><span class="mi">2</span><span class="p">,</span><span class="mi">1</span><span class="p">,</span><span class="mi">1</span><span class="p">)</span>
<span class="n">py</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">x</span><span class="p">)</span>
<span class="n">py</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s1">'wygenerowany sygnal'</span><span class="p">)</span>
<span class="n">py</span><span class="o">.</span><span class="n">subplot</span><span class="p">(</span><span class="mi">2</span><span class="p">,</span><span class="mi">1</span><span class="p">,</span><span class="mi">2</span><span class="p">)</span>

<span class="n">AIC</span> <span class="o">=</span> <span class="n">kryterium_AIC</span><span class="p">(</span><span class="n">x</span><span class="p">,</span><span class="mi">6</span><span class="p">)</span>
<span class="n">py</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="nb">range</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span><span class="nb">len</span><span class="p">(</span><span class="n">AIC</span><span class="p">)</span><span class="o">+</span><span class="mi">1</span><span class="p">),</span><span class="n">AIC</span><span class="p">)</span>
<span class="n">py</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s1">'Kryterium AIC'</span><span class="p">)</span>
<span class="n">py</span><span class="o">.</span><span class="n">xlabel</span><span class="p">(</span><span class="s1">'rząd modelu'</span><span class="p">)</span>
<span class="n">py</span><span class="o">.</span><span class="n">ylabel</span><span class="p">(</span><span class="s1">'AIC'</span><span class="p">)</span>
<span class="n">py</span><span class="o">.</span><span class="n">show</span><span class="p">()</span>


p: 1  a: [ 0.50668557]  sigma:  2.97847718464
p: 2  a: [ 0.86625887 -0.70965766]  sigma:  2.09847615939
p: 3  a: [ 0.85333373 -0.69388032 -0.0182132 ]  sigma:  2.09812807673
p: 4  a: [ 0.85288373 -0.71102433  0.0028705  -0.02470744]  sigma:  2.09748756975
p: 5  a: [ 0.85113675 -0.71082137 -0.04740376  0.03559724 -0.0707068 ]  sigma:  2.0922378558


<img src=" AAAPYQAAD2EBqD+naQAAIABJREFUeJzsfXmYXUWZ/lvpfUk6K9lICBDWqCwRERRRXFCGARRcIu6j qDjqxBkXGAWBn+KGGRF1VBARh6iICCKbLAqIiBKULYgEgpCEpLN0d3rL1vX747uv9Z26de49d+nu 2516n6ef2/fcc+rUqVPLW+/31VfGWouIiIiIiIiIiFrFhNHOQEREREREREREIUSyEhEREREREVHT iGQlIiIiIiIioqYRyUpERERERERETSOSlYiIiIiIiIiaRiQrERERERERETWNSFYiIiIiIiIiahqR rERERERERETUNCJZiYiIiIiIiKhpRLISEREREfFPGGOONcYMGWNeMdp5iYggIlmJiIiIiPAR92GJ qClEshIRERERERFR04hkJSIiouowxrSOdh4iIiLGDyJZiYgoE8aYF+Zs+yeqY4fnjv3ZO/cmY8wf cv9fYYzpNMbUBdK81RizUn1vNsZcnDu/xxjzS2PMnNw9zvGunWOM+YEx5nljzKAx5hFjzHu9c+iP 8GZjzH8bY541xgwYY24zxuwbyM+RxpibjTFdxpg+Y8xvjTFHe+d8PpfmQcaYq4wxmwHcrX4/zhhz tzGm1xizJfcMB1ZajrnvJxljbjDGrMk985PGmM8aYyZ41/3WGPNQLo935p7lOWPMJ9U5bbk8LguU w1xjzE5jzKf937zz3maM+XPuXXXn7vmx3G97557p44Hrjs799lZ17JW5tAaMMX83xpzBsvauHcrV kZONMQ+rd3+8d958Y8y3jTGPG2P6jTEbjTE/M8bsVeiZIiJqAZGsRESUj0cAdAHQjojHABgCcIgx ph0AjDEGwFEAfpc750cApgLwB5OZAF4F4Ep1+AoAHwFwA4BPARgA8Gt4PgXGmD0A/BHAcQAuBvAx AH8HcBkHSw+fAXAygK8C+CKAlwL4sZfmcbk8twP4PICzAHQAuMMY82J1KvNyNYDm3Hnfz6XxGgA3 A5gO4FwAFwE4GsA9xpj5uevKLUcAeA+Arbl0PwbgzwDOB3Ch97wWUuY3AXgQwCcArATwJQ7q1to+ ANcCeGvuXhpvz33+GCkwxrwWwFUANkHe1acB3Jl7XlhrnwbwewCnBy4/HUAPgOtyaR2Wy+sUAJ8D cFnu82SE/UmOAfAtAMsBfBJAE4CfG2OmqHOOgLzn5QA+CuA7AF4N4E5jTHPac0VE1ASstfEv/sW/ Mv8A/ArAH9T3n0MG7e0AXpc7dhhk4D0x990A+AeAq7y0lgLYCWAv77qveef9AMAuAOeoY5cCeA7A ZO/cqwBsBtCU+35sLs1HANSp8z6aS/NgdexvAH7tpdcEYBWAm9Wxc3NpXhkonwcBrAPQoY69MPec l1dSjsxP4J7fgRCYBnXsztzzvV0dawCwFsDP1LHX5s57nZfmXwDcUaQuLAOwpcg5H8ilv786Vg9g A4DL1LHrc88wUx3bJ1ceu7w0hyAkdoFXxkMAzixSVi/JnXe6OnZsLo+vGO32Ff/iH/+ishIRURnu BnC4MaYl9/3lAG4E8FfIbBdwKsE9AGCttQD+D8BJxpg2ldbbAdxrrX0m9/31kFn0d7x7fhNCeDTe BBnw64wx0/gH4FaIGnK4d/4PrLW7vOcwkAERxphDAewHYLmX3kQAtyOpgiCXz+/qA8aYWQAOgZCS 7n+eaO3DAH4D4ATv/iWVYy6tbep+7bk83gOgFcA/TU059Fprr1LX7gBwP585h9sg5Oqf6ocx5gUA XoSk4hVCF4A23/zi4WcAtiGprrwewDTkVJucCevVAH5prV2v8vsURG0J4TfW2tXq3IchSs0+6pgu q3pjzFQAT+Xy7dePiIiaQiQrERGV4W7IDP0oY8z+AGbkjt0FN8i+HMBj1toudd2PIAPqGwHAGHMA gMW548RekMH5ae+eT+ovxpgZACYDOANAp/f3g9xpe3hpPOt935L7pNlgP5VPnd4GAO8H0GiM6fDS 8PNJX4gnkI+VAKYrclJWORpjDjbGXGuM6YIMzp1wpMLP33OBfGxRz6yJ5CnKNHI6RLn4eeB6jW/n nvVGI75Al/nEJUfafgVnVmL6a6y1d+a+7wGgBd57ziF0DMh/n4D3bEb8n843xvwDQpg2Qt5nB/LL KiKiplA/2hmIiBjj+DOAQYjS8CyADdbaJ40xdwP4sDGmETLY/kJfZK1daYx5AMA7IDPqd0AGkKvL yAMnHT+G+LiE8JD3fVfwLKfYMM3/hKgbIfR63wfSMpgBJZdjjizdBVEGPgtRCQYhpO9LyJ+MFXtm 4kcQv49TAPwEwBIAv7LWbi30ANbazpwidTyAN+T+3muMucJaqx2dfwTgNGPMSyHmuH8FcEmhtDMg y7NdAuDdEHPVfQC6IYrYTxEnrhE1jkhWIiIqgLV2hzHmfsgg+w+4VTB3Q/w7TgcwEzKo+vgRgIty 5pIlEP+QbvX7M5BBZG+InwixH5LohPg31Flr76jsif4J3m9rBWnSnHVA4LcDAWy01g4AZZfjKyHK wcnW2t/zoAmsaioF1tpHjTEPAjjdGLMGwHyIk3OWa3dCHKB/ncvLdwCcYYy5IGfGAcTheGPume6H qCjacXcDhHQtDNzCf/el4FQAP7TWfooHjDFNEFUuIqKmEdl0RETluBvAkZDB824AsNZuAvA4ZEWI hVrKq7A89/kNCCHxfSJugcyMz/SOfxRqRYi1dgjANQBONcYs8m9ijJle0tMIHoAQlv/y/Goyp2mt fR7imPpuY8wkde0LALwOuQFdodRy3AUpn3/2YzkFxi+vcnAlRCH5DwixuLnYBTkfEB8P5z6beCDn K7QcwFshq5kettY+on4fgvjOnJIjskx/IcS/pVzsQn6f/zEAeUvoIyJqDVFZiYioHHcD+G8A85Ac TO8C8EEAT1tr1/oXWWs3GmNuBvBmiH/Bjd7vK4wx1wD4jxw5uA+yUoOza72E9TOQQf6PxpjvA3gM slR3MWQ5c0mExVprjTHvz+XpUWPM5QDWAJgLWV7dDVlGWwyfzKVxnzHmMoifzr/nnvc879xSy/He XDo/MsZcnDv2DlQnVPxVAL4CMQV923NGTsOlOcJyB8Q/ZgHkWR+01q70zv0RhCi8ErLM2cfnIYTu 3pw6Uw9Rdx6BOC2XgxsAvNMY0wOpH0dBHHk3Bs71TWMREaOKqKxERFSOeyGz1h4k/TvuhgycIRMQ QYfan+ZWp/h4JyR+xgkAvgyZob8NMpgM8iRr7QbIMtQfQJx2vwkZDCcjfzBMG8wTx621v4MMaH+C DJQXQ3we1kH8HorCWns7RA3YCCEnn4CU18vVqieipHK01m4G8C+Q5ccX5NK+BeHBP+/5Ch3Pleet ua+psVU8XAnx2/kw5J29E6KgnOCfaK1dAeBRiAP1VSm/vx6y7Px8AO+DEJjbod67yn/o2fzjH4PU t7cD+BrErPYaiO+Rf33cGyiipmDE+T0iImI0YIw5CRKI7Bhr7b0ZrzkUwApIbIzlxc6PKA/GmF8A eIG1dv9hSn8FgE3W2teWcM21kFg4IT+giIhxizGrrBhjjjHGXG8kzPZQrtPXv1+eO67/bkxLLyJi lHAGgKfSiEpKZNH/gCgQhRSbiApgjJkNUW1+VOzcMtN/MYBDkb56K+/dG2P2g6g0d4aviIgYvxjL PittEOe9y+AtC1W4CeLARvvrtpTzIiJGFMaYt0ECjb0BIs+n4VPGmMWQAWonZLA6HsB3rbVrhj2j uxmMMQsg8VzeD4kW+70qp78IwIshJqs1kCBxaXjKGPNDyJLsBQA+BDEBfbWaeYqIGAsYs2TFWnsz ch76gX08iG3W2s6Ry1VERGZcBVlufCnyI9Rq3AvxK/gsZI+ef0DC239xuDO4m+JYAJcDWA3gXTnf lWriNMgeP48DWGKt3V7g3Jsg/kmzIBOtewGcba1dVeCaiIhxiXHhs2JkF9JTrLXXq2OXQ1Yr7ICs GLgDwGdzTnkRERERERERYwRjVlnJgJsgsSeeBrAvZBfWG40xR9nxwNAiIiIiIiJ2E4xbsmKt1bbg R40xD0OCXL0SKQ5quU3QjodIwP7ywIiIiIiIiIh0NEP8q27JBXSsGsYtWfFhrX3aGLMREsI6zZv+ eMgmZhERERERERHl4XQE4gdVgt2GrBhj9oRsw76uwGmrAeDHP/4xDjrooJHI1rjA0qVLsWxZphhh EQqx3EpHLLPyEMutdMQyKx0rV67EO97xDiA3llYTY5as5PYrWQi3LHkfY8whkIiPmyErJq4B8Hzu vC9Dtm+/pUCygwBw0EEH4fDDDx+mnI8/dHR0xPIqA7HcSkcss/IQy610xDKrCFV3oxizZAUSq+BO uJDSF+WOXwHZyOxFAN4FCTe+FkJSzkkJaR4RERERERFRoxizZCW3b0mhCLyV7E4aERERERERUSMY s+H2IyIiIiIiInYPRLISUTGWLFky2lkYk4jlVjpimZWHWG6lI5ZZbWFcRLCtFowxhwN44IEHHoiO VRERERERESVgxYoVWLx4MQAsttauqGbaUVmJiIiIiIiIqGlEshIRERERERFR04hkJSIiIiIiIqKm EclKRERERERERE0jkpWIiIiIiIiImkYkKxERERERERE1jUhWIiIiIiIiImoakaxERERERERE1DQi WYmIiIiIiIioaYxZsmKMOcYYc70xZo0xZsgYc1LgnPONMWuNMf3GmN8YYxaORl4jIiIiIiIiyseY JSsA2gD8BcCZAPL2DDDGfBrAvwM4A8BLAPQBuMUY0ziSmYyIiIiIiIioDPWjnYFyYa29GcDNAGCM MYFTPg7gAmvtDblz3gVgPYBTAPxspPIZERERERERURnGsrKSCmPM3gBmAbidx6y1PQD+COCo0cpX REREREREROkYl2QFQlQsREnRWJ/7LSIiIiIiImKMYLySlYiIiIhxj899DvjSl0Y7FxERw48x67NS BM8DMABmIqmuzATwYLGLly5dio6OjsSxJUuWYMmSJdXMY0RERERFuOsuYOLE0c6F4GUvA970JuA/ /3O0cxIxEli+fDmWL1+eONbd3T1s9zPW5i2kGXMwxgwBOMVae706thbAV621y3LfJ0GIy7ustVen pHM4gAceeOABHH744SOQ84iIiIjy8eIXC1m5887RzgnAZQ7VGFK++U3g7LOBrVsrTyti5LBixQos XrwYABZba1dUM+0xq6wYY9oALIQoKACwjzHmEACbrbXPAvgfAJ81xjwJYDWACwA8B+C6UchuRERE RNXR1+dIwnjCBRcAvb1CfMbj80WUjrHss/JiiEnnAYgz7UUAVgA4DwCstV8B8E0A34WsAmoB8AZr 7fZRyW1ExCjAWuBrXwO2bBntnEQMB/r7ZVAfbVBNqRaxaGuTz66u6qQXMfYxZpUVa+3vUIRsWWs/ D+DzI5GfiIhaxNNPA5/8JPD448Cll452biKqjb6+6phdqpEPAGhpqU56JCsbNwJTplQnzYixjbGs rERERBQBB7JamH1HVB99fbXxbulbUm2y0tlZnfQixj4iWYmIGMfYuVM+h4ZGNx8R1cfQEDA4WBtk padHPguRle3bszsCt7fL58aNleUrYvwgkpWIiHGMgQH53LVrdPMRUX3098vnjh1CBEYTVFaam9PP Oe884LjjgOeeK54eSc/urKwMDQHPPjvauagdRLISsduhFmz8I4XBQfmMysr4A/1E/P9HA1mUFZKU LErQjh3yuTuTlfe8B5g/35XF7o5IVmoQUfocXuyxB3DMMaOdi5EByUpUVsYfNEEZbVNQFp+V+txy jix1kYrg7toX9vcDV17p/o+IZKXmsHYtMGMGcMUVo52T8YuNG4F77hntXIwM2OlHZWX8QQ9io01W sigrdXXymUUpYL3dXZWVf/zD/c+y2N0RyUqNgfEw7rprdPNRa9i5E3jssdG7/4MPAtdcM3r3LxdR WRm/qCUzEJWVCQVGFCorrJOFQCK2u8YH0j5IkawIIlmpUWzbNto5qC3ccANw6KGVS6LlDtpHHQWc dtrY83eJysr4RS2ZgaiscPUZIAHiLr7YfaeykmXw5Tmj7Tg8WtDqUyQrgkhWagysmGOJrAwNAT/6 keuwhgMbN0oDrvQexWzgzz4bPqe1VT7Xravs/iONqKyMX9SSGYjKCgdZkuOvf92dQ2Uly+DLZ4tk JZIVIpKVGgMHl7FEVlatAt79bmDmzOFTHth5VSp3b9hQ+Pf58+XPx6JF8vlg0T27awusT7HDG/v4 wQ+AJUscEaglMxAnERxkWd80iSqFrPCc3XUlTCQr+YhkpcYwFpUV5nVwcPg6zWqTFUrSIYQ6h9mz 5XOskRU+y2gPZlnx0EPAAw+Mdi5qD2vXAv/2b8BPfhJuC6OtrPD+HGSZR52v8WIG+u53RUkeTkSy ko9IVmoMY5Gs6IY1XJ1mtcjK+vXyOXFiadex09Re+mMBVFbGClk55BDgxS+uPJ2bbpL9kMYLNm1y /+u20NQkK3BGm6ywntFnhXnU/Ridb4sNvjt3Sp/S3Fx9smIt8KlPAX/7W/JYMcVV46qrgJ//vLr5 8jHcZOUPfyjtmWsBkazUGMY6WRkrykqhVQshsNOsxZleIVRbWbnjDvkbDlTTr+aEE4CDDko6fI5l 6P6AbaG/X3ypmptHv79gu/CVFQ2+i2KDL3/v6Ej2Ldu3A3PnAnffXX4+V60CvvpV4Jxz3LGbbgL2 2SfbKiVA/HOGmxwOJ1nZuRM4+mjg9NOrm+5wY9ySFWPMucaYIe9vFBe/ZsNYJyu1rqzQebbUDoDv Y6yRlWorK69+tfwNB/Rst1r4zW+qn+ZoQNc7toWBAVFVGhtHv7/g/QuRFT5DsbbHazs6ks/d2Snm sC99qfx8kugsXOiOPfOMtI/u7mxplENWVq8uLRzFcJKVv/wl/x5jAeOWrOTwCICZAGbl/l4+utkp jnJnwv39wFveMjpBlMaSssJOdWCgNGdgXqcHhS1bgBe8QDq7WoUmK7W+7PrPf5bPffapPK0ZM+Rz vAQV0/WObWDHDqChQcjKaJNo5s83AwHOIdh3vk1DmrKyeXMynXJAskJnX8A5B2clIOWQlW98A3j/ +7OfP5xkhWXwghdUN93hxngnKzuttZ3W2g25v82jnaFiYMXMyvKJJ58Err7asebhwqOPAtdfnzym pfZaJyu6Eyg0G/UH9pAZ6Le/lfJYvryyPA0n9EaGoz2gFcPzz8tnoc3wsoJmvtHw5bjlFuDvf69u miEz0M6dQlaamkb/3RZSVhjYLauyosmKfi6qopU866OPyqfuR9jXDidZ2bIF6OrKfj7LsaGh+uH2 //Sn5Pddu4S8+f16rWG8k5X9jDFrjDGrjDE/NsbMG+0MFQNnwqVUbMDFORhuR8ozzwROPlkctIha NQP19opdVsdG0Xkt1An4v4XMQHxXhUKMjza0Hb4WnGyfegr4n/8J/xZSr8oFCfRokJXXvx448MDq phkiKzt2yCBTS8pKiKzQTyyrsqLNQLq90sm4kmdlv6rrBclKlvaxa5fkr9R61dWVjBF1332FzUJ8 xkmTqq+s8Hn5znp75bm++MXq3qfaGM9k5T4A7wFwPIAPAdgbwF3GmLbRzFQxaJ+VrA5fwMiRlbZc 6X3lK+7YSJqBSukkHnlEPPff/nZ3LKu86itbIWWF76caSsBwQT9jLSyB/Nd/BZYuDf/Gsh3rZAWo fsTgkM/Kzp2OrNSaz4qua37AuHKVFZKVSupxiJiUoqzwulL7ue5uKSOW01FHAccem34+y6q9vfrt 1l8WzmcpVc0fadQXP2Vswlp7i/r6iDHmfgDPAHgLgMsLXbt06VJ0dHQkji1ZsgRLliypej59+I08 60A4UmSFHcYddzibea0qKzz3t78Vs44xhcmKNmd1dQFz5rjvoVk/n7WWfUEGB6XTZ2c52qCUz7qj UU1lhe95tJf0VgshnxWagRoaakNZqa8P+6yQ1Gc1A/FZJ04MkxWGHygHlZIV9rPbt8tfY2O2+1LR 2bpVzHbFwPbR0jJ8ZEUrK0Dp0cGXL1+O5Z4NvHsYGc+4JSs+rLXdxpgnACwsdu6yZctw+OGHj0Cu 8qErZimd9kiRleefB177Wlll8cc/Ai9/uRsYjKktnxXd+NixM37D4GB+J6DLO4uyws6zFswrxM03 S2f4qlfJ92qSlWqQMnaM/f1Sfp/+tKhfesAdD8pKtcEyMSZfWakFn5Xt20V1ZVsIkZWsygrPa20N m4HWrxezRaHAjml5DK2OK4esMI3GRvFHaW11JKS7WwL4ffe7wLRpyXv09ADTpxe/T7lk5ZlnJIBl IRKVpqyUSlZCE/gVK1Zg8eLFpSWUEePZDJSAMaYdQlRqencXXTHLMQMNZ+dsrXQUb3iDfH/iCflk hzJlSm0pK5pw6A5z0iT5vxSyEvJZqUWy8oY3AMcd574PDACTJ8v/xQa0rq7C5otqDIh62e2550pw raeekmPjwWdluOK6bNsmg1d7e+36rLS3y/NbmyQrftsp5jCqyQrTA1x7GxoqvsdXCByMJ02qDlnh +VOnJpfz/+Y3skP797/vjmllRSNtAlAuWVmwQPwKC8EP2MfnSHv+DRsKT1R+9zvgvPOy57FcjFuy Yoz5qjHmFcaYvYwxRwO4FsAOADW8dsPFTgCG12dl9WrgtttKyhp6eqSCz5kjnaRvp548efgG7nJs xXqmoCNslktWjKl9suKDygpQmATs3Clks5CTXTWfc2DAmYF8M8H27ZWpOENDjnSNNFmppmT/zDOO /GzbJqREqxdUC2vFZ6W93eWrv9+1s1KVFT4zNw/ldZs2ucjT5bxXtum5c6tLVgDg9793/zOPDGlg bVJZ0UhTM8ohK6zzt9xS+Lw0ZYV59c/de28JnJeGd70L+Pzn3aqv4cK4JSsA9gRwFYDHAfwEQCeA l1prNxW8apQxOOhmwqWQFTacrAPKsceKOacU0FY8c6ZInpoAGCOdU6mdyM6dwHPPFT9vtJWV7dul E9LncHZXy6aGrGSFy4YLBVHTz1mpgqDJCjs55s/aytLX1w7Hu9myJb3OlkNWVq1KzsJ5jwUL3Mqp 7dulzbW2lm4G2jQCPV6IrEydKt9L9VkhOaEzP6/btMn5kZVDztim58xJ9iOlxFlJIytAPkFevdp9 528+OUlTiMohKyynYs+R5rMC5Cs/mzbJuyy0zcihh8rn7bdny2e5GLdkxVq7xFq7p7W2xVo731r7 dmvt06OdLx96FghIRZoyRf4fTmWFsmQpIc45oM2alQzxzYalZ33EW99aWMH58IeBeRkWlFfqs5KF rOgOX3eG1rrOeLiVla4u4D3vqTxNzpC2b3eDSKEO/tln5bOtwFo5nadKFYQQWUkr/1KhV1IMB1k5 6qj0OhsKhlYMRx8NnHFG8hhDA3DZ77Zt+WQlixloxQpgjz2Av/41W17KxbZtru7s2CF59Cddpfqs +GSlq0v6Hp1mKQiRFWsrIyv6Ha9alUyHZEVPfEohK42NSbLyi18Aixen99ksk6xkJaSs+M7LzLsO peEHWmQAxkhWxjlmzABe8hL3faTICp28StnMimTFV1bYafqDw65dwM9+llw67OMnP5HPQrL/jh1O 8h4pZUX/z5n6pEnDT1auuEL+fvnLytLRpgJ2+tUkK+UMFn6sEAZuY2TStPIvFXxfkyeXRlayRkbl tgCh8zVZyXpvtkFdt2hWmDtXPklW2tryg8IVIivXXisD6q23ZstLObDWOdgCjqy0teX3E0DxuqN9 VvT3rVtdv1VO/SBRmDMnqURz8M/Sjn2yoq955JHkOTQD6YG+EmXl0kuFfF59dfgaP4pwCPQn0mZ8 XU/9d8O88/P++4X8/u53+ddsHuaQq5GsVAlbtsjspdTN2DZvBh54wH3PSlYGBoBXvEIqDxAmK9/5 TvoOtmz060pwN378cblu8mTphIopK1kGczYUprVmTX6ERXbO06eXrqyQ9esOkzbltMBv+nx93F9K SUVA56m3182wygHVhqwD569+BXz2s/kKHWc/O3ZkU1Zo1ihUf3WnVo6yomdkAwOu/NnJbd/u/LWq QVZKcfj+5jdl0M/yXFxpEYpSq6/PEthR1ydNru+7Tz610zGVFU1Ei8VZufFG+dSDS7WhlSx+D22y 6G92WCw9khVt3qiErLB8Z89220/oMs+qrLCN9vYmyQvrMdNhHxJSVljPi5GV1lZXpxge/xe/CF+T pUx4zuTJYWXFH3N8ZYVj1dPKRuErNcOFSFaqhHe+U2x3adE5syIrWfnxj2WPh8tzEWNCZOXMM5NE SION/uKLgcceA3796+J5e+QRaTDGhM1A7e3J+3NwyhIummm96EVJpUlfP3VqaTP67m6ZBQBJstLY KPnPqqywEba3J/0qQl70F19c2UZ/HGizhiu4+GLgC1+QeqfLnrN1rawU6kyorBRykqvUDKR9JwYG XJ3VygqJZFrHOzQEXHJJ4XqgHb6zkhWS/p/9zB372MeAZcvyz91zT/nkTFpD1/Us73DlSve/nnWz rLS/R2Nj2AyU5rNirWy/seeewD33FFYvly4t3eGe4LtiPaPPSkuLCxPA/PJZCkGTMF5nbTZl5bbb ZDl8CN3dUlZTprjtJ5i3rCbDvj43AfLJih8d11q5D483NLh3zHeRRVnh+y7m85Olb9QB90LKil+u vrLCTx2GbKQ2341kpQrYudPNXLRXeDnQS00LVb4rrpBPVpBCZqBQJ0XntyuuABYtAk48sbhTI8kK kC/vUlnRFb+UTeQKSYl8pmnTSiMrPT1istLpF3JcY1nW1YWJC5UVSqlDQ/nLIJ97Tgb+ciOYcpBa uzbb+TRpPfFEsuPUykopZqCsZKUcM5AfTZcdt1ZWipGVRx8FPvrRwiseyjEDcRDUEvs3vwl84hP5 53ITPJKVBx5wy/g1WcmirOhzNLnxl3GHfFaKmYH6+qQeLl4safvOkxqXX154xUchMI++suKTlTRl haHedaSLaTloAAAgAElEQVRbTVa2b5d77Nrl4pak1b+TTpLo2qHfu7tlkGV76OtzecqqwvX3y3O2 thYnK8w739fMmVLnrXX5S2tv27fn91OhOEQ9PaXFJ2Jakye78/v6XPDRYsoKP41x5/jvd7gQyUoV 8NBDUkGPPtrtHEuUyja3bctf8hcCZ86UoguRlRATDxEY+qSk5euJJ4AXvlC+l6KsAOGKHPIpCYGN f8aM0mb03d2OrPC6QmRF78eRRlY4W2J5U1ImNm2SAaKY/XblSuCCC/KPc6aVlaxwwNdKBZBUVrKY VmgOLJTvUsxA118vQbE09P2LKStpHR+fi+QgBB33Z8eObJ0oO2GWvyab/iDGczdskCB8L34x8N73 yrFSzUBpK9CYZ7aLNJ+VQg62TO+gg+QzrU7t2iXnluK/FnoGTVa4eslXVlpa8vN6++3Af/838O1v u/MYmZffWVeKKSt0fH7oIflct845um7eLIM086nJytSp2cgKQ0vwPTBfbW2OeOh2uGOHq4/TpiXJ BZB+z1A/FSIlHR3AKafI/7oPTWufrDvaDNTb60hgVmUldK9IVsYA/vAH6TA+9CGZodKj+qabpLGy sfjQhEGv3mhuTioXIXR3iwKQhayEZlQhFaXQEuK1a6VT22cf+e4vXS6mrHDmrqGXw/nPGhospk8v XVkJmYGKKSuTJiXvw0aoB1KW6axZyWfmYFcsJPj3vw+cc07+AMHr16wpfD3BfAwOJt8zO04+r/Yx CsFXOUIoxQx08snSHjT8/W18srJ9uyPqaXnNQla0sgIUVhQIfwap5fl7702ey3P6+91SbxJCrayk mT+tdRMDXc+0GSiNrLS0uPegzUCh8mJ63FQxjazwvErJijYD0WzlKyttbfmDGvPFMmSd1cqK7gP0 PX3QIZmTxjlzJE4IIObuAw8MKytZY0SlkZV589KVFZKVjg65Rr/zUshKWtBEKmL6eNpy9TRlJU2x 8tsFv+vzorJSQ/jrX4urHHpVD+3Qf/yjfD7+ePg6/XLZUEIzkhB6emRGt369NJiuLqlwOpy5PtcH G9BCtflAIbLC9NjQszjYarIScuQNyd7+/YB8ZYXErre38GxIKyulkpU0ZYXfNVnRz8xBrljHT3Mh fSX867MqK8yHr6ywbpFIFiMrvb3i29DXl35epT4rur6X67PCOpWFrDCtLATX75R1W9D3GhxMRmJl fphfXW91Ga1aBXzpS1J3L75YFLmurnRlhcc1WeFSVn+SUExZOeAA+UxzptdKUTGcemq+X55PVqgm sN7pttfWljQDfeITTpXi6rAQWWFdoflaO+1qvx/2BytW5Nehhx4SnziaPLZtS05EsqjgNG/R0VmT FU4QenuTqlAhspJGpLMoK74zfCgGlA9NVspRVphuVFZqENu3Cwn56U/Tz+EyPTrGkhyws0yrkHqg 1bNLf0YSytPgoNiiAXGi6+0V4sEBRXe2ofvv2CF+Kj/8oTtWiKywQtJD35d3aQbq7XVkYsMG1whC hMnfP0SrPaHgS9OnS9ps/Ace6JzdfGzbJvecPVvsq/4y61LIinaw5fc0suJvtvb888CTT+Y/94oV 8j8JLcHO4Lnn8k11994rz8Lw9EBYWZkwwfnW7NqVdMLs7w+bALduBfbaS/5Ps6P39DjHuqwKlx6Y WKb19UmywvdbirLC5cOF7ukvfQ1h9WpJkwM7P6ls1dcnzaPstOvr5b0zP6wDAwNS1hMmJMvo+98H zjpLPq+7zl2T1QzESYyutyEz0N/+5uog29zs2fLe0ggw37evBj79NODtU4f77gMefDB5LGQG0o7s elLT1ib5HhqS5wiFpA+ZgVhHJk6UdFkuZ54JHHxwfkj+TZvciipASOW6dUJWSII0WdHO8wDwf/8n fz4GBqRe0Xdo61Z513PmJEPqk1RRWamrc2Zy5t1XojU0Wdm506lVurz53vxI0EA68Qw52JairIQU wUhWagTr18tLKOZ42NqaT07YeNPISki2z0JWWIFIVu6+Wz4XLpRrdu3KRlYaGsTP5tZbgf32y0ZW KNWmKStDQ+54Zyew777pefAdNvVsQDdiXwJmuaxZI/+HBl+mNXNmmFgVIiv+LMtXVnyyws7Z2nxl 5Y1vlLLVz//449L5zJmT75C9caM4PPf15ZtkeC6JDhAmK9Omudg0QFJZaWsT/wAfvb2OrKTNyrRZ LauyojtNLbmTrHR0ODJRirKyfn36apu0cO0+urvFRPDGN8r/s2ZJOW7bJm2hrg445JCkIqFDtmtl RW/g19qaX784oHz72y69gQFXL2fMyOazotMNBYU78EDg+OPlf5KVjg4hLGlkhQNRZ2fS/Pr61ydj JA0Nyfv066VP5umz0tAQNgPxnFtvTbZz5kMrRryOdXvixCQB4ipGftfhEthOFi4EHn5Y/n/hC5Pp hpSVxx4Tted978ufaITMQBMnykRVm4FIVrTKRILD8pg+vTBZoZLG+/qbqfJZWc91m0kzQ2uflaEh GSt6e+UZdOwVgs+0bZvkO0RWohloFPHZz0r8CsB1LL4KoO3YVFaam+WFs5Ogx3Rap6or6pYtUnl2 7ixOVpj+3ntLo9BkhfnRNsuQqsEOwRgJu7/nnvlkZcMGUV6Ghtzzs/H4MyYGhdPPtWWLc3jTeWBn 55MV3cB8stLU5AYyf6D0OxTmHZDBtRSy4newPA6EzUA6joueKfP+lGq1symf+81vBu66y5EDkh3G xtGxDADX0eulkb4ZaMIEGZy0rZwDGgnxV76STHfHDsk3fRvSSGvIYZkYGAj72fzlL0l/LEA6Su4z NXVqcklrMbJCkysQjnPC5wGSPhAhfOtb8vnMM/JsJGvd3fIss2cLKQkpK7NnS5vwlRUdX0TXIV73 6KPOh21gwJl3WCZEyAxE87CvrJCIsq+i8sF+Z+JEIcYkK52dkg8/bzt3Jp2CtWma5+3cmU9WQj4r bGd+29Nk5bHH5P0zKq1WVurrw8pKe3tyosR3MzAg99X7/Gi1mn3LvHnpZIX/X3utU098dSVkBpo4 Ud6fNgNpZYXviddospLFDMTn85WVNLJSV5dOVrQZiNf09IiiGRpzurtde9uyJd3BNuQ4XW1EshLA TTc5O2qIrFxyCfCylzlfFCorxkjF1bNdIH0Jr28GYqeaVVnp6BCC4pMVf1aepqxwCSaQT1Z27pSB 6b3vlc4vpKyEli7z/oBc094uf8zDPfdIx7l5cz5Z0bNw3wzU3p6/wSO3iGdo8m9/2zk8ppEVkjS9 BJTQ/kIhM5CvrBiTlE+1IsHOgp2WdjBmWZ5+ugzkjFbLzpN7bfiO2XxfHNSoonFJNztOzrR9ZYV1 2bd1sx7uv7+QnbR9QHp6XEBAv26+850u/ogmByeemL/MftIk936mTk12wjQDFVoN9LKXyf/aFHTp pW5g4XMXIyus74ODSbLS1SX1c9o0ISUhssKQ7Z2dMgDq3aSprPhkpblZ8sbjVHGamqQts13v2uUU Dn/pcprPyo4dzql09mz57OmRdlNXJ22ZZf7mN0sIApaTJiiPPeZIIAdB9iWs02lkxVdWdD/GWbyO +dPXJ/V13TpRg3wzUEhZ8ckKMTDgyAJ9r/hdByBsaZHrmW5IWdm6Vd79/vvnt8GQGchXVkJmIPaP WlmZMSM5Btx1V3jVIu/rkxX2N36/OH9+drKyfbtb0h0qV+5RBUg7YN/hKyt+dO/hQCQrKeDslh38 +vXABz8ozmWcKV5/vXxSWQHkpenBBHBkZePGZNApX1nhy/ZtvT70Vuf77efWyXOTL5KVqVNl8Elz sOXMBcgnK1qteO65bGYgvSQQkGuam5Nl8vTTbhaoycq2bUk1yFdW2tudY9zAgHR+fA+cSX7kI8Dr Xif/s2OeMaM0ZaWpKb/RppmBNIHS+Z8xI1898pftAjI4Hnigi9fBZ54/X+719NNSt264QY6zw2ZH pNWdgQG5V1ubG7y0sqLJCpA0azKdKVNESShEVjgD88vunnvcOf5gRjJJ00Brq3sGmqz4exYz0L77 ymycjq/WAuef73aMzmoG4rvZtEnurckKieusWUmyoveXWb9e8rlgQVJZYXwRXUbd3RJxmgQbcGag piYpV6bNZ9e+GRz8W1rkeXbtyo9HwnImqe3uduRPk3PWM05ydF045hgZpHX58X2yTWUhK76yEtrv h+0akMEzjaxQWWlqynfa1WXJ9rfXXnI+n2twUJ69uVn6w5DPiiYrbEd77ZXfFrQZyFdWqJSVYgbS flvHHiuBCHUZZFFWdB9UVyd187bb8v3hmA6Q9A0jWQlNkDdulDEGSI4PPI/1kGrucGLckxVjzEeM MU8bYwaMMfcZY47Ich0bETv4Sy8Fvvc94BvfcOySpiIqK0BYWSEDPuss2diPDcBXD3yykkVZYccy ZUpS2diyRQYCnR+NEFlZs8bN6BinAJDjPlkJqRW+mYINW+eBHcimTZJPHa1Xk6pCZIUzYZ1X7bey caN0rBxYKyUracoK7efMEzvx2bPd9X7obf1/S4soPxwEtF1+771lVvehDwH/+q/yG3/n4KnJClep NDenKyt60A2toGhvF6LEPU18kKyEyo6+LH//e/5gxvS0kyjb1R57OGfgbdsKbw1w/vmS/sEHS70n WXnqKVGuHntMTB1pZiB/aapeBQHIswNStzRZWb8+f9fcPfZwz7lggStvkpWQsjJzJvCOd7hjHNya m6UtM21d30I+K7xWm4EAp/SuW+c26KNDtH5nixbJJydbXV2ubmuwT+OgqMmKbm+FVgNx0uWH5M9C Vtg/+ecyTU2yNFmZPz9pBiKR5/OkmYFohu/rk3vttVd+W2CfRuLBiSqViq4uuV4rF5qs+GYgtj2a UEkwSiErbOeDg1I2M2eK+fWlL0Ue+vudeszvvb35W6gAMs5t2uQUe60Oa3UQiMpKxTDGvBXARQDO BXAYgL8CuMUYM73YtSQE/nK/ujrXqbAipykr7ByorHBpHp3CWFHb2pwkDITJyq9+BVxzjfyvlZW3 vc3lUysbmzcLEZg0KTkj9wkGseeecowd0l//Kgx9/nxpSKzkfIYsysrgoDQ2XSbskDZvzt+ZlbI1 UNwMxIZ67LFCVnTHdfXV8hwcQLOQldtvl3yTrIS83fVsJERWeM2UKcllgfzdT6+5OUlWNGlYsEDI CiMj65gOrJP8vscejqw0Nsrz+T4rvrKybp2YUbq6khK7nk1u2iR+HRyYOFPPSlZOOEE6ugcfdGSE 6gCJ04wZSWfgEFlkuhdcAHzmM2Ka3G8/ee+zZwPnnefq5R135JuBtm+XKLPt7ckVIn194kBLaGWF eZ01SzptTjh8Z3rAyeSM2+H7ljDNyZPFB4xbYJCs+GYgHZywGFnRCoR20t+0KV9ZYX74+Ze/uLwt WJDsD3gNkG8G2rlTfF5uvtnlDUiSFdZFtiU+kz6HCgZQWFnRkwPA1Q8909dmoHnz3IRtwgTJb0+P u1eIrGiSrJUVPxo1fZJo0tE+LCwra12/pokbr2H5z5gh91q/XuotIGrqPffkk5X+fjcZ2bYt6cxP xUzXpTT09Eg5kuBybAopK1u2yH18sqL7R726KJKVyrAUwHettT+y1j4O4EMA+gG8r9iFHFz9qK6d ne63zk55mcWUFVYIDkY//7n7Xl/vOiW+7FCclZNOAk47Tf7nHhdNTTLDfNObgE9+Mqms0Aw0caLk 95prpOM99VQ5J+SzArgOgDEJ5sxxygobDhCOYJumrGjC5CsrVExIVqZMcaGsCXqrazMQycorXymN lh3vzJkSJn39+nyywqW8PllZuRJ4zWuAr3417LOydauUVUhZYaPXZFMvfdbEjRgYENLb0BAmKxMn yiC8fr0jDpqshJQV7awZUlYaG12nNmGCkJUDD5Tgbfq+8+e7e551FvDv/+4cfbWy4qt+dCb//e9d RM3LLgMuvFCej6YWhozXEUm1HwcHOJ+sXH21XHfOOXKvBQtESXn+eflt4UKp788+G166TBVGO8Yz tgwJy/z5kjaVlcZG5yDOiUlvr9Rzpg0kyYoeZHxlhYMI1VAS3DQzUEdHYbLim4G2bHHteM2afGVF +9UAUn7M25Qprr0AMkDzXr6yAgCHHQa84Q3yv688FjID6c0J05QVkjCazGgG4rmsH35EZR3Wvq9P 8k3T+ObN6coK6xzLme94r73kdz0GaGWlry/pw8L78Hl4D62s7Nrlxg+GYli8WJZgA3LvY45xJlP9 vvVquR07nKneJyu+Y75GZ6e8Zz4v32nIZ4VkaMECeRckKzo4p57IUSEdLoxbsmKMaQCwGMDtPGat tQBuA3BUoWv1MkJfWenpceSDK0CK+azo2BkNDcKib7klqRhosuIrK34FoI2RuOYaWeGhyQLJSkuL +DzQns0KFzIDMY+AyOl77SU+DCGyEnKwDfms0AzkKyskK1xFpb3StUMunydNWTnmGPnkzOS//1vI x3335ZMVdpg+WdGdUajR+sQkzQwUWvrs7yqtywVIV1b22CPpJNffn0+gfWVFk5WQzwqfb+5ctxrk ySeTysr8+VIHdu1y75fncvAL+awwb5dc4ur71KnJKLIcGLTphSsNWGfSlJXNm4Vss9yoggCSz7lz 3cw15LPCtqFX5pEs33efEJ4XvlDqH5UVTgYA58zLa5i2Mc58xNlvaKNMKitAknQXMgP5ygrT5bX+ hn9dXc6/YO1aN4sGkvWdnySRW7ZI3jRZ6etz5cgBeM0ady/+tnOn5M2Y5KoUHWelFJ8VxlGqr5c0 SbxJIADX9/hBCvXu7MwvycqmTS5/dXXyl0ZW2C/xvZK833CDlKk2A7Et+8SO/TNVQz2ZY3my7odW 0YXIivbp+u1vpd/ff3/3PmkG+o//SJa1Rmen3JfvkX3P5Mn5E2SOczNmyO8cO2h25j35vJwMDhfG LVkBMB1AHQDfL3o9gFmFLly0yHUcoaiPq1YlZbRiykpXl8xU1qwBPv5xiSh53XVJX4wQWdmwQfLh V2YO6j58n5UpU2RmuGoVcNFF8pu/CRoxfbrcl2SF95g7V5y1nnwyn6z4ygrLQCsrdLD1lRWuBmpt dZ0P7zlxYnGfFTb4gw+WT/rYHHmkfP7979nJinbsnTQpnaz44b9JtJgnn6xQdePvBM1jgOSR8S18 sqJlbq2s+J8zZsj1NGOl+awAQiBmzxazFyDbJ/jKys6dUu95/UMPyfNwtU7IDNTdLTby444Tv65v fSs/TgQHXP1e/OXuaTti68EecAMJMWeOc3oMkRWWv+8XxXd42mmiOJEocxDjsl+SFV9ZmTrVtUWt rOiOn3tJMf/19S4wXkhZCZEVTog0YdfRiQFpW1wJtHVrkgzod9bf72I0rVzpylaTlZ4ed2+2jz// WZyENTZudMSO7YN9jC4HvpM0M9CkSVJO/f3JiRSJt54QcnLjk5WBASlX+sENDISVFaZLB9sQWWlv Twb53LxZfMeAwmYgEnWSFV9ZYV4mTEjWZ4IKZVdXYbJy333y+3/+pwv0yPdw8smiauq2YC1wxhnS l8+YUZqyMn265JX9kSYr2gwEFA7AWCnGM1kpGwcd5Bw416939nB2kKtWuWBnnZ3FlZWhIUc65s6V a9esSc7OtWc6/Q4eekgqwSWXJPPnKytES4tUdm0GuvRSN9MA3KDgKysTJsjMleSMxIF7AV15ZbKx a9MKZ0ITJri9S7gFu6+s+GYgDhYkKx0d+du1h1YDbdokac+alSwrvqOhITdzKUZWNBlko9XkwldW +K60oxoH87o6SZtBlIaGwj4wmqxw40OfrGjoPafYOfX0yPvm++3pKeyzAjiywuWp8+bJ89XVyTlU LP7xD2f6eOihpJ9UyAzU0yNBxG6/XVY0UNbWgyvLjO9l0iQ3wPHZGU8ntHkgBw8gqawASbIScrBl eiFlRYORftnxAzK50GEK2ttde99jj+QkIWQGYtnpwYn1T/sZbN2aDKrIKKOMc6TJSsgM1NPjVqEM DibrWWurq48DA8709cQTYTNQT0+SzPf2yqq1E05Illdnp3sGKhYs65CDbZoZSCs2um9qaJDraW7h OwqRFe1PQmhlRR8noS+krGh/ET2hITmhusOl6rwP3x3gFE7GWeE5zc2OeOh+mP6MGzdKvngNyQrL q6sr+ax6Gby+v16F+f3vOzOQr6yEfFY6O6V/mTIlqaxMn55UcwBH2EN7zlUL45msbASwC8BM7/hM AM/nn+5w++1L0d9/El7/+pOwc+dJaGo6CcDyfxKUri5HVjZscI0EyFdWOJitWuXkappWCikrevfm L39ZPo3J9/LXoBSrycq0acC//Iv8PmFCkqxonxXmnb9zgD7jDLfnka+sWJvfuZBosMP1fVa0GUgH 0+MKHyor2gzEZcJaxVi1yvkYTJ8uA+vs2UkTQyFlhQ6H1iYje7LRFlNW9AyaedKriRhHAnBxUAgq TjqPGzZIuZE0+GTl1FOdk+jQkNy/q0vKS5s4tBnI91kBHFkhhobc82mTxv33O5v4o48myUpI+ShE oPnMHBj4bNa6eqOVFZ+sAvnKyty5bhIByKBEaT4UZ4Xp+YEHfamcAyHzCohvT5qyMmNGPlnx1SHW +TSyQjOQtclVgVRWmI5PVnwzECDpMNS/VvA0aRwYcM73mze7sp2pekpfWfnzn6WuvOY1yeXXGzYk B8mmpuS7bGpyeQXyyQrLjn2R35+wLVLB0O8opKy0tCQJaMgMxDSK+axoouCTFeabkybmjWpEyGdF m4E0WWG/NHeua0NUzRoa5H2y/ZAUbNmSVHS4JJr9il6dBCTHE62ssD2kKSvTpsn7njxZ8kmCNDgI LF++HEuXngTgJFxzjXx+5jNLMVwYt2TFWrsDwAMAXs1jxhiT+35v2nUA8P73LwNwPc4663oA1+Oo o64HsOSfBAVwZOXZZ6WTSVsNxMZCu//s2S6mSSGy8sUvisS3NPfum5tdZ6a9/H20tbmVNpyJciOz gw6S4xzsfO9/LaMPDLhZNB3pfAdbQCq3NikxDb3UOaSs0AzU1uYaifZZYYfX2ys+Gh0dzil1YEBW K3F2SGVh3jz5nc9dzAxE6VQrK9oMRF8hDuZ6KWUxsqIdAElWHnxQ5FlfWQGk02B9MCafrBAcUPr7 k/ERgCRZKaSsaJI6MJCc4fKdL10qA9F++7kIr/p3TVa4ZDdEVnz/jMZGp6zQLg/kKyv+cnv6VRAN Da5tAWEzUIiskJjSRBdSVrRyBoi6SKdF32dljz2SA4b2NdBmYCCfrPgOtoBz7gXkmI7KqslKX58j eyxjnsP6ruuZJjk8Tj+RkM+KJiv9/Y64HnywU2+AfLLS2OhIBE1U2n9Km+Z0+ZMA+WSFdU1PCLXP Smurcx7nOVnISjWUFUAGdO1g6ysrITMQlRVdH047TSYjug0xwjjLQJuBqKxoQqXfA9Ped19ZXfSn P7l0Z8xw161bJ3kJLerYuNH1rUxPj1dLlizBOefIGLl0qXx+7nPLMFwYt2Qlh68D+IAx5l3GmAMB /C+AVgA/LHQRKztnUyQmM2e6lzx9ulQsSuW+smKtvFDOYlevls/Jk4VBb9ggnUQaWXnDG4CvfU2W 5gLABz4gn93d6T4rgDQy5okVjYPD1KmSL73s0b9W7yTKhqHNKYReBaM7l44OeS69PNdfumxMuhnI JyvLlkkjZHwKNlxNVpg/bgXP78XICiBp+cqKVo0AN5iHHPM4qy1EVqZPl+/HHQe8//3JWSLf0caN SdKQRlaoHIXICs1AIZ8V1q2XvUwimL7mNSLpDw7K+9KdpCYiXC1En6Bp0/LNQFp18eErK1o10upF IWVl3Toht76N/5xzgHe/W/73zUATJrg6qsnKmjVupj40lK+s0JeBxAqQdt/b64hdMWWFBMJXVnQZ h8xAgLxTvaoMcAOg9pFiG62vT6arQ/37ZiC+B9a/yZOdGXvKlKTi1t3t8s+l+m1tUv9DZIVlpZUV rejRjyXNDKSVFd03hciK9lkhqdDPpd8p+whtRgLSfVaoiLa3Sx1qbs4nK5okWBt2sJ04Ua73g8IB TlmZNs35qLz4xVLP9LvkpCuNrGRRVgBZYq43n9QEe906d09fWdm0yb1rpke3BbZ/vmsdBG+4MK7J irX2ZwD+C8D5AB4E8CIAx1trUwLgC1jZaaem38bEic5WPmmSdFQkIbyGMj1nTWT2JBATJwpZsVb8 BtLICnHSSSLhLVki37u60iV35oN54qDw8pfL56tzGlNvb2FlxR98OPjriqhnIjqt/feXctPKSnu7 nDMwIJ3e3LkueJLuXLWDLTvj+++XgZXLQ5ubhUR2d7uw9MXICgdXrTQUIyuAa5ChGA98ZkbE1D4Z 7Ah9MxDJw8qV7v6U7ekXwPvoAUHL7hz4+vudfM+0uKS9oSF/NRDjtZx4ojhJ/uY3Ll/PPJP0AeG7 3LbNLXX/f/9POv4FC/KVFR2k0EfIDFRMWdGrwbZtkza0enU+WfnAByTmCpcyazMQfag4YDD9zk6p QyS/aT4rWllhPaIzve+zotUOmoGKKSskM9oMBEgb0MoKkCQrvBfbqHYo5TlZlRU92Zo8Wd71TTe5 9PVKJF03tal1w4ZkWTU2Jokn+zK2BQ6SjElTzAyUpqywfelNI0lI9DvVpD+Lz0p/v6TNc1mn0sxA /E5yrPfr0b5jITNQfb2brPBd6zbEsaOlxU2A+Q62bEn6yjDfvrICCAnSgRo1uVq71t2T9WbXLuBL X5LfWLfSyArbPp8j+qxUAGvtt621C6y1Ldbao6y1fy52jVZW9PLLiRNdVMBJk5KOimxIulMYHJSO ua7OLX9rb5fBGhC/C/3yyWpZ4QDpiBcvdnkopqy0tzvJmg31wAOlotOTn2TF91lJIytMR892tflD dy6LFonJS5MVlg1J1Pz5cp8sygpjrxAtLW6WwEicvHe5yoreu0krFXwfmqxoE4u2qxdTVgYHXYO+ /26sfqgAACAASURBVH53jwkTpI5t2uR8c3gcEDVGkxXG/RgYKG4G0srKf/2XDOgsI+Z7YCCfrDz2 mBCqxsakU/n73if10fdZyaKs6PLh+9y1yw1m7PQYcE2TCyK0euIVrxByvOeeSWWFdZsDhu8Dw/2Y 0nxWtFqg/YpYZ7UZaMIE5ytGAqY79ELKSiEzEM/nAKj9trR6oc2zacqKHtQ4qE+enFR8W1rESbq1 NelgOziYrJvFzEA6b5oEMH+6TELKin5/hciKdjrWyoomK1oNzmIG4qDOesG0NVnRKolOt6UlGQJf +46FzED6+fmuQyaslpbkppQsP923+mYg3RZppj3iCPm+zz5uMYT2f2S5/va3EmPptttcW+WYNTSU T1Z0WImorIwwNFmZOTMZtfWww+T/wUHp+OmLkkZWWlvlhZOsUFnR9yqkrBCsUFmUFb3ELPRcvb3l mYG0Q1vI2RQQAtHZ6Z5Xz0IYSvrIIyUP7GyamlzY5xBZ0dFCm5tlBcOECa4cmS+qLzNmJDcZ9JdP 6g6ey7x1I9eqEZBOVlgGIbKiB0gqGPSBoXRMTJvmVgPpzurJJ2WJOzuAc8+VGQ+QNAMxraGhdJ+V M8/MDxbF2b9PVhYudDswa6fLN73JXZdVWfEdBBsbXXuaMsXVG6bBwYZlpwORpS31ZCwU7bPiL331 o9USWRxsfSfo9nZ51gMOcP2BT2I1oevulvvo9laKGYhOm21tjixqM5AxrkxJVkjafLLCVY40A7FO 6AkBzbaDg241Tprqp5cus/yyKCskBWlkJavPiiYrJGG857HH5hM5Is3B1icrIWVFE25dti0tUh4N DW7XaF0ntCpGssJPvn+ahQBHVuiHqMvL91nRy6iBZF3r6ZHfXv96KTOGe+C1ehsD3U8B7jnf8hb5 fOihfLLS0ZHcx2m4EMlKAOwUV6+WgY+Bburr3Vr7Qw8VssKORcczAJI2xKlTZUBg45082c2Ws5IV 7d1dzGeFn7px6jz29EiHVaoZSDs9FiIrgPM+12Tl3nslDy96UTIqZXOzm0H7ZiD/WdlRz52brwxR NZg1SwYYlnFIWWF5PvWUNE5eq81AhciKNmHQhq7JirVuACZZ0TF7fLJCM5AmK/vuK9/Zebzyla7z IFlhMCdCL13W5CyE5mZxXtY7DvvQqg4DB/o+K3SaTiMTHLg1Abj2WokVoQOaAU5Z4fsvRlY0qG7Q DAQ4k1hvr5BZn1D5ZiDty8B6wPpPMxCJx+OPA0cdJb/V17uBNmQG8vPO32kGomO1VlZ4X5op9Wxf m4GYb57T3OzeCeuGTxJIVngvnb9Jk+T6HTvc8mndBkhWJkxw5CrNwTaNrDB/vhmIG+MVIiskEGk+ K8bIEvrrriusrIR8VnxSoMnKq18tjqr77580hWm/IO3Iq4MzkrTzXOaL30P9OScKHR2uf+Q76O5O mnP6+11sLR8kK5rc6PLwIwNrU45WVo48UvYqi2SlhkCnNWtdOHBAOu4FC+T4kUcmJXX+79uGSVa2 bUtK/DQJhMhKaHBpaZF8rV0rRKOQsgLkqyq8F+AGhmLKChsQG6aW0nXl1LIty4HhzZubXaP4/e9l dquVko4O+XvqKfk+eXJyZr11a7Ih0wzCTwC4+GLgC19wz/yRjwC/+IX7PURWOGt5+GH5pF+SNqtw ZlzIZ0Wn7wfHYsc3ZYrUGR0nIQtZ8cGVOMwbQ7j7S8pDEWxDaGlxnWAaWQGkbJcvT143MCDq2YoV Lg3dgfv38WXqU06RTj9NWVm3TkitXqkV2mxPg4G6/DgdJCsTJ7p9TvQ1GiEzECcYWlnxof2EtBnI 2nSyos1Axsj75bYEgHN4pUqpyQrbqFaQAKeskAz4yoo2U+g86f+nTHEEafJkR1Z8M9Cee8pAmMUM pCMU19W5/GVxsNWRYpkn+ryRrGzdmiQ0xx2XXEGoy4/5DDnKF1JWpk8XR1geJ7SqvmuX+66VFT6f dhLWn6H+nNd0dDjSrtsATXmAi0Ssycptt8mkzS8bgs/INLU5ntD14r77gO98R87fvt2Fm4hkZZRB MjF9elJZ0dA+ErpxAa4jotc3kKxoTJ/BxkhW6Bjow5ikQ1yassJ7hFaTsHKyoyjms+IvK9QEwY/m qqXExkbXuLSy8thjMgDpzn7SJFFC2InOmiW/02zjKyuU3XVe9twTOPtsJ6HOnAkcfbT7PURWJk6U fD3yiBzju5w0yc1onn9ertF7coTMQHx/HODYQdPhVc/u6PMUIitPPSXPn4aOjqTs65uBmD/fZyWN rOh8FSIrZ5/tNszkdQMDwOmniz/VihX5S6I19GoGXzXUZKWxMbkH08MPJ1cxFCJyQNIMFFJW2tuB ww/Pv0Yj5GALSBtfsybpFOo/x44d+WHSn35a/Nr8wShE4I45RojhypVJ50u2eT0r12YgoHSy0trq 8sTIvcS8ec4Xb/JkqdshM9C8eY6shFYDaRJAnxWaR7SSqp8jZAbis7DuM+ZHZ6cjK8uXixO5bguE NpERaWRFOzPzmoEBITGajGtzjb/iKk1Z0elmIStESFnhfZua5H2sW5dPVl79atlCoqsrfzWUzqdW kXT/D4SVGk4KN26MZKUmwBcyfbp0yscf7+KNENrsQITIComDrmj831dWQiYgfQ1nmmmVm3vlcHam UYqywmWKxF13yX5GhJbvBwaSDXnixDBZARwZITQ54O8sm82bXYh3goNN2sAYAmPUaHnaGJE2qaxo MxDNHf/4R3LfHD53yAzk+6wAcm0aWdFlO22aON2uXg286lXpz6HJSm+vdCo0A7HzDPmsFDIDEWlL pUNoaUnGofnOd8JKnj4/jaxoB1u2HV0/VqwQ1ev++8M+JxptbXIPhl0H8snKxRcDP/iBu8bPN/2n tPMvIOVD/440ZUUPtCzbffcFbrwxX1nRq4FYXy69VO79pz+5JdwNDVIP29rcoBsyAzGNYmTFNwMB Sb88QJyqGbZBm4FCygrNVlnNQDzG/a2YViGyogkW4AbQNWukXLQTtj8gA86cW8hnhfsQ+cSIykoh P0HfXzGkrPB5fGWF6pmuU34bKURWmMbq1S7Yn4bui9PICtOcOFHeE8cHIExWtA+XT1biaqBRgFZW ZsyQtep+ZZ07V5YWX3aZO6YdNxluPkRWtDc4fR6KkZX2difPpikrJ54onytX5v9GfwY2yBBZYcP0 JfdjjkmSMuaTfhg6pP+kSa6BaDMQIGWoyYsmK/X1MnCz4fJZdV6orJQCPzYFn3vOHFdOb3ubLM+d OVM6slmzZJBg5853n3U1EO/HaKYE9y7SDnvTpsngWF8vfilpmDRJ7llX5/YT6uiQjlaTKQ7QxZQV 1tWJE0sjf/7yWaA4WfHDgRMsQzoMAsmO+8EH5Z1wJUMh8PqenrAZiG2NcZMWLkySRkDKj/VE53X/ /d2y3pCyUl/vZtEkGhqFzECsHyT869c709C0aY6s6Gu1qYX5Zt6am92Aw3fF9EJmIO4TRMyf75QQ moG0srLPPnLf/ffPNwOlxVkhWWHE3Q0bnFrM40B4NZBPVphvkhXuuK6fV4MDLh1LWV5+n9vUlF9u NENpU7BOwz9Xf4aUFZ+sfPObwPe+l5zsrV/v+mhAymhoSP7X9YBpzZ7t+jGfXEya5KLUFlNW+Hx6 Y9dCykpnZ1RWagKarKRhwgRx4tIdqb80r6nJDca6A9OzyKzKSlubG8DTWP7kycCFF7qlmT7a2wuT FWulI0kjQ4RPVnRjYwPhwKobGH1S9LkkQZzhsdEwbZ2X+fMlWN5XvlI4fxqFyAog72zuXNmxmQrF /PkySLAjfMEL5FP7rKStBuJxX1mZPt3tiusvlwYknkyhcucMsKXFlY2/5DFtNVChcin2rtOuo3kC qFxZ6enJn+kBbvl/FuhtB9KUFcC1aa540mhqcvVE5/UTn3DlGTKZ+WYg7c+m80b4dQZwJrDnn3f3 njZN0vXJSqlmINYbTVZo3vaJoN4kkmRFr8o78kipf/vu65Y1h5QVP34J89vQIP0DYwzp5wgpK/6y Z730va3NbSeiz9G45x5RHg46yB3zzUBAkqz4ykpoUUOaouIrK36Eb8C1oSlTXMBPYvLkJLnVfb3u X7Sy8thjLj2NSZNcX+HXQd9nhe1D+4mFnNrZHkPKSiQro4AsZCUEViAORnpTOi21+spK2sxTo63N sd5CA8xnPiPL1EJob3cNMuSzAojcXcwsUIis6G3p9SfgNioktLJC0uI3Gv2sxsg2BDrUejGwrPnc /M40Qo6hJCt/+pPI3ZRr05QVvYKE75ARZfl9zhzna6OdlZn2+edne57WVud0ybxrj/7GRreRZF1d 0r6uEXo/WaCVFZrMChGKkMmD0D4rIWUFKOzHo5FGVhiVlL8vXChB4fwNQoEkWdF5fcELgKuvBu6+ OzlD18+hB9q9906qNlx+rO/T2yuTA30fOo9qsqKfDchGVnScI30dlcLWVlHxXvEK4IMfTOZNkxUO lJs3J9/LtGnut87OJFnRZZJmBurrSw6shcgK4SsrgJTLddcBF1yQfz5x8MH5BLMYWdEEpKsrGT1W 31vnyyctob7CV1ayQD8vgybqtGbPdiQ0ZAbSMYw00pQVTVZCygqd4EdaWSlB/N29UC5ZYSWkGURH u9SxKXyywp1ViykrlPaLrYwolEYhZQUQshLqkDV4bZoZCEjO6ghfWWFYaiCfrBQzeWUFy1rb6wHX KevGScyfLyH9d+1KzjwbG+U96qXfzc3JJZxpPivcbO/CC11kWEBC2q9dmwx3XgitrW6vFh2LgfnT To1p/irMN9MrBXpAOPJIieujYzOEzi/mYNvV5QYUn1y95jXZ8sXn6O5OmoG4C7guoyuvDKdBnxWe p3Haaen3rq93fjx8BwsWSDA9IBklGZCypxlND1xTpsh+Y6xDaWSF1/I53/Y28b/yfaT8wZ4757a2 StqMbKyhyQp9Svr78/sctktNVjTxamx0/ZVvBtJpA8m9gbQSEVp6rAfviRPlWipZheqhhu+zwmOM k8L8tLY6M0qpykoWB9ss0MpKY6NMEDZvTiorREhZ8fPrf9c+K0BxsgLIZFYrKySbUVkZBWgH21LA uBIhZYWdIJCsrH4E0jRwEOc+NeWA0SmBdLLy1FNJp9cQmM+1a5MrOADXQEJlp51E6cTLKL4kK0yr 2mRlyxZ5P+xQ3/UueTcnn5x/zb77inR8//1u12kgX+YGkquBQsqKr+R85jPOHAQIWStEVH75S+C8 89z31lYZBI1x70nbyfle+/sL+6JUqqwAjsj5EWL984uRlW3bXL044ABndgPyHdvTEFJWGhvTZ5Yh 6PwVaos+SIr4P+De8ateJaZLjaYmN3nRAzwHh0LKSmg10FlnSXrsfwj9rl76UmnbhxySJAo+pk+X OvqtbyUnLb7ixXY5MJCurOily1T5WD7lKiv6GMuY7UA7hxZCms9KT0/+PfV+PxokTXpRBeA2js3i YJsFmqx0dLhgmExLK4/lkBU9rgDS7x5zDPDd76avwJsxQyYp27Y5vzlNTocDUVlJwWGHSYCzrLNd jZaW5Lp4djhaWTn3XGkY++/vYoxwcEsDO6xCy9yKIQtZ2b69uBlIKyt6Qy7ANepQ2dFO3drqGpIx Yk+mD0EhB9tyoMmKXjnT0SH5p/OaxjHHuFkRN5MEpEPju9WzP23m0MrK1Kn5ZKVUnHxyklDRwXLW rKS5A0gqK319w6Os6I6WZOVFL0o/n8tP9RJXoq5O6sPQULLzfPhh4N57ZVVKsSXLhF6az4GkoaE0 sqKJQyGTrI+GBjcZYZkfcICoc3fckf0+HGxI9Fleuu7ogHN8/5qkpJGVj35UTFnvf3+6aZBpXXih /H/zze643w79Gb/+BKQc2Lb6+vJNViGy4isRvhnLB/1QmFYpZCUUgqDQPf1J009/CvzkJ0lVCAA+ /nF3Dz8OVaVkZfr05J5ngHPaD6Xrx2XR8H1W+Dk4KJO1M85Iz9Mee7jNTVlX77lHyv/LXy78POUi kpUUHHaYi8FRKnSwrfb25E65xF57AT//ufzPCpaVrFSiNLS0OL+XNJ8VoLiyMmGCXL9uXVIl0PkL Dc56q3H9HPfck3Qca2gQB05jwqsvSoEmK36Hx83ufCxaJERjcNAFggLyg17xWfr6wg62s2a5TrAc 4huCtlXrfAHJ+w+XsqJl+AMPFJMUtzpIu8+mTVKWIf+gxkb5zc/H0Ucn4+UUA+tJZ6dTZnRMj1LJ SqnKim8++uQn001H+j6+GQhwweuOP178prQyo8spREaZnlYRASHgt95aeMVZoXymKSv6PH1+fb0z y2jiXIiscJmxXg1EhN4fTYfccuGtb01/Fo1QCALfB8X/3ydre+8tihZxySUSk4iqfEhZqcQM5CvW zJt25vZJqFbQsvqs6HulYe5c4Fe/kv+pvh1xhIQaGC5EsjIM8JWV+nrZW+HDHw6fn5Ws+JtelYPW VjfT9Ds6nW6WuBuNjdJB++YeVvTQ4MzffLKiGxJjoDz+uAyMhWaBWVCIrKRhwgTghBOEmOhyCpmB uEswY3P4Piv07i8WJyQrWFaaDIaUleHyWVmwQAbRW26Rd19sUG9udr4bIQLb0OD20aoEvF6vnhkp ZaW+Pr9dzZ2b3Acsy304gHN59UknyZ+GH7HYh1ZY/Lbz2temP0MIelD1V4b4q1QAVxcYyyhkkmSZ 6IGUv1F9LmQG0qCqMXFidn8V5pMbFJJc+L52/j2LKbzTpiXJOPvHapmBGGWb+dUmlzvvlAizPvQk IktQOGOkHIuRlSOOAP73f+V/7eM0nBi3ZMUYsxqALkYL4CxrbQmLXstDS4tb1smK8NOfpp+vB9NC poJqKCuFyIpe0VFMWQFcY/Q7MTbq0LOwU2prK0y65s0TnxHtu1AuyiErgMTP8TtAP+gV4PayqatL moEGBuT81lZxiKuUdBGLFglR0DNTLcNn9VkJzV6z4qabRLHIoj7o5aehwdvvyMuFvp7trlSyUonP im8GKoRipMjfFkBDv6/QAOrvO1MJdN58P5emJrdkO0RWAOfLoJWVU0+VvaF0nJ5iZEUvcwYkOmsp 7yf0XFSYWdb+KkYg2SeW2u/SL0Y7DJdDVljuZ58tnyH/nFe+MqyYabLi39N3sKWK3dtb2KcJcHti 8bqRwLglKxBy8lkA3wfA4tyafnr1wKWFbMzFwEF71arCQc+q5bNSaA+iRYtkJ+msZEXni2D8hkJp +MqKDy7x5WyiEmiykuW5iFBn6Ae9AhxZYfjr0EBUzQZ95pnA17+e3EywHGXFdwQtBcZkj3qrFbYQ gdXLbisBN4obGBh5ZSVkBsp6Hz2I0JmTykoIejANmUhDvivlIqT6EMaIsrZuXb4ZyCd9fX0u31SK XvhCdw7JCuu0T1b8uDW33Vb6s2joukCyElJWNGks1RzNulipGaipKTlp4sovvQVGGnSe/T6Iv2nz Hvu2Yn0CnYiLkZpqYjyTFQDotdZ2Fj+tukiLF5EGzja3by/s18D0KlVWiNCs+/OfB9785mzOoGkz Ylb4QrLp6aenL4sDHFkp1GlnhSYrhXwrsoBqEpAkK7t2yXP7BLWS2V8a9t1XNmr0fWmA0nxW9t0X +M1vSvNhKAd6UEoLVQ9URwngXi6arJA8D7fPiq8KFIIerPQ9WVb+4By6Vi/7D/2etrFkKdB5C02S Zs1KkhVfWeExHQGXYd31+y6mrFRj0qKhwxHQ74X9qq4nuv8JlXUhUFGs1Azko7kZuOii8q8nTjxR tngIBX4jGUnDhAnis1JIAaw2xvvS5c8YYzYaY1YYY/7LGFPmgt/SoMOYZ0F7u+sICpGVaigrxZzz TjtNWHyWWUTajJgdiw7E5EcL/chHgLe/PT3taior3Bxyx47KB8SQmUC/56YmuRfLtpTZeSl44xvD G0uWshoIkBgmpYTaLweFVgoB1VNWgPzZon7+4SQr9fX55sGs99H/L10q5s9CM9Zi/QsH1VL9U0LQ g2posKa/WiFlhTFN/HehZ/oTJsh3X1lh3I5icZ9KhR87CQibgSohFa2t+SpsOcrKcGHyZODf/i38 W5ZJ3YknhqNADxfGM1n5BoC3AXglgP8FcDaAYVpUlURoQ7ZioLoyEj4rRLUGbj+dd75TTEmLFrlj K1YkbdTFQKetaigrellnNcmKVlYIdta833AoKyEwL/X1yQizw01EsqCY6a1aPiuAayNaWSFK9VkZ DTPQhAmFd8AG8oOQ+eAAf8opxfNRDMXKwF9izU/9TDxWrC7W1ztlhececYQshdWrbqqBhgapI6EV MNVQ+JiOHyaiGspKqfjAB0ofM7IQ7pFGDXRl2WGMuRDApwucYgEcZK19wlr7P+r4I8aY7QC+a4w5 y1pbMM7e0qVL0eHJF0uWLMGSJUsy5bNUZQUQsvLYY8OvrLCx6E3EykXajNiY/JlQqR3AS14iM0Pu slwpmptlMKm0I9Kdd4is6ABLes+U4QbzsmuXy8OWLemrUUYa++2XPgujPb4aZEUHHASS5rEsgRT1 +yrFR6GhwS27rYaDbSGwDqfd5/TTxYzEHdgrQbG80QHVV1S0eSBkGgpBkxWeW1cHfOpT2fNbCtas ScZY4oDuP/Pxx0vMn1LR0uL8pSqJs1Ipvvc9+cuCvfYqHOBRY/ny5Vi+fHniWDcfeBgwpsgKgK8B uLzIOU+lHL8f8rwLAPy9UALLli3D4RWMkqX6rABuUBkpn5WOjvKj4BLVlO99zJwpMSGqheFQVvTS ZcLfMmCklBXeR+9hsmlT8Vn6SOGJJ9J/+9vf5LMavjNpZqCsdZQDVV1dae1DqwYjRVbSlIqGhmQg w0pQbFD1/WL4LIx7oo+VoqyMxMzen6yx3fhBIm+8sTwH+dZWlxafx994tNbwxBPZl4CHJvArVqzA Yn8b7yphTJEVa+0mAJvKvPwwAEMANlQvR2HQ/FFKZ5eFrFTTZ6XSEPbA8JKVamOkzEB8fzw2UsrK xz8OPPAAcOih8ozGyEy/Gu95pFDMqS8L0sxApZIVPdhmQalO1ZWQFdblkRjQi92DZiDuu8WVhno1 SVZlpa4u32dlJMG24oeML9Wxlgj5Bx5xBHDDDSPr61EKRmpyVQ7GFFnJCmPMSwEcCeBOyHLlowF8 HcCV1trh06lyoGPbX/6S/ZojjhDTSSHT0cyZ0rEVWilQDKH9NcoFG3G1bLzDCX8fj3JRjKz4+xuN VONfsAC46y73nWaokKd/reGppyqPUkz4ZKVUQs3ZfyVkpRRlpbGx9Fl7MWWlmiiWNyo4jIfErUNC ZqBaU1Z8kKxUazO+0BLzCROAf/mX6qS/u2FckhUA2yDOtecCaALwNICLACwbiZvTX6OUmB7+/i8h TJsm0n4lHTs77WrM+EtZEjramDNHnHyr6bMSMgPpZaX++SMJxn4ZC2SlEvLtwzfBcsVU1sGPA1aW GBYa5ZKVcurHSJIVIs0ctGiRmDpIaj74QYkBok16tWoG8sE2W63N+HS/WKl/YMQ4JSvW2gcBHFX0 xGGCMbIaphpxDnxUOgOtJllhox4LZIXmmeFQVkLmvpFWVtLuPxbISjXhKys0LTFaaTHMnZvcCDEr SvVZqSRwWzEH22rjfe8rvOeOVl/mzQOuuy75eyUOtiOJ4VRWxpI5tlYxLslKLaDacQGqBTaganij jyWywiXhlT53iKyEUAvKCrD7zeh8skLfAPpUZEE5BK9cn5VKlJWRGtAvu6yy6ytZujySqLayEslK dTGe46xEBDAcyspY8FmhslKp0pF175iorIwOfDNQtXa6LoZSzUB6SXWpGA0zUCUYa8rKqadWJ71o Bqouxkh1j6gWqrnOfyz5rHDQyhpDIA2hOCuARB499FD3vZqksBzsrmTFV1ZGbJO1Es1AjHJcTjvk vcYKWSnFZ2U0VwM1NJS2c3MxFNsdO6I0jJHqHlEtVHOTs7FkBqL/0JYtlaWjn1Uvafz615PnhcKO jyQiWXHHHnxw+OsoB9eGhuxLXf1NL7Ni2jTZdfgLXyj92tEA62AWZSVtR/ixCE1WRoo0j2dEsrKb gZ32kUdWntZYIitcmVWpg3KxfW6IWiEru5v8fMIJwBe/mJzFa8VruMDBtRTfhHLJSl1d5bsOjyQY 5bbWVwNVG2OhXxxLiGRlN8OMGcDf/16dPXdoBhoLPisLFwLXXiuhsytB1sGIJKVaznqlYndVVvbe u/r7yGRBKOZOMTQ11caGdsMNBo7b3cjKWOgXxxKig+1uiIULqyNLjiVlBZCN3arRgWRRKzhj5n4x I43dlayMFjgQlxJGvVxlZayBygqj26ZhtFcDVRuRrFQX46BKRIwWSFZ2h9mhxkMPAX/6U+Fz9F49 o4FIVkYWVAJKGaCam3cPskJlpaur8Hl1dW4vnfFAVsaDOlRLGAdVImK0QLJS7t4ZYxXz58tfIXAQ oqlspHH44cDLXx5ndyMFDkylEPfdxQxEZaUYWdGrnMaDQ+p4eIZaQiQrEWVj0SLg7rtHOxe1iVNP lfD+73736Nz/Fa+I72YkUQ5ZaW0dOybUSpBVWSFZiYpERAiRrESUjeuvdxuXRSTR1AR87WujnYuI kQIH2lKUrGXLdo/VWrs7Wcm6gjCiMCJZiSgbkyeLuSEiYndHOT4rL3nJ8OSl1kC1qViMo/FIVh5/ vLQNbSPSMSa9DYwxZxtjfm+M6TPGBHf9MMbMM8b8OnfO88aYrxhjxuTzRkRE1DbKISu7G5YsKfz7 WIvMmwUHHBCd3KuFsVotGgD8DMAfALzP/zFHSm4EsBbASwHMAXAlgO0APjty2YyIiNgdUI4ZaHfC 4GC2CLbA+FJWIqqHMak0WGvPs9Z+A8DDKaccD+BAAKdbax+21t4C4HMAPmKMGasELSIiokYRyUph NDUVXzUYyUpEIYxJspIBLwXwsLV2ozp2C4AOAItGJ0sRERHjFYynszssRR4uRLISUQjjlazM3SoT cgAAIABJREFUArDeO7Ze/RYRERFRNTDyalRWykckKxGFUDNkxRhzoTFmqMDfLmPM/qOdz4iIiAgf 1spndKYsH5GsRBRCLflvfA3A5UXOyRrV43kAR3jHZqrfCmLp0qXo8AIgLFmyBEuKubNHRETsljjh BOCii4AzzhjtnIxdjMfVQOMZy5cvx/LlyxPHuru7h+1+NVMtrLWbAGyqUnJ/AHC2MWa68lt5HYBu AI8Vu3jZsmU4PAYQiYiIyIi6OuATnxjtXIxt1NXJZ1RWxgZCE/gVK1Zg8eLFw3K/miErpcAYMw/A VAB7AagzxhyS++lJa20fgFshpORKY8ynAcwGcAGAS6y1O0YjzxERERER6eDmm5GsRIQwJskKgPMB vEt9X5H7fBWAu6y1Q8aYEwF8B8C9APoA/BDAuSOZyYiIiIiIbGCk10hWIkIYk2TFWvteAO8tcs6z AE4cmRxFRERERFSCPfaQzx1R+44IoGZWA0VERERE7L4gWSm2h1DE7olIViIiIiIiRh0kK5uDu71F 7O6IZCUiIiIiYtQRyUpEIUSyEhEREREx6pg+XT4ZDTgiQiOSlYiIiIiIUUdcBRRRCJGsRERERERE RNQ0xuTS5YiIiIiI8Yef/ASYN2+0cxFRi4hkJSIiIiKiJvDWt452DiJqFdEMFBEREREREVHTiGQl IiIiIiIioqYRyUpERERERERETSOSlYiIiIiIiIiaRiQrERVj+fLlo52FMYlYbqUjlll5iOVWOmKZ 1RbGJFkxxpxtjPm9MabPGBMMzmyMGfL+dhlj3jLSed0dEBt1eYjlVjpimZWHWG6lI5ZZbWGsLl1u APAzAH8A8L4C570bwM0ATO571zDnKyIiIiIiIqLKGJNkxVp7HgAYY95d5NRua23nCGQpIiIiIiIi YpgwJs1AJeBbxphOY8wfjTHvHe3MRERERERERJSOMamsZMTnANwBoB/A6wB82xjTZq29pMA1zQCw cuXKEcje+EF3dzdWrFgx2tkYc4jlVjpimZWHWG6lI5ZZ6VBjZ3O10zbW2mqnWRaMMRcC+HSBUyyA g6y1T6hr3g1gmbV2aob0Pw/gvdbavQqc83YA/5c50xERERERERE+TrfWXlXNBGuJrEwDMK3IaU9Z a3eqa0ohKycA+BWAZmvtjgJ5OB7AagCDGbMeERERERERIYrKAgC3WGs3VTPhmjED5R6sqg/n4TAA W9KIispDVdlgRERERETEboR7hyPRmiErpcAYMw/AVAB7AagzxhyS++lJa22fMeZEADMB3AdRSF4H 4CwAXxmN/EZERERERESUj5oxA5UCY8zlAN4V+OlV1tq7jDHHA7jw/7d352FyVGX7x793FsgGgRck EWVfFETEBPjJErYEAsgOikPAyB4BCWETRER4RXBhVVBwIeASRVkMIATCKkLMSwZQJCJoEFQIATEg CZDl+f1xaqTTdPdMT7qnunvuz3XVlXTVqernVM1MP33OqVPABqQ5Vp4BroyI7/dgmGZmZlYDTZms mJmZWe/R6vOsmJmZWZNzspKRdLykOZIWSpohaau8Y8qLpFGSpkr6R/ZcpX1KlDlP0j8lLZB0l6QN i7avKOkKSS9Lel3SLyWt0XO16FmSzpQ0U9JrkuZKuknSxiXK+bwVkDRB0uOS5mfLQ5J2Lyrjc1aB pDOy39OLi9b7vBWQdE6JZ8Y9WVTG56yIpDUl/Sir84Ls93VEUZm6nzcnK4Ckg4GLgHNIdw09DkyT tHqugeVnMPAYcBxpfptlSPo8cAJwDLA18AbpfK1QUOxS4OPAgcAOwJrADfUNO1ejgG8B/w8YQ3p+ 1Z2SBnYU8Hkr6XnS/EojgJGkiRx/JWl09mHyc3zOysq+VB1D+ptVuN4/a6U9Qbr5Yni2bN+xwefs 3SStAvwWeIs0rccmwCnAqwVleua8RUSvX0h3DV1W8FrA34HT844t7wVYCuxTtO6fwKSC1ysDC4FP Frx+C9i/oMwHsmNtnXedeui8rZ7Vd/ueOm+kB3cuBUYUrV8ZmEk2m3MN6/hZYHwdzt0rwKnAEtIf xYb7WSPdWbgUmFJm+zrZ9pNLbFsD+CYwm/SH/T/AI8BZwNAqYhgCPAXsAtwLXNxTP2vNuJC+jLZX 2O5z9u5zciFwfydleuS89fqWFUn9Sd/o7u5YF+lsTge2ySuuRiVpPdI3ksLz9RrwO945X1uSbosv LPMU8By955yuQmqV+hf06HlbpiVM0krAXcBmwH4RcWc36lLOcaQEqSYk9ZH0KWAQaQLHTYChNObP 2qeAOcDekgZ3daesJeSPpETvAWAScDLQTmph+nkVMVwB3BIR9xS9h39Hy9so697+i6QfK02D4XNW 3t7AI5Kuz7q32yUd1bGxJ89br09WSN+A+wJzi9bPJV0EW9Zw0gdipfM1DHg7+6EtV6ZlSRKp2fPB iOjoE+/x8yZpCHAnsDlwQGeJiqRB1b5HLUjaTNLrpG9fVwIHZX/MVqMBf9Yk7Qy8DziC1N13QBf3 GwrcBCwCtoiIYyPi6mw5hjTVwgNdPNangC1I80cV8+9oaTOAz5C6MyYA6wEPZMmmz1lp65MS66dI 85V9B7hc0mHZ9h47b05WzGrvSmBT0rfvXGR/gKeRPtAOiIg7irZPzga6rS/p15JeA34s6cuS3lZ6 9ETxMa+W9C9JK0iaA3wI2KlgsOI9BWWHSrpU0nOS3pT0tKTTs0Suo8w6kpYCuwOXAC+QWlKuk7QL qa+8sPx9he9RoH8Wz3+PS+o730rScdm36DckTZP0vqzM2ZKezwYE3pz1zXfVOODJiLif1AI7rov7 TQDeS2oyf7p4Y0TMi4ivdnYQSe8nJcPjosKM3LasiJgWETdExBMRcRewJ7Aq8MmcQ2tkfYBZEXF2 RDweEd8Dvkf6We7xQHq7l0l948OK1g8DXuz5cBrei6QPkErn60VgBUkrVyjTkiR9m/RHcKeIeKFg U0+etyHAHaTuzYMi4vYSZYLUNDstO/YppAFvP8rWH1xUr/6kwXG/jIi3gYmkcV2zSR/WhwLnZ2UH kloIDgEmA58DHiRN1HhRiVg+A7SRBihPInWTHF6wveOcRcHrwnNW7u/YB0jfCi8njRHZEfiFpK+Q viVeCFxFaur+ZpljLCMbNHgA7zyWYwqwSxfvbNib1Je/vAMyRwLvAdolLZK0iFS3iZLeJn1j9e9o JyJiPvBnYEP8d62cF0i/44VmA2tn/++585b3AJ5GWCg9wPZ54LS8Y8t7oboBtp8oeN2rBqJldfx2 9nOzfpntdT1vvDPAdg7pMRN7VSh7DSlJ/0qJbb8FHipat39WflTBuj8A95TY/4vAa8XnAfgq8Dbw vux1xyDUV4H/KSh3N2nsRse2Sdn6e4H7S5yzJcCLBfvvTEpsXgGGFKw/PztmO9CnYP1PsmP278I5 PjB7v/Wz10NIA5dPLCr3rgG2WTxlB3hW8XM2mNRyV7jMBK4lPZnev6NdO49DSGPKjvc5K3uOfkLR AFtSK+iDBa975LzlfjIaYSE1Ay4gTeH/QdK3rVeA9+QdW07nYzDwEVIXwlLgpOz1Wtn207Pzszfw YeBm4GlghYJjXEn60NyJ9E3wt8Bv8q5bHc/ZlaQP1lGkbwwdy4CCMnU9b7yTrLwB/Js0LqJc2Y5k 5f0lth2bbVuvYN0vgWeLypVLVh4DbiONOSlcRmfxtWXl1iElFbdk/9+M1PqymNTSshT4WcE5mwnM K3HOZpPGgXScs0ey415eFNc+2TEnFa0/Mavvul04xzcAvyta94sS60olK4vo5M6K5fj5K74byL+j 7z5H3yDdNrsOsC1p4PlcYDWfs7LnbEtSonEmaUzVIcDrwKd6+mct95PRKAvpzoZnSRnhw8CWeceU 47nYMftDu6Ro+WFBmS+TMuoFpK6EDYuOsSKpWf/l7If7F8Aaedetjues1PlaAny6qFzdzhspWVlC 6pKZl/0h3qhM2WuAt8psWyX7Pfhi9rrjm9JXisqVS1beyOJYWmJZAkzMynUkK//Kjv8iaUDwLrzz Yf/pgnO2JPujWHzOrgXmF5yz27J9Tysq1/Fz/Yky5+2jnZzfoVmcXyf94e5YJmX7b1hQtm4tK2Vi u4eCZKXeP2vNuJC67P6eXcPnSF156xWV8Tl793nbE/h9dk7+CBxRokzdz5ufDWTWIiSNB34IbEUa x3EPKRHYLiL+UVT2GuDAiCjuR+7Y/gtgs4jYRNKRwNXZ69kFZf4AzIuIXYr2XUjqrvkaBQNkC/w5 Iv6eDYSdA5waEcWzr3Zs+0xEXJetuwegxPtdR5rPZv2ifZc5rqQdSS0QB0XEjaXOW0S0lzofWbmj Sa2uUaJeAZwXEeeWi0HSb0ktlKtExOJy72Nm79Yv7wDMrPYi4hFJ+5FaGe6SNCoiXqniENcBN0va ktT0+2hhotLxNmX2/QtprMi9VQde2auk202LrVPj9ynnEFJr0rkltk3Itpfa1uEW4GOkcS/VzKdi 1uv5biCzFhVpsrA2YCPgjmzela66ndRt8XlS98mPSpR5g9RlVOx6YBtJuxVvyG5p7ltFHIX+Anyw 8LZqSR8Btuvm8bosu114B+DnEXFj8ULqVttQlZ8p9l1SV9dFkjYq8R5rSDqrLhUwa3JOVsxayzLd ExFxM3A0aVDbLZJW7MpBsm6Kn5FaAToGuhabBWwu6SxJB2eTpUEayPgocGs2N8uxkk6WNJl0t9TQ btQLUlfNCqRnLh0n6VxS//gT3TxeoVLdVYU65lK5pcz2X5PGrZSdcyUi/k26q2pF4DFJV0k6Jlu+ SxqUuH25/c16MycrZq3lXV0zETGZ9KydHYDrJfUpV7bIddm/0yOieIZKgPNIH9KnkQYrnp2938Ls vb5OapW5lNRCswHwJdJg2MJ4y8WxzPqI+BNwGGnA70XAXqTBxI+WOEa543bpvUo4BPhbRPyh5M5p zo4HgYOLzm9xHWaS7nr6DukcXZLVZSvSGB9PUGZWggfYmllJkjYn3YZ8aET8tLPyZmb10jAtK5KO lzRH0kJJMyr1/UrasWCK745lSeEskpLGF6zvKLOgZ2pj1hKOId1meFPegZhZ79YQdwNJOpjUFHoM aeKnScA0SRtHxMtldgtgY9If07Qi4qWiMvOzMirYx8wqkLQX6bk/R5MmVluYc0hm1ss1RLJCSk6u KphPYQLwcdJTTb9eYb958e4nORaKiJhXuzDNeoVvAWsAt5ImezIzy1Xu3UDZA9JGkp4HAqQMg/Q0 020q7UoaUf9PSXdK2rZEmSGSns2e/HqzpE1rGrxZC4qI9SJicEQcGBFv5B2PmVnuyQqwOtCXNDV4 obnA8DL7vEB6fsmBpCegPg/cJ2mLgjJPkVpm9iHdTtgHeEjSmrUL3czMzOqtUbqBqhIRfyY92rvD DEkdz+gYn5WZQXqaMgCSHiY98OxY4JxSx80mmxpLekbQm/WI3czMrEUNANYFplU5Y3anGiFZeZk0 mdKwovXDSLM9dtVMKsxkGRGLJT0KbFjhGGNJj8Q2MzOz7hlHmnupZnJPViJikaRZpMfHTwWQpOz1 5VUcagtS91BJ2URNHyY9K6WcZwG23fbHXHrpJvTt7qTgTWDSpElccskleYdRd65na3E9W4vr2Vpm z57NoYceCtlnaS3lnqxkLgYmZ0lLx63Lg4DJAJIuANaMiPHZ64mkJ5r+kdTsdDSwM7BrxwElnU3q BnqG9PyS04G1ge9XiONNgIcf3oSrrx7B1VeDOpuEu0kNHTqUESNG5B1G3bmercX1bC2uZ8uq+TCK hkhWIuJ6SauTpu8eRpo1c2zBbcfDgbUKdlmBNC/LmsAC4PfA6Ih4oKDMqqTH2g8nPa11FrBNNmV3 RV/+MpxzDgwaBJde2roJi5mZWTNoiGQFICKuBK4ss+3wotffID0srdLxTgZO7k4se+0Fw4bBhAkw cCBccIETFjMzs7w0TLLSaI49FhYuhEmTYPBgOPvsvCMyMzPrnZysVHDSSbBgAZx1VmphOfXUvCOq nba2trxD6BGuZ2txPVuL62ld5acuF5A0Apg1a9asZQZDffGLcP75cMUVcNxx+cVnZmbWqNrb2xk5 ciTAyIhor+Wx3bLSBf/7v6mF5fjjUwvL4Yd3vo+ZmZnVhpOVLpDgoovSGJYjj4QBA8CtemZmZj3D yUoXSakbaMECOOyw1MKy3355R2VmZtb6GuFBhk2jTx/4wQ/gwAPh4IPhjjvyjsjMzKz1OVmpUr9+ 8OMfw9ixsP/+cN99eUdkZmbW2pysdEP//nD99TBqVJpA7uGH847IzMysdTlZ6aYBA+Dmm2HkSNh9 d5g1K++IzMzMWpOTleUwaBDceitssgnsths88UTeEZmZmbUeJyvLaaWV4PbbYe21YcwYeOqpvCMy MzNrLU5WamDVVeHOO2G11WD0aJgzJ++IzMzMWoeTlRp5z3tg+vQ0/8ouu8Df/553RGZmZq3ByUoN vfe9cPfdEJFaWF58Me+IzMzMmp+TlRpbe+2UsPznP7DrrvDyy3lHZGZm1tycrNTBBhukhGXu3DR5 3L//nXdEZmZmzcvJSp188INpDMucObDnnqmlxczMzKrnZKWONt8cpk1L86/svXd6arOZmZlVx8lK nW21Ffz61zBzJhxwALz1Vt4RmZmZNRcnKz1g++1h6lS491741Kdg0aK8IzIzM2seTlZ6yOjRcOON cNtt8OlPw5IleUdkZmbWHJys9KA994QpU+AXv4CjjoKlS/OOyMzMrPE5WelhBx4I116bls99Lk0g Z2ZmZuU1TLIi6XhJcyQtlDRD0lYVyu4oaWnRskTSGkXlPiFpdnbMxyXtUf+adG7cOPje9+DKK+G0 05ywmJmZVdIv7wAAJB0MXAQcA8wEJgHTJG0cEeXmgA1gY+D1/66IeKngmNsCPwU+D9wGjANulvTR iHiyLhWpwpFHwoIFcOKJMHgwnHtu3hGZmZk1poZIVkjJyVURcR2ApAnAx4EjgK9X2G9eRLxWZtuJ wO0RcXH2+kuSdgVOAI6rTdjL53OfS3OvfP7z6QGIZ5yRd0RmZmaNJ/dkRVJ/YCTw1Y51ERGSpgPb VNoVeEzSAOAJ4MsR8VDB9m1IrTWFpgH71iTwGjn99NTCcuaZMGhQamkxMzOzd+SerACrA32BuUXr 5wIfKLPPC8CxwCPAisDRwH2Sto6Ix7Iyw8scc3gtgq6lc85JCcvEiSlhOeqovCMyMzNrHI2QrFQt Iv4M/Llg1QxJG5C6k8bnE1X3SfC1r6WE5ZhjUpfQuHF5R2VmZtYYGiFZeRlYAgwrWj8MeLGK48wE tit4/WJ3jzlp0iSGDh26zLq2tjba2tqqCKc6Elx+eUpYxo+HAQPSbc5mZmaNZsqUKUyZMmWZdfPn z6/b+yka4L5ZSTOA30XExOy1gOeAyyPiG108xp3AaxFxUPb6Z8DAiNi3oMxvgccjouQAW0kjgFmz Zs1ixIgRy1Wn7lqyBA49FG64AW66CT7+8VzCMDMzq0p7ezsjR44EGBkR7bU8diO0rABcDEyWNIt3 bl0eBEwGkHQBsGZEjM9eTwTmAH8EBpDGrOwM7FpwzMtI41hOJt263EYayHt0D9Sn2/r2heuugzff TC0rt92Wpuo3MzPrrRpiUriIuB44FTgPeBTYHBgbEfOyIsOBtQp2WYF0p8/vgfuADwOjI+K+gmM+ DBxCmrvlMeAAYN9GmGOlM/37w89+BjvvDPvsAw8+mHdEZmZm+WmIbqBG0QjdQIUWLkzdQI88Anff DVuVndPXzMwsX/XsBmqIlhUrbeBAmDoVNtsMxo6Fxx/POyIzM7Oe52SlwQ0ZArffDuuvD7vuCrNn 5x2RmZlZz3Ky0gSGDoVp02DYsDTY9pln8o7IzMys5zhZaRKrrQbTp8NKK6WE5bnn8o7IzMysZzhZ aSLDhqWBtn37poTlhRfyjsjMzKz+nKw0mfe/PyUsb74JY8bAvHmd72NmZtbMnKw0ofXWSwnLK6/A brvBq6/mHZGZmVn9OFlpUhtvnMawPP887L47vPZa3hGZmZnVh5OVJrbZZnDnnfDUU7DXXukhiGZm Zq3GyUqTGzEizcPS3g777ZfGspiZmbUSJystYJtt4NZb4Te/gU98At5+O++IzMzMasfJSovYaSe4 +ebULXToobB4cd4RmZmZ1YaTlRYydixcfz3ceCMccQQsXZp3RGZmZsvPyUqL2Xdf+MlP0vLZz4If qm1mZs2uX94BWO0dfDAsXAiHHw6DBsHFF4OUd1RmZmbd42SlRX3mMylhOe44GDwYvvKVvCMyMzPr HicrLeyzn00JyymnwMCBcNZZeUdkZmZWPScrLe7kk9NkcV/8YuoSmjQp74jMzMyq42SlFzjrrJSw nHxyamGZMCHviMzMzLrOyUovIMH558Mbb6SuoYEDYfz4vKMyMzPrGicrvYQEl16axrAccURKWD75 ybyjMjMz61yX51mRtKqkz0laucS2odm2VWsbntWSBN/5DhxyCIwbB1On5h2RmZlZ56qZFO4EYIeI eK14Q0TMB0YBp9UqMKuPvn3hmmvS5HGf+ESant/MzKyRVZOsHAh8t8L2q4A9ly8c6wn9+sFPfwq7 7pqe1Hz//XlHZGZmVl41ycoGwNMVtj8NrN/dQCQdL2mOpIWSZkjaqov7bSdpkaT2ovXjJS2VtCT7 d6mkBd2Nr9WssAL88pew3Xaw114wY0beEZmZmZVWTbKyBFizwvY1gW49Ok/SwcBFwDnAR4HHgWmS Vu9kv6HAtcD0MkXmA8MLlnW6E1+rGjAgPal5iy1gjz3g0UfzjsjMzOzdqklWHgX2q7B9/6xMd0wC roqI6yLiT8AEYAFwRCf7fRf4CVCuXSAiYl5EvJQt87oZX8saPBhuuw022gh22w3++Me8IzIzM1tW NcnKt4FTJJ0gqW/HSkl9JX2OlHBcUW0AkvoDI4G7O9ZFRJBaS7apsN/hwHrAuRUOP0TSs5Kek3Sz pE2rja83WHlluOMOeN/7YMwYeLpSZ5+ZmVkP63KyEhE3AF8HLgf+JelRSY8C/wIuBS6OiF92I4bV gb7A3KL1c0ldN+8iaSPgq8C4iCjX9fQUqWVmH2Acqa4PSarUldVr/c//pDuDVl0VRo+GZ5/NOyIz M7OkmpYVIuIs4GPAZOCfwAvANcA2EXFGzaMrQVIfUtfPORHxl47VJWKdERE/jojfR8RvgAOAecCx PRFnM1pjDZg+PQ2+HT0a/vGPvCMyMzPrxgy2ETETmFnDGF4mDd4dVrR+GPBiifIrAVsCW0jq6Hbq A0jS28BuEXFf8U4RsThrCdqws4AmTZrE0KFDl1nX1tZGW1tbZ7s2vTXXhLvvhlGjUsJy//0wrPjK mJlZrzZlyhSmTJmyzLr58+fX7f2Uhod0oaC0eVfKRcTvqw5CmgH8LiImZq8FPAdcHhHfKCorYJOi QxwP7EyaC+bZiFhY4j36AH8EbouIU8vEMQKYNWvWLEaMGFFtNVrKM8/ADjvA6qvDffelbiIzM7Ny 2tvbGTlyJMDIiGjvrHw1qmlZeQwISnS5FAjS+JNqXQxMljSL1GozCRhE6m5C0gXAmhExPht8+2Th zpJeAt6MiNkF684m3SX0DLAKcDqwNvD9bsTX62y4YeoS2nFHGDs2/b+oscnMzKxHVJOsrNeFMit1 J4iIuD6bU+U8UvfPY8DYgluNhwNrVXnYVYGrs31fBWaRxtb8qTsx9kabbgp33QU77wx77gnTpsGQ IXlHZWZmvU2Xu4HKHkBaCWgDjgS2jIjutKw0BHcDlTZzZrqleaut4NZb0xObzczMCtWzG6iqu4EK SdpB0rWkO4JOBe4l3SlkLWbrrdPEcQ8/DAcdBG+/nXdEZmbWm1SVrEgaLukMSU8DvwBeA1YE9ouI MyLi/+oRpOVv1CiYOjXdKdTWBosX5x2RmZn1Fl1OViTdQppobXPgJNKA18/VKzBrPGPGpIcfTp0K 48fDkiV5R2RmZr1BNQNs9yDNXvudiPCE7L3UXnvBlClw8MEwaBBcdRX06XZnopmZWeeq+ZjZnnS3 zyxJv8ueEVTxqcjWmg46CK69Fn7wAzjpJFjOMdpmZmYVdbllJSJmADMknQQcTHruzsWkhGdXSc9H xOv1CdMazaGHwoIFcOyx6e6gCy8EVZqBx8zMrJu6M93+G8APgR9K+gDpluUzgAsl3RUR+9Q4RmtQ xxwDCxem1pXBg+FLX8o7IjMza0VVJyuFIuIp4HRJZwJ7k1pbrBeZODG1sHzhC6mF5bTT8o7IzMxa zXIlKx0iYglwc7ZYL3PmmSlhOf30NOj2+OPzjsjMzFpJTZIVs/POSwnLCSekFpYj3MZmZmY14mTF akKCb34zJSxHHZUSlra2vKMyM7NW4GTFakaCK65Ig24POwwGDID99887KjMza3aezstqqk+fNP/K QQeliePuuCPviMzMrNk5WbGa69sXfvQj2HPP1LJy7715R2RmZs3MyYrVRf/+8POfww47wN57w0MP 5R2RmZk1KycrVjcrrgg33QRbbgl77AGzZuUdkZmZNSMnK1ZXgwbBLbfAppvCbrvBH/6Qd0RmZtZs nKxY3a20Etx+O6yzDowZA089lXdEZmbWTJysWI9YZRW48054z3tg9Gj461/zjsjMzJqFkxXrMauv DtOnp66h0aPh+efzjsjMzJqBkxXrUcOHw913Q0RKWF58Me+IzMys0TlZsR631lpwzz3wxhtpDMvL L+cdkZmZNTInK5aL9ddPLSzz5qW7hP7977wjMjOzRuVkxXLzwQ/CXXfB3/6W5mF5/fW8IzIzs0bk ZMVytfnmMG0aPPkk7LNPemqzmZlZoYZJViQdL2mOpIWSZkjaqov7bSdpkaT2Ets+IWl2dszHJe1R +8hteW25ZZqH5f/+Dw44AN56K++IzMyskTREsiLpYOAi4Bzgo8DjwDRJq3ey31DgWmAs/qXiAAAQ JUlEQVR6iW3bAj8FvgdsAfwKuFnSprWN3mph221h6lS4//70tOZFi/KOyMzMGkVDJCvAJOCqiLgu Iv4ETAAWAEd0st93gZ8AM0psOxG4PSIujoinIuJLQDtwQg3jthraZRe48Ub49a/hsMNgyZK8IzIz s0aQe7IiqT8wEri7Y11EBKm1ZJsK+x0OrAecW6bINry7xWVapWNa/vbYIz2t+Ze/hKOOgqVL847I zMzy1i/vAIDVgb7A3KL1c4EPlNpB0kbAV4HtI2KppFLFhpc55vDlitbqbv/94Uc/gnHjYOBAuOIK KH2JzcysN2iEZKUqkvqQun7OiYi/dKyu5XtMmjSJoUOHLrOura2Ntra2Wr6NVdDWBgsXwpFHpoTl m990wmJm1iimTJnClClTllk3f/78ur1fIyQrLwNLgGFF64cBpSZjXwnYEthC0hXZuj6AJL0N7BYR 92X7dvWYy7jkkksYMWJElytg9XHEESlhOeEEGDwYzjsv74jMzAxKf4Fvb29n5MiRdXm/3JOViFgk aRYwGpgKKevIXl9eYpfXgM2K1h0P7AwcCDybrXu4xDF2zdZbkzj++DT3yumnpxaWM8/MOyIzM+tp uScrmYuByVnSMpN0d9AgYDKApAuANSNifDb49snCnSW9BLwZEbMLVl8G3CfpZOA2oI00kPfoOtfF auy001LC8oUvpCc2T5yYd0RmZtaTGiJZiYjrszlVziN11TwGjI2IeVmR4cBaVR7zYUmHAOdny9PA vhHxZOU9rRF96UspYTnppJSwHO2U08ys12iIZAUgIq4Eriyz7fBO9j2XErcwR8QNwA01CdByJcGF F6aE5dhjU5fQoYfmHZWZmfWEhklWzDojwWWXpUG348fDgAFw0EF5R2VmZvXmZMWaSp8+cNVVKWFp a0stLB//eN5RmZlZPeU+g61Ztfr2hWuvTU9pPvBAmP6uJ0OZmVkrccuKNaV+/WDKlDTb7b77wh13 wKhReUdlZpafiPRMtcWL078dS/HrepWZM6d+dXOyYk1rhRXSM4T22it1BU2fDltvnXdUZtZdEel5 YNV8gOb54VzLMrU4dkS+169PHftqnKxYUxs4EH71K9h9dxg7Fu69F7bYIu+ozOovAhYtqn5ZvLh7 +9Vr/+IP4zxJqZu5X7/0b8dS/LorZcrts+KK9Tlu3vv06QPt7VCnCWydrFjzGzIEbrsNxoyBXXeF +++HTTfNOyprNB0f7o32Yd3d/evxwd63L/TvX37p16/y9sGDq9u/X793PvAa4UPYzx9rXE5WrCUM HZrGrey8c0paHngANtww76iaX3e+vb/99vJ9GFc67vJ80Nfjw71Pn8ofzp19WA8cCCuv3P39q10q 7d+vX32b8c2Wh5MVaxmrrQZ33QU77gijR6eEZZ11ej6OiOX/9txTH/55fMAvz4ftiiumlrR6fFh3 Z39/uJv1DCcr1lKGDYO774YddkgJy8SJPf/hv3hx7eu1vB+ygwalf1dYYfmO09nS2fHd1G5m3eFk xVrO+96XEpY99khPa+7uB++AAdV9ENfrw75fP3/Am1nv5mTFWtK668Ls2Z0WMzOzJuAeVzMzM2to TlbMzMysoTlZMTMzs4bmZMXMzMwampMVMzMza2hOVszMzKyhOVkxMzOzhuZkxczMzBqakxUzMzNr aE5WzMzMrKE5WTEzM7OG5mTFzMzMGlrDJCuSjpc0R9JCSTMkbVWh7HaSHpT0sqQFkmZLOqmozHhJ SyUtyf5dKmlB/WvSHKZMmZJ3CD3C9WwtrmdrcT2tqxoiWZF0MHARcA7wUeBxYJqk1cvs8gbwLWAU 8EHgf4GvSDqqqNx8YHjBsk7to29OveWXx/VsLa5na3E9rasaIlkBJgFXRcR1EfEnYAKwADiiVOGI eCwifh4RsyPiuYj4KTCNlLwUFY15EfFStsyray3MzMys5nJPViT1B0YCd3esi4gApgPbdPEYH83K 3le0aYikZyU9J+lmSZvWJmozMzPrKbknK8DqQF9gbtH6uaSum7IkPS/pTWAmcEVEXFOw+SlSy8w+ wDhSXR+StGatAjczM7P665d3AMtpe2AI8DHga5KeiYifA0TEDGBGR0FJDwOzgWNJY2NKGQAwe/bs esbcEObPn097e3veYdSd69laXM/W4nq2loLPzgG1PrZSj0t+sm6gBcCBETG1YP1kYGhE7N/F45wF HBoRm1Qocz2wKCLGldl+CPCTKsI3MzOzZY3LxpLWTO4tKxGxSNIsYDQwFUCSsteXV3GovsCK5TZK 6gN8GLitwjGmkbqMngXerOK9zczMersBwLqkz9Kayj1ZyVwMTM6Slpmku4MGAZMBJF0ArBkR47PX xwHPAX/K9t8ROAW4tOOAks4mdQM9A6wCnA6sDXy/XBAR8QpQ02zQzMysF3moHgdtiGQlIq7P5lQ5 DxgGPAaMLbjVeDiwVsEufYALSBncYuAvwGkRcXVBmVWBq7N9XwVmAdtkt0abmZlZk8h9zIqZmZlZ JY1w67KZmZlZWU5WzMzMrKH1mmRF0ihJUyX9I3uo4T5d2GcnSbMkvSnpz5LG90Ssy6PaekraseBB jx3LEklr9FTM3SHpTEkzJb0maa6kmyRt3IX9muqadqeezXhNJU2Q9Lik+dnykKTdO9mnqa4lVF/P ZryWpUg6I4v94k7KNd01LdSVejbjNZV0TomYn+xkn5pey16TrACDSQN3jwM6HagjaV3gVtJjAD4C XAZ8X9Ku9QuxJqqqZyaAjXjngY/vjYiX6hNezYwiPczy/wFjgP7AnZIGltuhSa9p1fXMNNs1fR74 PDCC9PiNe4BfSSo5b1KTXkuosp6ZZruWy5C0FXAM6QG1lcqtS3NeU6Dr9cw04zV9gnQDTEfM25cr WJdrGRG9bgGWAvt0UuZrwO+L1k0Bfp13/DWu547AEmDlvONdzrquntV3+xa/pl2pZ6tc01eAw1v1 Wnaxnk19LUkzjD8F7ALcC1xcoWzTXtMq69l015Q063t7FeVrfi17U8tKtT5GephioWl08eGKTUbA Y5L+KelOSdvmHVA3rEL6tvKvCmVa4Zp2pZ7QxNdUUh9JnyLNtfRwmWJNfy27WE9o4msJXAHcEhH3 dKFsM1/TauoJzXlNN8qGF/xF0o8lrVWhbM2vZUPMs9KghlP64YorS1oxIt7KIaZ6eIH0vKRHSDMA Hw3cJ2nriHgs18i6SJJIEwI+GBGV+lGb+ppWUc+mvKaSNiN9aA8AXgf2j/LzIjXttayynk15LQGy RGwLYMsu7tKU17Qb9WzGazoD+Ayp9ei9wJeBByRtFhFvlChf82vpZKWXi4g/A38uWDVD0gakWYSb ZXDblcCmwHZ5B1JnXapnE1/TP5H6t4cCBwHXSdqhwgd5s+pyPZv1Wkp6PymxHhMRi/KOp166U89m vKYRUTh9/hOSZgJ/Az4JXNMTMbgbqLwXSYOJCg0DXmvUDL+GZgIb5h1EV0j6NrAnsFNEvNBJ8aa9 plXWs5SGv6YRsTgi/hoRj0bEWaSBihPLFG/aa1llPUtp+GtJGjz8HqBd0iJJi0hjNSZKejtrJSzW jNe0O/UspRmu6X9FxHxSwlUu5ppfS7eslPcwsEfRut2o3LfcKrYgNVU2tOwDfF9gx4h4rgu7NOU1 7UY9S2mKa1qkD+UfTtqU17KMSvUspRmu5XTSg2MLTQZmAxdGNuKySDNe0+7Us5RmuKb/JWkIKVG5 rkyR2l/LvEcZ99RCuqX3I6QfiqXASdnrtbLtFwDXFpRfl9Sf/DXgA6Rbgd8mNfflXp8a1nMisA+w AfAhUpPmItI3+NzrU6GeV5Ke+TSKlLF3LAMKyny12a9pN+vZdNc0q8MoYB1gs+zndDGwS5mf26a7 lt2sZ9Ndywp1X+YumVb4/exmPZvumgLfAHbIfm63Be4ijUFZraeuZW9qWdmS9EMU2XJRtv5a4AiK HpYYEc9K+jhwCXAi8HfgyIgoHuHcaKqqJ7BCVmZNYAHwe2B0RDzQUwF30wRS/e4rWn8472T776X5 r2nV9aQ5r+kapJ/R9wLzSTHvFu/cXdEqv59V1ZPmvJblFLcytMLvZykV60lzXtP3Az8FVgPmAQ8C H4uIV7Ltdb+WfpChmZmZNTQPsDUzM7OG5mTFzMzMGpqTFTMzM2toTlbMzMysoTlZMTMzs4bmZMXM zMwampMVMzMza2hOVszMzKyhOVkxMzOzhuZkxcx6jKQdJS2VtHLesQBksexTRflrJN1Yz5jM7N16 07OBzKxGJK0P3A68UbwJ+GtEHFhhdz/jw8yq4mTFzN5FUv+IWFShSH/gtxFxRIl9H6pfZGbWG7kb yMyQdK+kb0m6RNI84A5J47NukiXZvx3Ll6o47p6SnpK0QNLdpEfHd7bPUknHSLpF0huSnpT0MUkb ZHH+R9JvJa1XtN9nJT0j6S1JsyUdWrR9Q0kPSFoo6QlJY0q89/sl/VzSq5JekXSzpHUqxDpH0olF 6x6t5hyZWeecrJhZh08DbwHbAhOAnwHDSY9/Hw60AYtIj4fvlKS1gBuAXwEfAb4PXNjFWL4ITM72 m016PP13gfOBkaTupm8XvNf+wKXAN4APAVcD10jaMdsu4CbgTWCrrH5fo6BLSlI/YBowH9guOw+v kxI3t0Kb5ci/gGbW4emIOKNo3UsAkjYArgDOjIh7JH2gC8f7LPBMRJzecXxJmwOnV9inww8j4obs vb8OPAycGxHTs3WXAT8sKH9Kts9V2etLJH0MOBW4H9gV2BgYExFzs2N8gTTupsOnAEXEMR0rJB0J vArsBEzvQtxmVgduWTGzDrNKrczu3LkFuCUiLq7ieB8Efle07uEu7vuHgv/Pzf59omjdAElDsteb AMVjZX6bre+I5fmORKVMLJsDG0l6vWMBXgFWBDboYtxmVgduWTGzDsV39iCpD3A98G/g2B6MpXBw b1RYV8svXEOAR4BDSN1MheaV2WdpibL9axiTmeGWFTOr7FLSGJD9IuLtKvedDWxdtG6bbsbR2e3O s0njTAptDzxZsH0tScMqxNIObATMi4i/Fi2vl3nfeaQxPcB/W6HWK1PWzLrJyYqZlSTpcNK4kwnp pYZly+AuHuK7pG6Vr0vaWNIhwPjuhtPJum8An5E0Ibvr52Rgv2w9pPEmTwPXSdpc0ijgKyybBP0E eBn4laTtJa0raSdJl0las0xc9wCHZeU/TBoUvLibdTSzMpysmBmUbrnYgfQ3Yirwz4LllC4dMOJ5 4EBgX+Ax4BjgzG7GUnFdRPwKmJjF9gRwNPCZiPhNtj1IycsA0jiaq4EvFMW7kFTn50h3MT0JfI80 ZuW1MrFeQBrAe0u23AT8pQt1NLMqKP0Om5l1XXY30OfLTQoXEdvmEJaZtSi3rJhZd5XqmjEzqznf DWRm3bEQ+JCkmSW2/b6ngzGz1uZuIDMzM2to7gYyMzOzhuZkxczMzBqakxUzMzNraE5WzMzMrKE5 WTEzM7OG5mTFzMzMGpqTFTMzM2toTlbMzMysof1/+KnhUDz2Qh4AAAAASUVORK5CYII= " >

Widmo modelu AR: teoria<a class="anchor-link" href="#Widmo-modelu-AR:-teoria">¶</a>

Przypomnienie teorii z wykładu: transformata Z<a class="anchor-link" href="#Przypomnienie-teorii-z-wykładu:-transformata-Z">¶</a>

Transformata Z jest zdefiniowana tak:

$X(z) = Z\lbrace x[n]\rbrace = \sum _{n=0}^\infty {x[n]z^{-n}}$

gdzie $z=Ae^{i \phi }$ jest liczbą zespoloną.

Zauważmy, że dyskretna transformata Fouriera jest szczególnym przypadkiem tej transformaty - wystarczy podstawić:

  • $A=1/N$ i
  • $\phi = - 2 \pi k/ N $

Własności transformaty Z<a class="anchor-link" href="#Własności-transformaty-Z">¶</a>

Transformata ta jest liniowa tzn.

$\mathrm{Z}\lbrace a_1x_1[n] +a_2x_2[n]\rbrace =a_1X_1(z)+a_2X_2(z)$

jak ją policzyć od sygnału przesuniętego w czasie to:

$\mathrm{Z}\lbrace x[n-k]\rbrace = z^{-k}X(z)$

dla impulsu:

$\mathrm{Z}\lbrace \delta [n]\rbrace =1$

więc

$\mathrm{Z}\lbrace \delta [n-n0]\rbrace = z^{-n0} $

Stosując tą transfomatę do procesu AR dostajemy:

$\mathrm{Z}\lbrace x[n] + a_1 x[n-1] + \dots + a_p x[n-p]\rbrace = (1 + a_1 z^{-1} + \dots + a_p z^{-p})X(z)$

$=A(z)X(z)$

Wyznaczenie widma modelu AR<a class="anchor-link" href="#Wyznaczenie-widma-modelu-AR">¶</a>

Widmo modelu można wyliczyć analitycznie znając jego współczynniki: Przepisujemy równanie modelu:

$x_t = \sum _{i=1}^p a_i x_{t-i} +\epsilon _t$

$\sum _{i=0}^p a_i x_{t-i} =\epsilon _t$

biorąc transformaty $Z$ obu stron mamy równanie algebraiczne:

$A(z)X(z) =E(z)$

$X(z)=A^{-1}(z) E(z)=H(z) E(z)$

Stąd widmo:

$S(z) = X(z)X^*(z)=H(z)VH^*(z)$

Podstawiając $z= e^{- 2 i \pi \frac{f}{Fs} }$ możemy uzyskać widmo modelu jako funkcję częstości $f$ ($Fs$-częstość próbkowania).

$S(f) = X(f)X^*(f)=H(f)VH^*(f)$

Oblicznie widma modelu: praktyka<a class="anchor-link" href="#Oblicznie-widma-modelu:-praktyka">¶</a>

Najpierw rozważmy konkretny przykład.

Niech model będzie rzędu $p=2$ i ma współczynniki $a_1 = 0.9, a_2 = -0.6$ i $\sigma_{\varepsilon} = 2$. Wyliczamy wartości funkcji $A(z) = a_1 z^{-1}+a_2 z^{-2}$ dla $z = e^{i 2 \pi* \frac{f}{Fs}}$:

In [13]:
<span></span><span class="n">a</span><span class="o">=</span><span class="p">[</span><span class="mf">0.9</span><span class="p">,</span> <span class="o">-</span><span class="mf">0.6</span><span class="p">]</span>
<span class="n">sigma_eps</span> <span class="o">=</span> <span class="mi">2</span>
<span class="n">Fs</span> <span class="o">=</span> <span class="mi">100</span>
<span class="n">f</span><span class="o">=</span><span class="n">np</span><span class="o">.</span><span class="n">arange</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span><span class="n">Fs</span><span class="o">/</span><span class="mi">2</span><span class="p">,</span><span class="mf">0.1</span><span class="p">)</span>
<span class="n">z</span><span class="o">=</span><span class="n">np</span><span class="o">.</span><span class="n">exp</span><span class="p">(</span><span class="mi">1j</span><span class="o">*</span><span class="mi">2</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">pi</span><span class="o">*</span><span class="n">f</span><span class="o">/</span><span class="n">Fs</span><span class="p">)</span>
<span class="c1"># dla zadanego modelu</span>
<span class="n">A</span><span class="o">=-</span><span class="mi">1</span><span class="o">+</span><span class="n">a</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span><span class="o">*</span><span class="n">z</span><span class="o">**</span><span class="p">(</span><span class="o">-</span><span class="mi">1</span><span class="p">)</span><span class="o">+</span><span class="n">a</span><span class="p">[</span><span class="mi">1</span><span class="p">]</span><span class="o">*</span><span class="n">z</span><span class="o">**</span><span class="p">(</span><span class="o">-</span><span class="mi">2</span><span class="p">);</span>

Następnie obliczamy odwrotność $A$:

In [14]:
<span></span><span class="n">H</span><span class="o">=</span><span class="mf">1.</span><span class="o">/</span><span class="n">A</span>

i obliczamy widmo:

In [15]:
<span></span><span class="n">Sp</span><span class="o">=</span><span class="n">H</span><span class="o">*</span><span class="n">H</span><span class="o">.</span><span class="n">conj</span><span class="p">()</span><span class="o">*</span> <span class="n">sigma_eps</span><span class="o">**</span><span class="mi">2</span>
<span class="n">Sp</span> <span class="o">=</span> <span class="n">Sp</span><span class="o">.</span><span class="n">real</span>

Możemy je wykreślić w funkcji częstości $\omega$.

In [16]:
<span></span><span class="n">py</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">f</span><span class="p">,</span><span class="n">Sp</span> <span class="p">)</span>
<span class="n">py</span><span class="o">.</span><span class="n">show</span><span class="p">()</span>



<img src=" AAAPYQAAD2EBqD+naQAAIABJREFUeJzt3Xl4VOXd//H3l30PiMoiqCwuWASSIIuAIFIU61JtXVIt tVatj3WjtdpWW7c+fVr6c2lVWrWLWjXWVhSxAioqCVJBE0CRxSKggorgEnYIcP/+uCclCWGZzJm5 Z/m8rutcQ86czPl65CKf3Ks55xARERFpELoAERERSQ8KBSIiIgIoFIiIiEiMQoGIiIgACgUiIiIS o1AgIiIigEKBiIiIxCgUiIiICKBQICIiIjEKBSIiIgIkGArM7CdmttPM7qx1/jYz+8jMNpnZi2bW M7EyRUREJNnqHQrM7DjgMmB+rfM3AFfG3hsAbASmmVmTBOoUERGRJKtXKDCzVsCjwCXAl7Xevga4 3Tn3nHNuATAW6Ax8PZFCRUREJLnq21JwHzDZOfdy9ZNm1g3oCEyvOuecWwfMBgbXt0gRERFJvkbx foOZnQ/0A/rX8XZHwAGra51fHXuvrs9rD5wMrAC2xFuPiIhIDmsGHA5Mc859luiHxRUKzKwLcDcw yjlXmejNY04GHovos0RERHLRBcDjiX5IvC0FhcBBQLmZWexcQ+AEM7sSOBowoAM1Wws6AHP38Jkr AB599FF69eoVZzlSX+PGjeOuu+4KXUZO0TNPPT3z1NMzT61FixZx4YUXQuxnaaLiDQUvAcfWOvcQ sAj4tXNumZl9ApwEvAVgZm2AgfhxCHXZAtCrVy8KCgriLEfqKy8vT887xfTMU0/PPPX0zIOJpPs9 rlDgnNsILKx+zsw2Ap855xbFTt0N3GRmS/HJ5XZgJTAp4WpFREQkaeIeaFgHV+ML58abWQvgfqAt UAqMcc5ti+BeIiIikiQJhwLn3Mg6zt0C3JLoZ4uIiEjqaO+DHFVUVBS6hJyjZ556euapp2ee2cw5 t++rklmAWQFQVlZWpsEpIiIicSgvL6ewsBCg0DlXnujnqaVAREREAIUCERERiVEoEBEREUChQERE RGIUCkRERARQKBAREZEYhQIREREBFApEREQkRqFAREREgGg2RBJJmk8+gfvvh3fegZ494dJLoVu3 0FWJiGQntRRI2nrlFejdG/7f/4PPPoMHHoBjj4VnngldmYhIdlIokLQ0Zw6cdhrk58Py5TB9un8d MwbOPdcHBhERiZZCgaSddevgvPN8q8CkSXDggf5869bw+OMwbBhceCF8/nnYOkVEso1CgaSdn/0M 1q6F4mJo0aLme40bwyOPwMaN8POfh6lPRCRbKRRIWnnnHfjDH+CWW/Y8oPCQQ+Cmm/wAxMWLU1qe iEhWUyiQtPKrX0HXrnDVVXu/7qqroGNH+PWvU1OXiEguUCiQtLF8Ofz97/CjH0GTJnu/tmlTf91j j8GHH6amPhGRbKdQIGnjjjugbVu4+OL9u/7SS6F5c3jwweTWJSKSKxQKJC2sXQt/+YvvFmjZcv++ p1Ur+Pa34U9/gsrK5NYnIpILFAokLTz2GGzfDldcEd/3XXopfPwxvPRScuoSEcklCgWSFh56yC9W dNBB8X1f375w1FF+LIKIiCRGoUCCmz8f5s2Diy6K/3vN/EJHzzwDW7dGXpqISE5RKJDgHn7YtxCM GVO/7z/3XKiogGnToq1LRCTXKBRIUJWV8Oijftnixo3r9xlf+Yo/1IUgIpIYhQIJqqQE1qyBCy5I 7HPOOw+efRa2bImmLhGRXKRQIEFNnAiHHQYFBYl9zplnwoYNMHNmNHWJiOSiuEKBmV1uZvPNrCJ2 zDKzU6q9/1cz21nreD76siUb7NwJTz8NZ5/tBwwm4thjoVMnmDo1mtpERHJRvC0FHwI3AAVAIfAy MMnMelW7ZgrQAegYO4oiqFOy0OzZfo2Bs89O/LPM4JRTFApERBIRVyhwzv3LOTfVOfeec26pc+4m YAMwqNplW51za5xzn8aOikgrlqwxcSJ06ACDB0fzeWPG+F0WtReCiEj91HtMgZk1MLPzgRbArGpv jTCz1Wa22MwmmNkBCVcpWcc533Vw5pnQsGE0nzlqFDRooNYCEZH6ijsUmFlvM1sPbAUmAGc555bE 3p4CjAVGAtcDw4HnzRLtMZZss3QpvPcenH56dJ/Zrh0MGqRQICJSX43q8T2Lgb5AHvBN4BEzO8E5 t9g592S1694xs7eB94ARwCt7+9Bx48aRl5dX41xRURFFRRqSkI2mTvXbI48YEe3nnnwy3Hkn7NgR XQuEiEg6KC4upri4uMa5iopoe+jNOZfYB5i9CCx1zv3PHt7/FLjROVfnBrdmVgCUlZWVUZDovDTJ GKedBps3w/Tp0X5uSQkMHw7l5ZCfH+1ni4ikm/LycgoLCwEKnXPliX5eFOsUNACa1vWGmXUB2gMf R3AfyRJbtsArr/jZAlEbMACaNoVXX43+s0VEsl286xT8ysyGmdlhsbEF/4cfN/CombU0s/FmNjD2 /knAM8C7gFall/+aORM2bUpOKGjWzM9mmDEj+s8WEcl28bYUHAw8jB9X8BJ+rYLRzrmXgR1AH2AS sAR4EHgDOME5VxlZxZLxpk6Fzp2hd+/kfP7w4VBa6hdHEhGR/RfXQEPn3CV7eW8LkITf/STbTJ3q BwQma07K8OFw662wYAH06ZOce4iIZCPtfSAptXKlX2AoGV0HVQYN8jMb1IUgIhIfhQJJqWnT/AJD o0Yl7x7Nm/sBhwoFIiLxUSiQlJo2zf/APiDJ61wOHQqzZvmVE0VEZP8oFEjKOOd/ex85Mvn3GjzY b7b0wQfJv5eISLZQKJCU+c9/4NNP4YQTkn+vQbEtuv797+TfS0QkWygUSMqUlPjxBFHtirg3Bx8M PXooFIiIxEOhQFKmpMQvPdymTWruN3iwH1cgIiL7R6FAUqa0FIYNS939Bg+GefP8HgsiIrJvCgWS Eh9+CCtWpGY8QZXBg2H7dnjzzdTdU0QkkykUSEqUlvrXoUNTd89jj4WWLTWuQERkfykUSEqUlECv XnDQQam7Z6NG0L8/zJ6dunuKiGQyhQJJiVSPJ6hy3HHqPhAR2V8KBZJ0a9fCwoWpHU9QpX9/v4DR p5+m/t4iIplGoUCSbuZM/xqqpQCgrCz19xYRyTQKBZJ0JSVw2GFw6KGpv3e3btCuHbzxRurvLSKS aRQKJOlKSsJ0HQCY+S4EjSsQEdk3hQJJqvXrYe7cMF0HVTTYUERk/ygUSFLNmgU7d4ZrKQDfUvDx x7BqVbgaREQygUKBJFVpqd+c6Mgjw9XQv79/VWuBiMjeKRRIUpWU+K4Ds3A1dOkCHTooFIiI7ItC gSTNli0wZ07Y8QSwa7ChZiCIiOydQoEkzRtvwNatYccTVKmageBc6EpERNKXQoEkTUkJtGkDffqE rsTPQPjsM3j//dCViIikL4UCSZrSUhgyBBo2DF3JrsGG6kIQEdkzhQJJiu3b4bXXwo8nqNKhA3Tu 7NdMEBGRuikUSFLMnw8bNqTHeIIq+fkKBSIie6NQIElRUgLNmu1qtk8HCgUiInsXVygws8vNbL6Z VcSOWWZ2Sq1rbjOzj8xsk5m9aGY9oy1ZMkFpKQwcCE2bhq5kl/x8WL3ar24oIiK7i7el4EPgBqAA KAReBiaZWS8AM7sBuBK4DBgAbASmmVmTyCqWtOecDwXp1HUA0K+ff503L2wdIiLpKq5Q4Jz7l3Nu qnPuPefcUufcTcAGYFDskmuA251zzznnFgBjgc7A1yOtWtLa4sWwdm36DDKs0q0b5OWpC0FEZE/q PabAzBqY2flAC2CWmXUDOgLTq65xzq0DZgODEy1UMkdJiZ+GODjN/q+b+dYChQIRkbrFHQrMrLeZ rQe2AhOAs5xzS/CBwAGra33L6th7kiNKSqCgAFq1Cl3J7jTYUERkz+rTUrAY6IsfM/AH4BEzOzrS qiRjOedDQbqNJ6iSnw/vvQcVFaErERFJP43i/Qbn3HZgWezLuWY2AD+WYDxgQAdqthZ0APb5u9m4 cePIy8urca6oqIiioqJ4S5SA3n8fVq5Mv/EEVfLz/etbb6VvjSIidSkuLqa4uLjGuYqIf8OJOxTU oQHQ1Dm33Mw+AU4C3gIwszbAQOC+fX3IXXfdRUFBQQTlSEilpf516NCwdezJ0Uf7aZJz5yoUiEhm qesX5fLycgoLCyO7R1yhwMx+BUwBPgBaAxcAw4HRsUvuBm4ys6XACuB2YCUwKaJ6Jc2VlMBXvgLt 24eupG6NG0Pv3hpXICJSl3hbCg4GHgY6ARX4FoHRzrmXAZxz482sBXA/0BYoBcY457ZFV7Kks9JS GDkydBV7l5+vjZFEROoS7zoFlzjnujvnmjvnOjrn/hsIql1zi3Ous3OuhXPuZOfc0mhLlnS1ejUs WZL+zfL5+fDOO7B1a+hKRETSi/Y+kMjMnOlfMyEUbN8OCxeGrkREJL0oFEhkSkqge3fo0iV0JXvX p49fyEjjCkREalIokMiUlKR/KwFAy5Zw5JEKBSIitSkUSCQqKmD+/PRdtKg2rWwoIrI7hQKJxGuv +dUMM6GlAHwomD8fdu4MXYmISPpQKJBIlJZCx47Qs2foSvZPfj5s2ABLNTdGROS/FAokElXjCcxC V7J/+vXzr/Pnh61DRCSdKBRIwjZv9osBZcp4AoCDDoJDDtG4AhGR6hQKJGGzZ0NlZeaMJ6jSrx/M mxe6ChGR9KFQIAkrLYW2bf2eAplEoUBEpCaFAklYSQkMGQING4auJD75+fDxx355ZhERUSiQBFVW wqxZmTWeoErVYEO1FoiIeAoFkpC5c2HTpswMBd26QevWCgUiIlUUCiQhJSXQvDkUFISuJH4NGmhc gYhIdQoFkpDSUhg8GJo0CV1J/fTrp2mJIiJVFAqk3nbu9KEg06YiVtevH7z7LmzcGLoSEZHwFAqk 3t5+G774AoYPD11J/eXn+z0b3n47dCUiIuEpFEi9zZjhuw0GDQpdSf0dcww0aqQuBBERUCiQBMyY AQMG+IGGmappUx8MNNhQREShQOrJOT/zIJO7Dqrk5ysUiIiAQoHU06JFsHZtdoSCfv3grbdg+/bQ lYiIhKVQIPUyY4bviz/++NCVJK5fP9iyxc9CEBHJZQoFUi8zZkD//tCyZehKEte3r39VF4KI5DqF Aombcz4UZEPXAUC7dnD44ZqBICKiUCBx+89/4JNPsicUgJY7FhEBhQKphxkz/L4BQ4aEriQ6VaHA udCViIiEo1AgcZsxw0/ja9MmdCXRyc/3sylWrQpdiYhIOAoFEpdsG09QpV8//6ouBBHJZXGFAjP7 qZnNMbN1ZrbazJ42syNrXfNXM9tZ63g+2rIllOXLYeXK7AsFXbv6AYcKBSKSy+JtKRgG3AMMBEYB jYEXzKz2QrdTgA5Ax9hRlGCdkiZKSsAss3dGrIuZ70LQDAQRyWWN4rnYOXdq9a/N7CLgU6AQmFnt ra3OuTUJVydp55VX/Lz+du1CVxK9fv3gmWdCVyEiEk6iYwraAg74vNb5EbHuhcVmNsHMDkjwPpIG nIPp0+Gkk0JXkhz9+sGyZVBREboSEZEw6h0KzMyAu4GZzrmF1d6aAowFRgLXA8OB52PXSwZ7910/ Oj9bQ0F+vn+dPz9sHSIiocTVfVDLBOAYoMZsdefck9W+fMfM3gbeA0YAryRwPwls+nS/30G2jSeo ctRRfivlefPghBNCVyMiknr1CgVmdi9wKjDMOffx3q51zi03s7VAT/YSCsaNG0deXl6Nc0VFRRQV aYxiupg+HQYNglatQleSHI0bQ+/emoEgIumpuLiY4uLiGucqIu7vjDsUxALBmcBw59wH+3F9F6A9 sNfwcNddd1FQUBBvOZIiO3b4QYZXXRW6kuTq1w/KykJXISKyu7p+US4vL6ewsDCye8S7TsEE4ALg W8BGM+sQO5rF3m9pZuPNbKCZHWZmJwHPAO8C0yKrWlJu3jz44ovsHU9QJT8f3nkHtm0LXYmISOrF O9DwcqAN8CrwUbXj3Nj7O4A+wCRgCfAg8AZwgnOuMoJ6JZDp06FFC999kM369YPKSli0KHQlIiKp F+86BXsNEc65LcApCVUkaWn6dD/AsEmT0JUkV58+fiGjefP8egwiIrlEex/IPm3bBqWl2d91ANC6 NfTsqZUNRSQ3KRTIPr3+OmzenBuhAHZtoywikmsUCmSfpk+HAw7YtZNgtqsKBc6FrkREJLUUCmSf pk+HE0+EBjnytyU/3y91vGJF6EpERFIrR/6Zl/rasAFmz86drgPY1SKiLgQRyTUKBbJXM2bA9u25 FQo6doSDD9ZgQxHJPQoFsldTp8Lhh8MRR4SuJHXMoLBQKxuKSO5RKJC9mjYNTjnF/6DMJVWhQIMN RSSXKBTIHr33HvznPz4U5Jr+/WH1ar9VtIhIrlAokD2aNs1vlXziiaErSb3+/f3rm2+GrUNEJJUU CmSPpk2DIUOgTZvQlaRe585+wKFCgYjkEoUCqdO2bX59gpNPDl1JGBpsKCK5SKFA6vTaa7BxY26O J6jSv79vKdBgQxHJFQoFUqdp06BDh9zeKbB/f1i7Fj74IHQlIiKpoVAgdZo6FUaPzp2ljetSWOhf 1YUgIrkih//Jlz1ZtQrmz8/trgOATp38gEMNNhSRXKFQILv517+gYUOFAtg1rkBEJBcoFMhuJk/2 UxEPOCB0JeFpsKGI5BKFAqlh0yZ46SU47bTQlaSHwkL44gttoywiuUGhQGp4+WXYsgVOPz10Jemh arChuhBEJBcoFEgNzz0HPXrAUUeFriQ9dOgAXbsqFIhIblAokP9yzoeC00/PvV0R90aDDUUkVygU yH/Nm+enI2o8QU3aRllEcoVCgfzX5Ml+86Nhw0JXkl7694eKCr+VtIhINlMokP+aPNlvgNSkSehK 0kvVNspz5oStQ0Qk2RQKBPDr+7/5Jnz966ErST/t20PPnjB7duhKRESSS6FAAHj6ad9CoPEEdRs4 UKFARLKfQoEAMHEijBrlxxTI7gYNgrlzYevW0JWIiCRPXKHAzH5qZnPMbJ2ZrTazp83syDquu83M PjKzTWb2opn1jK5kidrq1VBaCmefHbqS9DVwIGzb5mdoiIhkq3hbCoYB9wADgVFAY+AFM2tedYGZ 3QBcCVwGDAA2AtPMTMPX0tSzz/p1Cc48M3Ql6atvX2jaVF0IIpLd4goFzrlTnXN/c84tcs69DVwE HAoUVrvsGuB259xzzrkFwFigM6AhbGlq4kQYPhwOPDB0JemrSRMoKIDXXw9diYhI8iQ6pqAt4IDP AcysG9ARmF51gXNuHTAbGJzgvSQJvvwSpk9X18H+0GBDEcl29Q4FZmbA3cBM59zC2OmO+JCwutbl q2PvSZp57jmorISzzgpdSfobNAiWLYM1a0JXIiKSHI0S+N4JwDHAkCgKGTduHHl5eTXOFRUVUVRU FMXHyx7885/+h90hh4SuJP0NHOhfZ8/W1E0RSb3i4mKKi4trnKuoqIj0HvUKBWZ2L3AqMMw593G1 tz4BDOhAzdaCDsDcvX3mXXfdRUFBQX3KkXr68kuYMgXGjw9dSWY47DC/a6JCgYiEUNcvyuXl5RQW Fu7hO+IXd/dBLBCcCZzonPug+nvOueX4YHBStevb4GcrzEqsVInaxIm+6+Ccc0JXkhnMfGuBBhuK SLaKd52CCcAFwLeAjWbWIXY0q3bZ3cBNZna6mR0LPAKsBCZFVbRE44knYMQI6Nw5dCWZY+BAvwfC zp2hKxERiV68LQWXA22AV4GPqh3nVl3gnBuPX8vgfvysg+bAGOfctgjqlYisXu1nHWjIRnwGD4Z1 62Dhwn1fKyKSaeIaU+Cc268Q4Zy7BbilHvVIivzjH9CggaYixmvAAGjUCF57DXr3Dl2NiEi0tPdB jnriCb9Ncvv2oSvJLC1bQn4+zJwZuhIRkegpFOSgDz7wv+mq66B+hgzxz09EJNsoFOSgxx+H5s3h jDNCV5KZhg6F5cvho49CVyIiEi2FghzjHDz8sB9L0Lp16Goy05DYcl1qLRCRbKNQkGPmzIHFi+Gi i0JXkrk6doQePTSuQESyj0JBjnnoIejaFU48MXQlmW3IEIUCEck+CgU5ZMsWKC6Gb38bGjYMXU1m GzIE5s2D9etDVyIiEh2FghwyaRJUVMB3vhO6ksw3dKhf1VBbKYtINlEoyCEPPQTHHw9HHhm6ksx3 9NHQrp0GG4pIdlEoyBGrVsELL2iAYVQaNNC4AhHJPgoFOeLPf4ZmzeDcc/d9reyfYcNg1iy/06SI SDZQKMgB27fDgw/Ct74FeXmhq8keI0bApk3w5puhKxERiYZCQQ6YMgVWroTLLw9dSXYpKPALQL3y SuhKRESioVCQA/74R+jfHwoLQ1eSXRo18l0Ir74auhIRkWgoFGS5FSt8S4FaCZJjxAg/A2HbttCV iIgkTqEgyz34oG/iPv/80JVkpxNP9OMK3ngjdCUiIolTKMhiW7f6WQdjx0LLlqGryU79+kGbNupC EJHsoFCQxf7+d1i9Gn7wg9CVZK9GjeCEExQKRCQ7KBRkKefgrrtgzBi/+p4kT9W4gq1bQ1ciIpIY hYIsVVLiN+wZNy50JdnvxBNh82aNKxCRzKdQkKXuugu+8hUYNSp0Jdmvb19o21brFYhI5lMoyEJL l8Kzz8K114JZ6GqyX8OGMHw4TJ8euhIRkcQoFGSh3/8e2reHCy4IXUnuGD3a74Owfn3oSkRE6k+h IMusWeOnIV5xBTRvHrqa3DF6tN8YacaM0JWIiNSfQkGW+d3vfJfB1VeHriS39OgB3br57alFRDKV QkEWqaiAe+/1Sxq3bx+6mtxi5lsLFApEJJMpFGSRCRP81Lgf/jB0Jblp9GhYsgTefz90JSIi9aNQ kCU2bfLTEC++GDp3Dl1Nbho5Eho0gBdfDF2JiEj9xB0KzGyYmT1rZqvMbKeZnVHr/b/Gzlc/no+u ZKnLgw/C55/D9deHriR3tW0LAweqC0FEMld9WgpaAvOAKwC3h2umAB2AjrGjqF7VyX7ZuBF+9Sv4 9rf9YDcJZ/RoeOkl2LEjdCUiIvGLOxQ456Y6537hnJsE7GlpnK3OuTXOuU9jR0ViZcre3HMPfPEF 3Hxz6Epk9Gj//+LNN0NXIiISv2SNKRhhZqvNbLGZTTCzA5J0n5z35ZcwfjxceikcfnjoamTAAMjL gylTQlciIhK/ZISCKcBYYCRwPTAceN5MC+4mw513wpYtcNNNoSsR8Fspn3IKPPdc6EpEROLXKOoP dM49We3Ld8zsbeA9YASwxy1jxo0bR15eXo1zRUVFFBVpOMKerFnjZxxceSV06hS6Gqly2ml+fMdH H2kmiIhEp7i4mOLi4hrnKiqi7Z035/Y0VnA/vtlsJ/B159yz+7juU+BG59yDdbxXAJSVlZVRUFBQ 71py0VVXwSOPwLJlWqwonXz2GRx8MPzxj75bR0QkWcrLyyksLAQodM6VJ/p5SV+nwMy6AO2Bj5N9 r1yyaBH84Q++20CBIL20bw/HH68uBBHJPPVZp6ClmfU1s36xU91jX3eNvTfezAaa2WFmdhLwDPAu MC3KwnPdddfBoYdqj4N0dfrpfhGjzZtDVyIisv/q01LQH5gLlOHXKbgDKAduBXYAfYBJwBLgQeAN 4ATnXGUUBYtfHOf55/2sg6ZNQ1cjdTntNB8IXtnjKBoRkfQT90BD59wM9h4mTql/ObIv27f7vQ2G DYNvfCN0NbInvXpB9+4weTKcemroakRE9o/2Psgw994LCxf6WQea5Jm+zHxrwXPPQQJjeUVEUkqh IIOsWgU//zlccQX4waaSzk4/HVauhHnzQlciIrJ/FAoyyLXXQsuW8Mtfhq5E9sfw4dCuHTz1VOhK RET2j0JBhpgyBf75T99t0LZt6GpkfzRuDGee6f+/qQtBRDKBQkEG2LABfvADGDUKzj8/dDUSj29+ E5Ys8eNARETSnUJBBvjJT2D1ar9CngYXZpZRo6BNG99aICKS7hQK0tzLL8N998FvfgM9eoSuRuLV tCmccYZCgYhkBoWCNLZ+PXzvezBihJ9xIJnpm9+EBQtg8eLQlYiI7J1CQRq77jq/E+Kf/wwN9H8q Y40eDa1aaRaCiKQ//ahJU089BQ88AHfe6VfGk8zVvLlfyEhdCCKS7hQK0tD778Mll/hmZ229mx3O OccvYqQuBBFJZwoFaWb7drjgAsjLgwcf1GyDbHHqqX59icceC12JiMieKRSkmZ//HF5/HYqLtUhR NmnWzLcWPPoo7NwZuhoRkbopFKSRf/4Tfv1rfwweHLoaidqFF8KKFTBrVuhKRETqplCQJt55By66 CM47D370o9DVSDIMHQqHHupbC0RE0pFCQRr48ks46yzo1s1PP9Q4guzUoIEfL/Lkk7B1a+hqRER2 p1AQ2LZt8I1vwNq18PTTfhdEyV4XXghffAHPPx+6EhGR3SkUBOQcfP/7UFrqA0HPnqErkmQ75hgo KIC//S10JSIiu1MoCOh//xceegj++lcYPjx0NZIq3/kOTJ7sN7kSEUknCgWBPPCAn354222+n1ly x4UXQsOGPhCKiKQThYIAiovh8svhyivhpptCVyOpdsABfs2CP/3JdyGJiKQLhYIUe+45GDvWH7/7 nWYa5KpLL4WlS+HVV0NXIiKyi0JBCk2e7GcanHGG/y1ROx/mrmHD4KijfDeSiEi60I+lFJk4Ec4+ G04/3XcfNGoUuiIJycy3Fkyc6KejioikA4WCFHj8cTj3XL/r4RNPQJMmoSuSdPCd7/jXhx8OW4eI SBWFgiRyDn77Wz+74MIL/dx0tRBIlQMP9EFxwgTYsSN0NSIiCgVJs2MHXH01XH89/Oxnfi0CBQKp 7ZprYNkyPwBVRCQ0hYIk2LRp12+A99/vFynSLAOpy4ABfkfMu+8OXYmISD1CgZkNM7NnzWyVme00 szPquOY2M/vIzDaZ2YtmljML+C5bBscfDy+8AJMmwWWXha5I0t211/qpifPnh65ERHJdfVoKWgLz gCuA3ZYhLWl7AAASnElEQVReMbMbgCuBy4ABwEZgmpll/fC655+HwkLYsAH+/W847bTQFUkmOOss 6NLFr1shIhJS3KHAOTfVOfcL59wkoK5G8WuA251zzznnFgBjgc7A1xMrNX3t2AG33upDwNCh8Oab 0KdP6KokUzRu7Fe3fOwx+PTT0NWISC6LdEyBmXUDOgLTq84559YBs4HBUd4rXSxfDiNG+FBw662+ y6Bt29BVSaa59FI/EPXee0NXIiK5LOqBhh3xXQq1939bHXsvazjnZxT06QMrV8KMGX6DI61SKPVx wAF+/Mk998C6daGrEZFclTaT5MaNG0deXl6Nc0VFRRQVFQWqaM8+/NA39z77LFx0ke8LbtMmdFWS 6a67zs9YmTABfvKT0NWISLopLi6muLi4xrmKiopI72EugW3azGwn8HXn3LOxr7sB7wH9nHNvVbvu VWCuc25cHZ9RAJSVlZVRUFBQ71pSYft2+P3v4Re/8CHg3nv90sUiUfn+9+Hpp2HFCmjRInQ1IpLu ysvLKSwsBCh0zpUn+nmRNnY755YDnwAnVZ0zszbAQGBWlPdKtZkzoX9/+PGP4eKLYdEiBQKJ3g03 wOef+w2zRERSrT7rFLQ0s75m1i92qnvs666xr+8GbjKz083sWOARYCUwKZqSU2vRIjjzTL+rXZMm MGeOby2o1dMhEonu3aGoyC+PvXVr6GpEJNfUp6WgPzAXKMMPKrwDKAduBXDOjQfuAe7HzzpoDoxx zm2LouBUef99P/Crd294+22/qdHrr/t1CESS6Wc/g1Wr1FogIqlXn3UKZjjnGjjnGtY6Lq52zS3O uc7OuRbOuZOdc0ujLTt5liyB734Xevb029reeadvLSgq0swCSY1evWDsWLj9dti4MXQ1IpJL9GMO P72wpATOOcf/g/zCC7759v33/YY1TZuGrlByzS23+LEFWuVQRFIpp0PBunV++texx8Lw4b6b4I9/ 9PsXXHsttGwZukLJVYcfDv/zPzB+vA8HIiKpkHOhoLLSb1NbVAQdO/rtjY86CqZP990El12mlgFJ Dzfe6KfB/uY3oSsRkVyRE6Fg82aYPNkvJdu5M5x+um8VuPlmPx/8qadg5Ehtbyzp5eCD4Yc/9LNd VqwIXY2I5IK0WdEwSjt3woIFfjva6dPhxRd9MDjiCD+I8IIL/PLECgGS7n78Yz8L4cc/hn/8I3Q1 IpLtsiIUfPYZzJsHc+fCa6/5QYOff+7XFRg0yA/aOuMMOPro0JWKxKd1a999MHasD7kjRoSuSESy WcaEgspK+OADPwhw2TJ47z0/fXDuXL8XAfhlYY87Dq66yv/jOXAgNG8etGyRhF1wgR8Qe801UFbm d1MUEUmGtPnn5c47/ZbD27b5ldwqKmDtWn+sWQNffOGnDgI0bAiHHebXEigqgvx8f/Ts6d8TySYN GvhxBQMGwIMP+lkJIiLJkDahYOZMv3Rw06b+aNMGevTwv+0feCAcdJCfptW9O3TtCo0bh65YJHWO O87vufGzn8FZZ/mZMyIiUUubUDBxIqT5JokiQY0f72fRXH01PPlk6GpEJBvlxJREkWzQvr3vRvjH P2BSRm4vJiLpTqFAJIOcdx587WtwxRV+3I2ISJQUCkQyiJmfibBuHfzoR6GrEZFso1AgkmEOPdTP 1vnzn9WNICLRUigQyUCXXOIX5LrkEvjkk9DViEi2UCgQyUBmfvnjhg3he9/btYaHiEgiFApEMtRB B8Ff/gLPP+9nJYiIJEqhQCSDnXqq30nxuutg1qzQ1YhIplMoEMlwv/613/jrnHPg009DVyMimUyh QCTDNW4Mf/87bN/u9wLZvj10RSKSqRQKRLJA587wxBMwY4bvThARqQ+FApEsceKJcO+9cM89cN99 oasRkUyUNhsiiUjiLr8cFi+Ga67xW4mffHLoikQkk6ilQCTL3HGHDwPnnANlZaGrEZFMolAgkmUa NvQDD3v1glNOgSVLQlckIplCoUAkC7Vq5Rc1OuggGD0aVq4MXZGIZAKFApEs1b49vPCC//PIkbBq Vdh6RCT9RR4KzOxmM9tZ61gY9X1EZN+6dIGXX4YtW2DECLUYiMjeJaulYAHQAegYO4Ym6T4isg89 esCrr8K2bT4YfPhh6IpEJF0lKxRsd86tcc59Gjs+T9J9RGQ/dO/uFzbasQOOPx7eeSd0RSKSjpIV Co4ws1Vm9p6ZPWpmXZN0HxHZT4cfDq+95scaDB0KpaWhKxKRdJOMUPA6cBFwMnA50A0oMbOWSbiX iMShc2ffYlBQAF/9KkycGLoiEUknkYcC59w059xTzrkFzrkXgVOBdsC5Ud9LROKXl+enK551Fnzz m36XRedCVyUi6SDpyxw75yrM7F2g596uGzduHHl5eTXOFRUVUVRUlMzyRHJS06bw2GN+KeSf/hTK y+Evf/HrG4hIeiouLqa4uLjGuYqKikjvYS7JvyKYWSvgA+AXzrl763i/ACgrKyujoKAgqbWIyO4m ToTvfMePOXjmGT9bQUQyQ3l5OYWFhQCFzrnyRD8vGesU/NbMTjCzw8zseOBpoBIo3se3ikgAZ58N s2fD1q1QWOi3YBaR3JSMgYZdgMeBxcATwBpgkHPusyTcS0QicMwxMGcOjBkDRUW+5WDdutBViUiq JWOgYZFzrotzrrlz7lDn3Lecc8ujvo+IRKttW3j8cXj4Yd+lkJ8Ps2aFrkpEUkl7H4jIf5nB2LEw b57fTGnoULj6ali/PnRlIpIKCgUispsePfxCR3fcAX/+M/TuDVOmhK5KRJJNoUBE6tSwIYwbBwsW wNFHw6mnwje+AcvVGSiStRQKRGSvunWDqVP9eIPZs6FXL7jxRtiwIXRlIhI1hQIR2SczPythyRK4 4Qa480444gi47z4/lVFEsoNCgYjst5Yt4dZbYfFiv3fC1VfDkUfCn/4ElZWhqxORRCkUiEjcDjsM HnnEb8E8eDBceqnvVnjoIdi2LXR1IlJfCgUiUm9HH+1XQJw/H449Fr77XT8G4Te/gS+/DF2diMRL oUBEEtanDzz9NCxcCF/7Gtx8M3TtCtdeC0uXhq5ORPaXQoGIRKZXL3jgAXj/fT+d8W9/8wMSR42C J59U14JIulMoEJHIdegAt90GK1f6sQdbt8J550GXLnD99fDWW6ErFJG6KBSISNI0bw7f/jaUlvpF kL71Lb9CYt++fgzC//2fFkMSSScKBSKSEl/5Ctx9N3z8MUye7EPBL38J3bvDkCH+vWXLQlcpktsU CkQkpZo0gdNO8yskrl4Njz0G7dr5RZF69PBh4cYb/VbOO3eGrlYktygUiEgwrVr5LoXnnoO1a+Gf /4SCAvjjH2HgQDjkEL9r49/+5lsYRCS5GoUuQEQEoHVrv+HSN74B27fDrFk+LLz4og8F4LsgvvpV GDnSdzkccEDYmkWyjUKBiKSdRo3ghBP8AfDppzB9Orz0Ejz1lB9/AHDMMTB0qA8IQ4f6hZPMwtUt kukUCkQk7R18sN+QqagInIMVK2DmTHjtNf/6wAP+uo4d4bjjoLBw19GpU9DSRTKKQoGIZBQz3yLQ rZuf7gjw+efw73/7Loc334R77oHPPvPvdeq0KyD06we9e/vvbdgw3H+DSLpSKBCRjHfAAX555a99 zX/tHHzwgQ8IZWX+uPfeXUGheXO/+mLv3n6cQtVr167QQMOvJYcpFIhI1jHzOzkedpgfuAg+KHz8 sd/ZccGCXa8TJ8KGDf6apk39tMgjjtj96NxZgUGyn0KBiOQEM/+DvXNnP4OhinPw4Yc+JPznP7uO iRP92IWqtRKaN4fDD98VNmofnTqpS0Iyn0KBiOQ0Mzj0UH+MGVPzvW3b/DLMVUFhxQq/2dPs2X6D py++2HVto0a+++HQQ31A6NTJB5Dqr506QZs2miEh6UuhQERkD5o0gaOO8kdd1q/3IaH6sXKl76aY O9e/rltX83tatNgVEDp1goMOggMP3PVa+89Nmyb/v1OkikKBiEg9tW7tByn27r3nazZu9OHgo4/8 a+0/v/uuX81xzZq6t5Zu3bpmSGjXDtq29Uf1P9f+Oi9P3RkSP4UCEZEkatkSevb0x9445wc8rlmz KyTU9frhh/D22/Dll/6o3RJRXZs2uwJC69b+aNWq5mtd52q/tmwJzZppoGUuUCgQEUkDZrt+SHfv vv/ft327DwZVIeGLL3b9ufrXGzb4Y/1630Kxfv2urzdsgC1b9n2vZs38gMvmzX03yL7+XNd7TZv6 o0mTvb/WPte4scZipIJCQY4qLi6mqKgodBk5Rc889XLhmTdq5NdpSHQfiMpK39VRPSxU/XnDBti8 edexaVPN16o/b9wICxcW06pV0W7Xbt5cd/dIPPYWJBo1qvto3HjP78VzXYMGNQ+z3c/tz7Gv7zPb FX5q/7mu1yVLEnumtSUtFJjZD4DrgI7AfOAq59wbybqfxCcX/rFMN3rmqadnvv8aN941HiERZ5xR zLPP1v3Md+yArVt9OIj6dccO32pSdVRW1vx68+aaX+/t2rred85PT619ZJukhAIzOw+4A7gMmAOM A6aZ2ZHOubXJuKeIiKS3hg19F0KLFqEriU5dYWFPAWJ/j6rP3Z/XhQvh/POj++9JVkvBOOB+59wj AGZ2OfA14GJgfJLuKSIiklJmPuyEmulRWRnt50U+ltTMGgOFwPSqc845B7wEDI76fiIiIhKNZLQU HAg0BFbXOr8aqGsJkGYAixYtSkIpsicVFRWUl5eHLiOn6Jmnnp556umZp1a1n53Novg8c1UdExEx s07AKmCwc252tfO/AU5wzg2udf23gMciLUJERCS3XOCcezzRD0lGS8FaYAfQodb5DsAndVw/DbgA WAHsx0xZERERiWkGHI7/WZqwyFsKAMzsdWC2c+6a2NcGfAD83jn328hvKCIiIglL1uyDO4GHzKyM XVMSWwAPJel+IiIikqCkhALn3JNmdiBwG77bYB5wsnNuTTLuJyIiIolLSveBiIiIZB7teSUiIiKA QoGIiIjEBA8FZvYDM1tuZpvN7HUzOy50TdnCzIaZ2bNmtsrMdprZGXVcc5uZfWRmm8zsRTPbx67v sidm9lMzm2Nm68xstZk9bWZH1nGdnnlEzOxyM5tvZhWxY5aZnVLrGj3vJDKzn8T+fbmz1nk994iY 2c2xZ1z9WFjrmkied9BQUG3jpJuBfPxuitNigxQlcS3xgzyvAHYbPGJmNwBX4jeuGgBsxD//Jqks MosMA+4BBgKjgMbAC2bWvOoCPfPIfQjcABTgl1d/GZhkZr1AzzvZYr/EXYb/t7v6eT336C3AD9zv GDuGVr0R6fN2zgU7gNeB31X72oCVwPUh68rGA9gJnFHr3EfAuGpftwE2A+eGrjcbDvyS3zuBoXrm KX3unwHf1fNO+nNuBSwBRgKvAHdWe0/PPdpnfTNQvpf3I3vewVoKtHFSWGbWDZ82qz//dcBs9Pyj 0hbfQvM56Jknm5k1MLPz8WuizNLzTrr7gMnOuZern9RzT5ojYl3B75nZo2bWFaJ/3slavGh/xLtx kkSrI/4HVl3Pv2Pqy8kusVU87wZmOueq+v70zJPAzHoD/8Yv97oeOMs5t8TMBqPnnRSx8NUP6F/H 2/p7Hr3XgYvwLTOdgFuAktjf/Uifd8hQIJLNJgDHAENCF5IDFgN9gTzgm8AjZnZC2JKyl5l1wQfe Uc65ytD15ALnXPV9DRaY2RzgfeBc/N//yIQcaBjvxkkSrU/wYzj0/CNmZvcCpwIjnHMfV3tLzzwJ nHPbnXPLnHNznXM34ge9XYOed7IUAgcB5WZWaWaVwHDgGjPbhv8NVc89iZxzFcC7QE8i/nseLBTE EmYZcFLVuViT60nArFB15Qrn3HL8X5jqz78NfuS8nn89xQLBmcCJzrkPqr+nZ54yDYCmet5J8xJw LL77oG/seBN4FOjrnFuGnntSmVkrfCD4KOq/56G7D7RxUhKZWUv8XxyLnepuZn2Bz51zH+KbAG8y s6X4ratvx8/+mBSg3IxnZhOAIuAMYKOZVSX3Cudc1bbgeuYRMrNfAVPwu7C2xm/DPhwYHbtEzzti zrmNQO058huBz5xzi2Kn9NwjZGa/BSbjuwwOAW4FKoEnYpdE9ryDhgKnjZOSrT9+qpCLHXfEzj8M XOycG29mLYD78SPlS4ExzrltIYrNApfjn/Ortc5/F3gEQM88cgfj/z53AiqAt4DRVSPi9bxTpsY6 KHrukesCPA60B9YAM4FBzrnPINrnrQ2RREREBEiDZY5FREQkPSgUiIiICKBQICIiIjEKBSIiIgIo FIiIiEiMQoGIiIgACgUiIiISo1AgIiIigEKBiIiIxCgUiIiICKBQICIiIjH/H2n0b2thw4WtAAAA AElFTkSuQmCC " >

Operacje te możemy uogólnić i zaimplementować jako funkcję do obliczania widma modelu zadanego przez parametry:

In [17]:
<span></span><span class="k">def</span> <span class="nf">widmoAR</span><span class="p">(</span><span class="n">parametry_a</span><span class="p">,</span> <span class="n">sigma</span><span class="p">,</span> <span class="n">N_punktow</span><span class="p">,</span> <span class="n">Fs</span><span class="p">):</span>
    <span class="n">f</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">linspace</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span><span class="n">Fs</span><span class="o">/</span><span class="mi">2</span><span class="p">,</span><span class="n">N_punktow</span><span class="p">)</span>
    <span class="n">z</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">exp</span><span class="p">(</span><span class="mi">1j</span><span class="o">*</span><span class="mi">2</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">pi</span><span class="o">*</span><span class="n">f</span><span class="o">/</span><span class="n">Fs</span><span class="p">)</span>
    <span class="n">A</span> <span class="o">=</span> <span class="o">-</span><span class="mi">1</span> <span class="o">*</span> <span class="n">np</span><span class="o">.</span><span class="n">ones</span><span class="p">(</span><span class="n">N_punktow</span><span class="p">)</span> <span class="o">+</span> <span class="mi">1j</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">zeros</span><span class="p">(</span><span class="n">N_punktow</span><span class="p">)</span>
    <span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="nb">len</span><span class="p">(</span><span class="n">parametry_a</span><span class="p">)):</span>
        <span class="n">A</span> <span class="o">+=</span> <span class="n">parametry_a</span><span class="p">[</span><span class="n">i</span><span class="p">]</span><span class="o">*</span><span class="n">z</span><span class="o">**</span><span class="p">(</span><span class="o">-</span><span class="p">(</span><span class="n">i</span><span class="o">+</span><span class="mi">1</span><span class="p">))</span>
    <span class="n">H</span> <span class="o">=</span> <span class="mf">1.</span><span class="o">/</span><span class="n">A</span>
    <span class="n">Sp</span> <span class="o">=</span> <span class="n">H</span><span class="o">*</span><span class="n">H</span><span class="o">.</span><span class="n">conj</span><span class="p">()</span><span class="o">*</span> <span class="n">sigma</span><span class="o">**</span><span class="mi">2</span> <span class="c1"># widmo</span>
    <span class="n">Sp</span> <span class="o">=</span> <span class="n">Sp</span><span class="o">/</span><span class="n">Fs</span> <span class="c1">#gęstość widmowa</span>
    <span class="n">Sp</span> <span class="o">=</span> <span class="n">Sp</span><span class="o">.</span><span class="n">real</span>
    <span class="k">return</span> <span class="n">f</span><span class="p">,</span> <span class="n">Sp</span>

Zadanie<a class="anchor-link" href="#Zadanie">¶</a>

Proszę:

  • Wygenerować realizację modelu AR $a = \{0.6, -0.7, 0.3, -0.25\}, \quad \sigma_{\varepsilon} = 2$
In [18]:
<span></span><span class="k">def</span> <span class="nf">generujAR</span><span class="p">(</span><span class="n">a</span><span class="p">,</span> <span class="n">sigma_eps</span><span class="p">,</span> <span class="n">N</span><span class="p">):</span>
    <span class="n">x</span><span class="o">=</span><span class="n">np</span><span class="o">.</span><span class="n">zeros</span><span class="p">(</span><span class="n">N</span><span class="p">)</span>
    <span class="n">rzad</span> <span class="o">=</span> <span class="nb">len</span><span class="p">(</span><span class="n">a</span><span class="p">)</span>
    <span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="n">rzad</span><span class="p">,</span><span class="n">N</span><span class="p">):</span>
        <span class="k">for</span> <span class="n">p</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="nb">len</span><span class="p">(</span><span class="n">a</span><span class="p">)):</span>
            <span class="n">x</span><span class="p">[</span><span class="n">i</span><span class="p">]</span> <span class="o">+=</span> <span class="n">a</span><span class="p">[</span><span class="n">p</span><span class="p">]</span><span class="o">*</span><span class="n">x</span><span class="p">[</span><span class="n">i</span><span class="o">-</span><span class="p">(</span><span class="n">p</span><span class="o">+</span><span class="mi">1</span><span class="p">)]</span>
        <span class="n">x</span><span class="p">[</span><span class="n">i</span><span class="p">]</span> <span class="o">+=</span> <span class="n">sigma_eps</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">random</span><span class="o">.</span><span class="n">randn</span><span class="p">()</span>
    <span class="k">return</span> <span class="n">x</span>
  • Obliczyć widmo dla tego modelu
  • Wyestymować parametry modelu na podstawie sygału, zakładając, że rząd jest p = 3,4,5,6
  • Obliczyć widmo dla wyestymowanego modelu
  • Wykreślić widma prawdziwego modelu i modeli estymowanych
In [19]:
<span></span><span class="c1">#wspolczynniki modelu AR </span>
<span class="n">a</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">array</span><span class="p">([</span><span class="mf">0.6</span><span class="p">,</span> <span class="o">-</span><span class="mf">0.7</span><span class="p">,</span> <span class="mf">0.3</span><span class="p">,</span> <span class="o">-</span><span class="mf">0.25</span><span class="p">])</span>
<span class="n">sigma</span> <span class="o">=</span> <span class="mi">2</span>
<span class="n">Fs</span> <span class="o">=</span> <span class="mi">100</span> <span class="c1"># [Hz]</span>
<span class="c1"># obliczanie widma z modelu</span>
<span class="n">f</span><span class="p">,</span> <span class="n">Sp</span> <span class="o">=</span> <span class="n">widmoAR</span><span class="p">(</span><span class="n">a</span><span class="p">,</span> <span class="n">sigma</span><span class="p">,</span><span class="mi">200</span><span class="p">,</span><span class="n">Fs</span><span class="p">)</span>

<span class="c1">#generujemy realizacje procesu</span>
<span class="n">N</span><span class="o">=</span><span class="mi">600</span>
<span class="n">x</span> <span class="o">=</span> <span class="n">generujAR</span><span class="p">(</span><span class="n">a</span><span class="p">,</span> <span class="n">sigma</span><span class="p">,</span> <span class="n">N</span><span class="p">)</span>

<span class="c1"># estymujemy wspolczynniki modelu metodą Yula-Walkera</span>
<span class="c1"># obliczamy widmo dla estymowanego modelu</span>
<span class="k">for</span> <span class="n">p</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="mi">3</span><span class="p">,</span><span class="mi">7</span><span class="p">):</span>
    <span class="n">a_est</span><span class="p">,</span> <span class="n">sigma_eps_est</span> <span class="o">=</span> <span class="n">parametryAR</span><span class="p">(</span><span class="n">x</span><span class="p">,</span><span class="n">p</span><span class="p">)</span>
    <span class="n">f</span><span class="p">,</span> <span class="n">Sp_est</span> <span class="o">=</span> <span class="n">widmoAR</span><span class="p">(</span><span class="n">a_est</span><span class="p">,</span> <span class="n">sigma_eps_est</span><span class="p">,</span><span class="mi">200</span><span class="p">,</span><span class="n">Fs</span><span class="p">)</span>
    <span class="n">py</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">f</span><span class="p">,</span><span class="n">Sp_est</span> <span class="p">)</span>
<span class="n">py</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">f</span><span class="p">,</span><span class="n">Sp</span><span class="p">)</span>
<span class="n">py</span><span class="o">.</span><span class="n">xlabel</span><span class="p">(</span><span class="s1">'Częstość [Hz]'</span><span class="p">)</span>
<span class="n">py</span><span class="o">.</span><span class="n">legend</span><span class="p">((</span><span class="s1">'p = 3'</span><span class="p">,</span><span class="s1">'p = 4'</span><span class="p">,</span><span class="s1">'p = 5'</span><span class="p">,</span><span class="s1">'p = 6'</span><span class="p">,</span><span class="s1">'prawdziwy'</span><span class="p">))</span>
<span class="n">py</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s1">'widmo z modelu'</span><span class="p">)</span>
<span class="n">py</span><span class="o">.</span><span class="n">show</span><span class="p">()</span>



<img src=" AAAPYQAAD2EBqD+naQAAIABJREFUeJzs3Xt8zuX/wPHXde+A2cxhM8NszDHnQ0USshxySmqhZUkl RPTTQSqkgySVbw455EwUOlEOmRCKTSI2m3MOY2PYyQ739fvjc5ttdnZv98b7+Xjcj7qvfT7X533f 2P2+r891vS+ltUYIIYQQoiBMtg5ACCGEECWXJBJCCCGEKDBJJIQQQghRYJJICCGEEKLAJJEQQggh RIFJIiGEEEKIApNEQgghhBAFJomEEEIIIQpMEgkhhBBCFJgkEkIUA0qprUqpoDwc114pZVZKPVQU cd3JLO/5lgKee0Ip9bW1YxKiJJJEQojiQQPmfBwrbt/tvI/yZyCEhb2tAxBCAPCIrQMQQoiCkERC iGJAa51i6xiEEKIg5NaGEFailGpsmb/QI11bC0vb3kzH/qKU2pXu+S3365VS1ZRS3yulYpVSkUqp aUApQGU6bqtS6h/L9bcqpeKUUuFKqb6Wn7dXSu1WSsUrpUKVUp2yiL25JaYrSqlrSqnNSqn78/Ca gyyvL6vHwBzO87Yc86pSaphS6qgl7g1KqWqWY95RSp22xP29Uqp8Fv0MU0odVEolKqXOKKW+VEq5 ZnHci0qpCEtfu5VSD2YTl6NSaqLl/UtUSp1SSn2slHLM5X2YoJS65daUUupZy+uskdP5QpRkMiIh hPUcBGKAh4CfLW3tMOY+NFVKOWutY5VSCmgDzE53boZ77kqp0sAWoDrwBXAOeAZ4OPOxlucVgZ+A b4BVwFBghVIqAPgcmAksA14HvlVKeWmt4yzXugfYBlwBJgMpwBBgq1LqIa31nhxe8/vA3ExtzwCd gQs5nHdDAOAATLe8hjcs8W0B2lviqQ2MBKYCz984USk1AXgX2Gh5ffWAYUArpVRbrXWq5bjBGO/1 DuAzoBbwI3AJOJWuP4XxHj4AfAWEAo2B0UAd4PEcXocm63kT2bULcefQWstDHvKw0gPjg2hXuuff Ad8CSUBnS1tzjOSiR7rjgoAt6Z6/AqQCj6drKw0csbQ/lOncVMA/XVtdyzWSgVbp2h+xtA9M17YW SAC807VVwUgsgvL5+h8ArgNzcjnO2xLHecA5XfsHlvYQwJSufZklRgfLczcgEVifqd9hlvci0PLc 3nKNvYB9uuMGW66T/j0PsLxfbTL1+aKlz9bp2o4DX6d7Ph5IzeJ1BlrOrWHrv5vykEdhPeTWhhDW tR1ooZQqY3n+ILAe2I8xOgE3Ryl25NBPN+Cc1nrNjQatdSIwJ5vjY7XWq9IdewRjdOSw1jr9bZU/ Lf+tBaCUMmEkF2u11ifTnX8eWA48qJRyziHONEqpKhiJUwgwPC/nAKu01rFZxLdEa23O1O4IVLM8 98MYyfg8U39zgWtAd8vzVkBlYLbOOA9lEUailN4TwGHgiFKq0o0HRqKmgI55fE1C3FXk1oYQ1rUd 4wOujVLqP8Dd0taIm4nEg8AhrXVMDv14AxFZtIdlc/x/WbRdAU6nb9BaXzVG8KlgaXIHnDBGOjI7 jDGPysvy/9lSStlh3FJRGKMoyTkdn87pTM9vfLhnfj032isAJzDeH8gUt9Y6WSl1LN3PvTFuLURk Oi7Fclx6dYD6wMUs4tQYCYkQIhNJJISwrr0YQ+4PYXxIXtBaRyiltgNDLZP22gFrcuijIFLz2a6y aS+oqcD9QCet9bl8nGfruNMzAQcw5kRkdZ3MSU962c2DsLvdoIQo7iSREMKKLN+I/8JIJE5hjEZg +W8p4GnAA2NyY05OAg2zaK9vpVBvuAjEY0xUzKwBxi2YnD5AUUr1w5jTMVJrndPtGmu6cRumHsYI xY1YHICawKZ0xymM0Yat6Y6ztxz3d7o+jwJNtNa5VhjNwmVLv+W01lfTtfsUoC8hShSZIyGE9W3H +HbewfL/aK2jMVYBvIHx7XV7didbrAeq3ljCCaCUcgJesGaglnkIG4He6ZcoKqU8gP7A9kxzGDJQ SjXCmJewWGv9pTVjy8VmjImRIzO1Pw+U4+aqmb0YydJLluThhkFA5uWkq4DqSqlb3mOlVGnL+5+d oxgJS1rpcqVUWSDbJbBC3ClkREII69sOjMOYW5A+YdiGsazyuNb6bC59zAVeBpYopVpxc/lnnPXD 5W2MyYt/KKVmYtxWeBFjcuPruZy7ACMx2qGUejrTz3ZqrY9bMc602w1a6yil1EfAu0qpXzGWc9bH WPb6F8YqjxtzId7GWP4ZpJRaiTESMQjjwz+9JYA/MEsp1RH4A+PWRAPgSYwlrSHZxLYRYwTqa6XU JxgjOYMwlsB63ebrFqJYk0RCCOvbifFhHIuxWuOG7Rgf0Nnd1ki7z661TlBKPQz8DyOhiAeWAr9a Htmem6kt13at9SGlVDvgI+BNjJHK3cCATCs+suIGlMWou5DZIIxlktnJKb7sjr/5ROuJSqkLGO/P NIy6ELOBcdpSQ8Jy3FzL6pTXgCkY8yB6ApPI+D5opVRvjDkSA4HHMN73Yxj1J9JP7Mz8HqYopR7D qGfxHsaS088wJonK5l7ijqa0llopQgghhCiYAs2RUEoNV0odV0olWMrN3pvDsX2UUhuVUhcs5Xd3 KqU6Z3Hck0qpw5Y+9yuluhUkNiGEEEIUnXwnEkqpp4BPMSq5NccYut2glHLL5pSHMO4fdgNaYBR3 +Ukp1TRdnw9gFL+ZCzQDfgC+t5TuFUIIIUQxle9bG0qp3cCfWutXLM8VxvKw6VrrKXns4yDwjdb6 fcvzbwAnrXWvdMfsAvZprYflK0AhhBBCFJl8jUhY1mi3BH670aaNTGQzxiZEeelDAS4YE6NuaGPp I70Nee1TCCGEELaR31UbbhjLoSIztUeSdUGbrLyGMct7Vbq2Ktn0WSW7Tiw18LtgFKNJzOO1hRBC CGFsAugDbLDUuSmwIl3+qZQaALwD9NJaR91md12wrBUXQgghRIE8jTFHscDym0hEYayP98jU7oGx bjpbljK6c4AnsihBe74AfZ4AWLp0KQ0aNMg5amE1o0eP5rPPPrN1GHcVec+LnrznRU/e86J1+PBh AgICIF2J+YLKVyJh2UcgGOiEUUnuxpyHTsD07M5TSvUH5gFPaa2zKqazK4s+HrG0ZycRoEGDBrRo 0SI/L0PcBldXV3m/i5i850VP3vOiJ++5zdz21ICC3NqYBiy0JBR/YVSBcwIWAljK1lbVWgdang+w /GwksMdSwx8gId3mNl8AW5VSrwLrMGr8t8TK+woIIYQQwrryXUdCa70KGINRBnYf0AToorW+aDmk Chlry7+AMUFzBnA23ePzdH3uAgZglA/+G3gc6K21PpTf+IQQQghRdAo02VJrPROjpnxWPxuU6XnH PPa5GlhdkHiEEEIIYRuyjbjIl/79+9s6hLuOvOdFT97zoifveclVYjftUkq1AIKDg4Nlgo4QQgiR DyEhIbRs2RKgpdY65Hb6km3EhRCiGDh16hRRUbdbXkcIg5ubGzVq1CiSa0kiIYQQNnbq1CkaNGhA fHy8rUMRdwgnJycOHz5cJMmEJBJCCGFjUVFRxMfHS4E9YRU3ik1FRUVJIiGEEHcTKbAnSiJZtSGE EEKIApNEQgghhBAFJomEEEIIIQpMEgkhhBBCFJgkEkIIIYQoMEkkhBBC3BW2b99O7969qVGjBmXK lMHT05Nu3bqxc+dOW4dWosnyTyGEEHeFI0eOYGdnx9ChQ6lSpQqXL19m6dKlPPTQQ6xfv57OnTvb OsQSSRIJIYQQd4XBgwczePDgDG1Dhw6lVq1afP7555JIFJDc2hBCCFFoJkyYgMlkIiwsDH9/f1xd XXFzc2PUqFFcv37d1uFRpkwZ3N3diYmJsXUoJZaMSAghhCg0SikA/P39qVmzJpMnT2b37t1Mnz6d mJgYFi5cmOP5CQkJedqDxM7OjvLly+cppmvXrpGUlERUVBSLFi3i33//Zdy4cXk6V9xKEgkhhChB 4uMhNLTwr1O/Pjg5Wa8/X19f1qxZAxi3E1xcXJg1axZjxoyhUaNG2Z43ZcoUJk6cmGv/Pj4+HDt2 LE+x+Pv7s2HDBgAcHR0ZMmQIb7/9dp7OFbeSREIIIUqQ0FBo2bLwrxMcDNba9kMpxfDhwzO0jRgx gpkzZ7J+/focE4nAwEDatWuX6zXKlCmT53g+/vhjxowZw+nTp1m0aBFJSUkkJyfj6OiY5z7ETZJI CCFECVK/vvEhXxTXsabatWtneO7r64vJZOLEiRM5nufj44OPj49VY2nSpEna/z/99NO0aNGCQYMG sWrVKqte524hiYQQQpQgTk7WGymwpRtzJ3ITFxdHbGxsrsfZ2dnh5uaW7zgcHBzo1asXH3/8Mdev X6dUqVL57uNuJ4mEEEKIQhceHo63t3fa84iICMxmc66jDVOnTrX6HInM4uPj0Vpz7do1SSQKQBIJ IYQQhUprzYwZM/Dz80trmz59OkopunXrluO51pwjcfHiRdzd3TO0xcTEsHr1amrUqFGgEQ0hiYQQ dxyt4aefYMYMOHoUzpyBWrWgTx8YMADuucfWEYq70fHjx+nduzddu3Zl586dLFu2jICAABo3bpzj edacI9GtWzeqV6/O/fffT+XKlTl58iQLFy7k3LlzMj/iNkhBKiHuIMHB0Lo19O4NCQnw+OPw4YfQ qhXMnAlNm8JnnxnJhhBFRSnFypUrKVWqFGPHjuWXX35h5MiRzJs3r0jjGDx4MJcvX+bzzz9n2LBh zJkzh5YtW/L777/Tp0+fIo3lTiIjEkLcIX75BZ54AurWhc2boVOnjD9PSoJx4+DVV2HbNli2zLp1 AoTIibu7u82/9Q8dOpShQ4faNIY7kYxICHEHWLIEevY0koc//rg1iQBwdIRPPoEffoBNmyAwEMzm oo9VCHFnkURCiBLut99g0CAYOBDWrMl9lKFXL1i6FL77DiZMKJIQhRB3MEkkhCjBjh+Hp56Chx+G OXPAPo83Kx97DD76CCZNMhIKIYQoKEkkhCih4uONlRiurvDNN3lPIm544w3o2xeGDYPLlwsnRiHG jx9PamoqFStWtHUoopBIIiFECTV+vLHvwvffQ0F+RysF06dDYqIxCVMIIQpCEgkhSqA9e2DaNJg4 EXJZhp+jqlXh/fdh9mz46y/rxSeEuHtIIiFECZOUBIMHQ7Nm8H//d/v9DRtm9DV8uNSXEELknyQS QpQw06bBoUMwf37+50Vkxd7eKFK1dy+sW3f7/Qkh7i6SSAhRgly4YFSqfPllYxTBWtq3h3btjFUc MiohhMgPSSSEKEEmTgQ7O3jnHev3/c47xjyJjRut37cQ4s4liYQQJURoKHz1lbHColIl6/fv5wf3 3y+jEkKI/JFEQogS4s03wcvLuK1RGJQyRiX++AN27Cicawgh7jySSAhRAgQHG3tkTJoEpUsX3nUe fdTY9GvmzMK7hhDFxQsvvIDJZKJXr162DqVEk0RCiBJg0iSoUwf69Svc6ygFL70Eq1dDZGThXksI W9q7dy+LFi2iTJkytg6lxJNEQohi7u+/jdGIt9+2znLP3Dz7rHGd+fML/1pC2Morr7xCYGAglStX tnUoJZ4kEkIUc5MmQa1aMGBA0VyvQgVj5OOrryA1tWiuKe5cEyZMwGQyERYWhr+/P66urri5uTFq 1CiuX79uk5gWL17Mv//+ywcffGCT699piuD7jRCioP7919ga3FrFp/Jq6FBYsAB++QV69Ci664o7 j1IKAH9/f2rWrMnkyZPZvXs306dPJyYmhoULF+Z4fkJCAvHx8blex87OjvLly+d6XGxsLG+++Sbj xo2T0QgrkURCiGJs6lSoVg0CAor2uvfeCy1awLx5kkgI6/D19WXNmjUADB06FBcXF2bNmsWYMWNo 1KhRtudNmTKFiRMn5tq/j48Px44dy/W4iRMn4uTkxKhRo/IevMiRJBJCFFNnz8KyZUYlS0fHor/+ wIHw2mtw6VLBdhcVhSM+OZ7QqNBCv059t/o4OThZpS+lFMOHD8/QNmLECGbOnMn69etzTCQCAwNp 165drtfIy6TJI0eOMH36dFauXImDg0PugYs8kURCiGLqf/8zlnq+8IJtrt+vn7Ep2KpVxkoOUTyE RoXSck7LQr9O8IvBtPBsYbX+ateuneG5r68vJpOJEydO5Hiej48PPj4+VonhlVde4cEHH+Sxxx6z Sn/CIImEEMXQtWswaxYMGQKurraJwcMDOneGpUslkShO6rvVJ/jF4CK5TmG6MXciN3FxccTGxuZ6 nJ2dHW5ubtn+fMuWLWzYsIG1a9dy8uRJALTWpKSkkJCQwMmTJ6lYsSIuLi55ewEijSQSQhRDX38N cXEwcqRt4wgIgKefhmPHjJUjwvacHJysOlJQVMLDw/H29k57HhERgdlsznW0YerUqVaZI3H69GmU UvTp0ydDu1KKM2fOUKtWLT777DNG2vofXQkkiYQQxYzZDF9+CU88YZTEtqXevaFsWVi+3KhjIURB aK2ZMWMGfn5+aW3Tp09HKUW3bt1yPNdacyQ6derE2rVrb2l/4YUX8PHx4e23385xrobIniQSQhQz mzZBRATksiquSJQtC337Grc3xo0zKl8KURDHjx+nd+/edO3alZ07d7Js2TICAgJo3LhxjudZa45E 9erVqV69+i3tr7zyCh4eHvTs2fO2r3G3koJUQhQzM2ZA06bwwAO2jsTw1FMQFmbUtBCiIJRSrFy5 klKlSjF27Fh++eUXRo4cybx582wdGkqpPM/XEFmTEQkhipETJ+Dnn42qksXld1unTlCuHHz3HcjI rygod3d3Vq1aZeswbpGX2hMiZzIiIUQxMmuW8aFdVOWw86JUKejVy9jISwghMpNEQohiIjHRKIU9 aJAxN6E46dsXDh6EI0dsHYkQoriRREKIYmLlSoiOhmHDbB3Jrbp0MZIbGZUQQmQmiYQQxcSMGUYB qDp1bB3JrcqUge7djXkSQuTH+PHjSU1NpaLUWb9jSSIhRDGwZ4/xyLQdQbHSty+EhMDx47aORAhR nEgiIUQxMGMGeHsb3/qLq0cfNTYP++knW0cihChOJJEQwsaio+Gbb4z9LOzsbB1N9pydoWNHSSSE EBlJIiGEjS1aZJTFHjzY1pHkrmdP+P13uHrV1pEIIYoLSSSEsCGtYd486NMH3N1tHU3uevSA5GTY sMHWkQghigtJJISwoZ074fBheOEFW0eSN97e0Lix3N4QQtwkiYQQNjR3LtSsCQ8/bOtI8q5nT1i/ HlJTbR2JEKI4kERCCBuJiYFVq+D558FUgv4l9uxpTBDdtcvWkQghioMS9OtLiDvL8uWQlATPPmvr SPLnvvugcmVjczEhhJBEQggb0Nq4rdG9O1Stauto8sdkgq5d4ddfbR2JEPmzaNEiTCbTLQ87Ozsu XLhg6/BKLNlGXAgbCA6Gv/+GSZNsHUnBdOkCixfD+fNQpYqtoxEi75RSTJo0CR8fnwzt5cuXt01A d4ACJRJKqeHAGKAKsB8YobXek82xVYBPgVZAbeALrfWrmY4JBBYAGlCW5kSttVNB4hOiuJs7F6pV M77Zl0SPPAJKwcaNMHCgraMRIn+6du1KixYtbB3GHSPftzaUUk9hJAbjgeYYicQGpZRbNqeUAi4A k4C/c+j6CkZicuPhnd/YhCgJYmON+RHPPQf2JXRM0N0dWrSQehIidxMmTMBkMhEWFoa/vz+urq64 ubkxatQorl+/brO4YmNjMZvNNrv+naQgcyRGA19prRdrrUOBl4B44LmsDtZan9Raj9ZaLwVyqoen tdYXtdYXLI+LBYhNiGJv5UqIiysZlSxz0qWLMSIhv4tFTpQyBpn9/f1JSkpi8uTJdO/enenTpzNk yJBcz09ISCA6OjrXR0xMTJ7i0VrToUMHypUrh5OTE7179yYiIuK2XuPdLl/fh5RSDkBL4MMbbVpr rZTaDLS5zViclVInMJKbEOAtrfWh2+xTiGJn7lxju3DvEj7m1rkzfPgh7NsHLVvaOpq7SHw8hIYW /nXq1wcn691d9vX1Zc2aNQAMHToUFxcXZs2axZgxY2jUqFG2502ZMoWJEyfm2r+Pjw/Hjh3L8Rgn JycGDRpEx44dKVeuHMHBwXz66ae0bduWkJAQqlWrlr8XJYD8z5FwA+yAyEztkUC924gjDGNE4x/A FXgN2KmUukdrffY2+hV3AW3WXP3zKtE/R5NyOQUAR09HKnWvhHNz57RvRMXBgQPw55/w3Xe2juT2 tWljbOS1YYMkEkUqNLRo3vDgYOP+lRUopRg+fHiGthEjRjBz5kzWr1+fYyIRGBhIu3btcr1GmTJl cj3mySef5Mknn0x73qtXLzp37sxDDz3EBx98wMyZM3PtQ9yqWNyh1VrvBnbfeK6U2gUcBoZgzMUQ 4hZaa87NP8eJ8SdIOpuEg5sDpbxKAZBwLIET756gVI1S+Ez0ocrAKiiT7ROKuXONGgw9e9o6ktvn 6GhU5NywAd56y9bR3EXq1zc+5IviOlZUu3btDM99fX0xmUycOHEix/N8fHxuWWFhTW3btuX+++9n 8+bNhXaNO11+E4koIBXwyNTuAZy3SkSA1jpFKbUPY5VHjkaPHo2rq2uGtv79+9O/f39rhSOKoYRj CYQNDiNmawweAR54vuiJ6wOuKDsjWTAnm7my4wpnZ58lbFAYZ2ecpd78ejg3cbZdzAmwZAm8+KLx IXwn6NIFXnnF2A20XDlbR3OXcHKy2kiBLeV1pDAuLo7Y2Nhcj7Ozs8PNLbs5/znz8vLiyJEjBTq3 JFixYgUrVqzI0HblyhWr9Z+vREJrnayUCgY6AT8CKONvQydgurWCUkqZgMbAutyO/eyzz2QZz10m 9kAs+/32Y+dkR5NNTajoV/GWY0wOJip0rECFjhWIeTmG8OHhhDwQQoOlDXB/zDbbbK5ZY5TFfv55 m1y+UHTpAikpEBQEvXvbOhpRnIWHh+OdbmJQREQEZrM519GGqVOnWm2ORHaOHTuGe0nYfreAsvpy HRISQksr3SIryK2NacBCS0LxF8YqDidgIYBS6iOgqtY68MYJSqmmGPUhnAF3y/MkrfVhy8/fwbi1 EQGUB14HagDzCvayxJ3qWsg19j+yn9I1StNkYxMc3XP/al++XXla7GrB4cDD/NvnX2pNqUWN12oU QbQZzZ0LHTpAnTpFfulC4+trPDZskERCZE9rzYwZM/Dz80trmz59OkopunXrluO51pwjERUVdcuo xfr16wkODmbUqFG5ni+ylu9EQmu9ylIz4j2MWxp/A13SLdesAnhlOm0fRrEpgBbAAOAkUMvSVgGY Yzn3MhAMtLEsLxUCMG5n7PfbT5k6ZWjyaxMcKjjk+Vy7snY0XNWQ4+8c59jrx1Amhdf/Zf5rWniO HIHff4dly4rskkWmSxcply1yd/z4cXr37k3Xrl3ZuXMny5YtIyAggMaNG+d4njXnSDzwwAM0b96c Vq1a4erqSnBwMAsWLMDb25uxY8da5Rp3owJNttRazwSynN6qtR6URVuO9SoslS5fzekYcXdLTUjl 377/Yl/RPt9JxA3KpKj1QS3QcHTMUeyc7ag6pGg2upg7FypWhMcfL5LLFakuXWDmTIiIgNq5zmoS dyOlFCtXruSdd95h7Nix2NvbM3LkSKZMmVKkcfTr149169axadMm4uPj8fT0ZMiQIbz77rt39K2N wlYsVm0IkROtNUeGHiE+LJ4Wu1oUKIlIr+YHNUmNTeXI0CM4VnXErWfBJmjl1fXrsHAhBAZC6dKF eimb6NjRqNC5YYMkEiJ77u7urFq1yqYxvPfee7z33ns2jeFOJLt/imLvwvILRC6KpO6cujg3vf1V F0opan9eG7febhx++jBxoXFWiDJ7338PUVHwwguFehmbcXGBtm2lXLYQdytJJESxlhydTMSoCNyf cqdKgPW2mVQmRf3F9SnlVYqDvQ+SHJNstb4zmzMH2rWDBg0K7RI216WLsXIjKcnWkQghipokEqJY OzomAn09mToVl0PfvnDffdCtG4waZWxacRub/ti72NPoh0YkX0gm7PkwtNa5n5RP4eGwZYtRO+JO 1qWLsRnZzp22jkQIUdQkkRDF1uVJP3N+YSS+1z7B8cdFxidV48ZGNaf166FfP6heHcaONQo0FIBT bSfqzatH1Ooozn9ttZpqaebNgwoVjBzoTtasGbi5wW+/2ToSUdyMHz+e1NRUKla8td6LuDNIIiGK n7g49OAXCX/3Iq7lT1Fl3ctw6pRxE37+fPjhB2M95aFDEBAAX34J99xjbGBRgFEF977ueD7vSfjI cOLD4q32MpKSYMECGDgQ8rDEvUQzmaBTJ9i0ydaRCCGKmqzaEMXLuXNEPvYY10J9iKcmLTY0R93n mvWxDRrAZ5/Bq6/CiBHw5JPG0oivvoJSxp4bMYkxbDq6iY1HN3Lk0hFOXTlFbFIsTg5OlCtVjkaV G9HMoxkPv/EwpbaV4tDTh2ixqwUmh9vPsX/8ES5evHMnWWbm5wdDhhiDQ+XL2zoaIURRkURCFAtb Ll9m5rFj7Dp9mqj3PmbJM3C4A4xSRxhwyoOnPTyoZkkObuHlZSyNWLrUqD995AiHvnqfjyIW8M3B b0gxp9DQvSHNqjSjrVdbXBxdiE+OJzohmgMXDvDzkZ95M+lN2ndvz/gvxvPPe//QbFKz235Nc+YY qxkaNrztrkoEPz8wm2HrVnjsMVtHI4QoKpJICJs6GBvLq0ePsunyZZqfPs3AkBAeVP1wupTA1fe8 qe8Uz/gTJxh3/DijqlfnXW9vXOyz+WsbEEB09Uqoxx+n9EOdODqiKlO6TaHvPX2p4Zp9SewUcwrb T25n9eHVrA1ZS4+PejCkwhBGBoykYeWCZQHHjhnD/IsWFej0EsnHxyiXvXmzJBJC3E0kkRA283NU FP0OHaJ6qVKsXb2a3itWkPrrNnZ3vkTlF6rSsV1NngeupqTw5ZkzvH/yJMsjI1lQvz6ds5i4tXj/ Ykb9OQomN7pcAAAgAElEQVTvl5zYtsSFPxY7oAY9BjkkEQD2Jns61uxIx5odufbgNXY23cn9X9xP syvNCGgRwPsd36dauWr5em3z5hnD+08+ma/TSjw/PyOREELcPWSypbCJmWfO0PvgQR6pWJGQLVt4 bMYM1PLlnN3iTGpsKjXG3fzwL2dvz1ve3hy+7z4alS1Lt3/+YeqpU2nLNZNTkxm2bhiB3wfSo24P Nr99BJedwSh7e2OXrNOn8xyXSzkXWq9oTa3TtVgcu5j14etpMKMB//vzf6SaU/PUR3IyfP01PPPM nT/JMjM/PwgLy9dbLoQo4SSREEVuWWQkw8PDGVGtGt9dvIjT22/D22+T+lAnTk87TZXAKpSufmst ae/SpVnfpAmveXnx2rFjDAoNJSrhMl2XdWVuyFzm9JjD4j6LqeRUyZg38fvvoBR07QqXL+c5PtfW rlQdUpXqc6tz8PGDBDQJ4JVfX6Ht1205euloruf/9BNERt49kyzT69jReMtlGagQdw9JJESR2nXl CoNDQxno4cFnnp7YDRoEDz0E48dzfsF5ki8m4/V69rty2inFZF9fljZowNLISOptXkTI+X/Y/Mxm XmiZ6ZO7WjVjyej588Ye14mJeY6z5oc1MZUxceGtC8zsPpM/nvuDqPgomn3VjCX7l+RYvGrOHGjT xih5cTcwa82Wy5cZduQI/f/bj+M3f/J/znsJOHSI6f/9x9WUFFuHKIQoRJJIiCLzX2Iijx08yL3l yjGnXj3Ue+8ZX93nzcNsVpyecprK/pVxquOUa189XEtT89xiLpVtRMuH19K2RrusD6xXD37+Gfbu NVZ05LHOhEMFB3yn+nJx5UUubbpEG6827Buyj74N+jLw+4EErA3gSuKVW847fhw2brzzK1kCpJjN zDhzhpq7d9Np/342XLqEi50djeMrEf+PM8cTExlz9Cg1du3irWPHiJWEQhQTmzdvplOnTpQvX55y 5crRqlUrvv32W1uHVWJJIiGKhNaawWFhOCjFmoYNKXXgAEybBu++C76+XPz2IoknEqnxZs4TIwGS UpPo/U1vok99zzQvF36PS2XIkSPZjxK0aWNMWli2DL74Is8xewR4UL5DecKHhZOamIpLKRcWPraQ 5Y8v5+cjP9Psq2b8deavDOfMnw/lyoG/f54vUyLtunKFVsHBjAgPp3358vzRvDkR99/P6kaNmOxV m8RJ9Znt0ILjrVvzQtWqfPHff7QOCSE83noFv4QoiAULFtClSxccHR356KOPmDp1Ku3bt+e0TOwp OK11iXwALQAdHBysRfE3/+xZTVCQXh8VpXVqqtatW2vdsKHW169rrbXee99e/bff37n2YzabdeDa QO04yVHvOLlDa6314nPnNEFB+u1jx3I++bXXtLaz03rLljzHHXsoVm912KqPTzieof345eO69bzW 2nGSo/465GuttdZJSVp7emo9fHieuy9xzGaznnrqlLYLCtL37t2r/7xy5ZZjEhK0Ll1a62nTbrb9 Gxur6+7erctt26Y3RkcXYcQlQ3BwsJbfZ4XvxIkT2snJSY8ePdrWoRSqvPx9unEM0ELf5uexjEiI Qnfm+nVejYgg0MODbpUqwbffwu7dMHMmODpyZfcVrv11jWojc19i+fEfH7No/yK+7vU1bWu0BeCZ KlWYUqsW7588ydyzZ7M/+cMPjdmA/v5w8mSeYi/boCxeY7w4+dFJ4iNufpv2Ke/D1sCtPNv0WZ77 8TleXv8ya39M5ty5O3eSZXxqKv6HDjHm6FHGeHmxs3lz7itX7pbjSpeGBx/MuAz0nrJl+atlSx5w deWxgwf56+rVIoxc2NKECRMwmUyEhYXh7++Pq6srbm5ujBo1iuu3seleQcyaNQuz2czEiRMBiIuL K9Lr36kkkRCFbmR4OE52dnxWu7axAcW4cdCjhzHJEjgz/QylfUtTqXulHPvZfGwzb/32Fu889A5P N3k6w8/GeHkxrGpVhoeH88eVW+cuAGBvD998Ay4u0KcPJCTkKX7vt70p5VmK8JfDM9w+KWVfiq96 fsXs7rOZEzyHF3f4cW+HCzRtmqduS5SY5GQ679/PL9HRrG7YkMm+vtibsv/14ednLJpJ21Y8MRHX +HhW16hBU2dnuh84ILc57hJKKQD8/f1JSkpi8uTJdO/enenTpzNkyJBcz09ISCA6OjrXR0weNu77 7bffqF+/PuvWrcPLywsXFxcqVarEu+++Wyi7/94tpCCVKFQ7YmJYExXF0gYNqODgYIxCHDtmlLQG rp+5zsVvL1Lrk1ook8q2n8jYSALWBOBXy48JHSbc8nOlFJ/Xrs3BuDj6HjxIcKtWWZfUrlQJ1q41 5k28+CIsXmysV8yBnZMdtafX5mCvg0T9EIX7Y+4Zfj6k1RDKxjfimZ/6csyvFcFn19Kyasvc35wS IjIpiS7793Pq+nV+a9aM+7MYhcjMzw/mvHmUc0MW4314A+zZA2YzTsBPtWvTdupUHv3zT0Latcu+ UqnIUnxqKqFFkITVd3LCyc7Oav35+vqyZs0aAIYOHYqLiwuzZs1izJgxNGrUKNvzpkyZkjaCkBMf Hx+OHTuW4zHh4eHY2dnx3HPP8cYbb9CkSRPWrFnD+++/T2pqKh988EH+XpQAJJEQhUhrzWvHjtHC 2Zn+lSsb24BPnGhsh2n5xXF29llMpU14DvLMth+zNhOwNgCAJX2WYFJZfxN2MJn4tmFDWgYH8/jB g/zerBmls/pF2LSpMfmyf38joRg2LNfXUqlHJSo+WpGIURFU7FIRuzIZ+921si1uvwZT843HeXDB g8zpMYdnmj6Ta7/FXVRSEp3+/ptLKSlsa9aMRs7OuZ908iTNZ04ijIUkf+MCPR+BQYOMUp9aU2nv Xn7+5BOajRvHmNmz+erxx6Fq1cJ/MXeI0Ph4WgYHF/p1glu2pIWLi1X6UkoxfPjwDG0jRoxg5syZ rF+/PsdEIjAwkHbtslmVlU6ZPFR/i42NRWvNxx9/zJgxYwDo06cP0dHRfPHFF7z11luULVs2135E RpJIiELz3cWL7L56ld+aNsWkFMyYYWwNafl2YU42c27eOTwGemDvmv1fxc93f85vx35j4zMb8XD2 yPGalR0dWduwIQ/u28ew8HDm16uXNrSaQb9+sHMnjB4N990HrVrl2K9Sitqf12ZPoz2c+vgUNSfU TPvZ1avGwMbo0dV467nfGbZuGAO/H0jIuRA+6fwJ9qaS+c8sJjmZLv/8w4XkZLY1a0b93H7Bam3U Bh81CpOzM4uaTmVx6SEErcr0C75fP2przbSffmJIo0b0Dgjg0bFj4ZFHCu/F3EHqOzkR3LLwR7zq O+W+DDs/ateuneG5r68vJpOJEydO5Hiej48PPj4+VomhTJkyxMfH069fvwzt/fv3Z8OGDezbt48H H3zQKte6m5TM33Ci2Es2mxl77BiPVqzIwxUqGPMRpk2DZ58Fb28Aon+MJul8ElWHZP9t9Ej0EcZt Gccr97+CXy2/PF27laVORWBoKC1dXBheLZtJnFOnwp9/GhtihIRAhQo59utUxwmv//Pi1ORTVAms Qpmaxgfk4sXGyxsyBErbl2Z+r/m08GzB6A2j+efCP6x8YiVuTm55ir24SExNpceBAxxPTGRrXpKI mBjjz/aHH4zZptOmkbzcme3DjETrlrshSvFCz558HxLC4Fdf5eCAAVRauhS6dCmsl3THcLKzs9pI gS1lmeBnIS4ujtjY2FyPs7Ozw80t539nVatWJSIiAg+PjF9IKleujNaay/mogCtuksmWolB8c+EC RxMT+bBWLaNh/nyIioLXX0875uxXZynXuhzOTbIeLk81p/LcD89RzaUaH3TK373LgVWqMKp6dUZF RLAju0lYjo6wahVcuQKBgcYe2LnwHueNo7sjR181SmVrbQy09OljFNIE4xfky/e9zOZnNvNP5D/c O/de9p/fn6/4bUlrzaCwMIJjY1nfuDFNcrudcfw4PPCAMbvy+++N0p7Ozvj5QWqq0ZwVpRTzGzUi 3tWV8ePGQa9eRjUvcUcKDw/P8DwiIgKz2ZzraMPUqVPx9PTM9XHfffflGkNLy0jOmTNnMrSfOXMG pRTu7u5ZnSZyIYmEsDqz1nx06hQ9KlWiqbOzMXV/yhTjdoKvLwAJRxO4vOkynkOynxvxv7/+x87T O1nQewFODvkfZv2kVi0eKFcO/0OHiExbPpCJtzcsWWJskPHpp7n2aVfWDt9PfYn6PoroX6PZsgVC Q+Hll289tr1Pe4JfDKZC6Qq0md+GlQdX5vs12MKEEyf45sIFltSvT2tX15wP3rMH7r/f+DPevdso RW5RqxbUrGlsp54dz1KleNvbm9nNmnHY3x+eeirPS3NFyaG1ZsaMGRnapk+fjlKKbt265XhuYGAg mzdvzvWxbNmyXON46qmn0Fozf/78DLEtWLCAihUrpiUaIp9utxCFrR5IQapia/WFC5qgIL0zJsZo +PprrUHrAwfSjjn65lG9zXWbTolLybKP01dOa+cPnfXwdbdX3elsYqL22LFDd9i3TyenpmZ/4Nix RrGqbdty7dNsNut9Hffp3XV26yd6peqGDbU2m7M/Pi4pTg9YPUAzAf3Gpjd0SmrWr7k4WGIp7vXR iRO5H7xjh9YuLkZxsYsXszzkhRe0btAg524SU1N1zV279KN792rt7a11mzZGda+7yJ1ckGrChAla KaWbNm2qe/XqpWfOnKkDAgK0Uko/88wzRR6Pn5+ftrOz00OGDNEzZ87UjzzyiDaZTHrevHlFHkth KeqCVDZPCAocuCQSxZLZbNYt9uzRHfftu9Gg9T33aN2zZ9oxqUmpekflHfrIiCPZ9vPkqie1xyce OiYh5rZj+v3yZW0XFKTfPHo0+4OSk7Vu317rqlW1jozMtc/Yg7E6yC5ID1An9cyZucdgNpv11D+m atNEk+6ypIu+FH8p7y+giGy7fFk7bt2qBx0+rM05ZUZaax0UpHXZslp36KD1tWvZHrZypfFb5r// cu7u28hITVCQ3rBjh9b29lq//nr+X0AJdqcnEiaTSYeGhuonn3xSu7q66kqVKulXXnlFX7dUti1K cXFxevTo0bpq1aq6dOnSumnTpnrFihVFHkdhkkRCEokSbWN0tCYoSG+6UQZ540bjr1lQUNoxF9Ze 0EEE6Wv7s/4A2hCxQTMBvXT/UqvFNeXkSU1QkP4hm2/OWmutz57V2sND606dtE7JfdRg4X3hej2/ 6+jQhDzHsTFio64wuYL2/sxb7z69O8/nFbbwuDhdcft23WHfPn09p5EbrbXeuVNrJyet/fy0jovL 8dCLF40//kWLcu7SbDbrtsHB+t69e7V58mStldI6JCSfr6LkuhsSiWgpjV5kpES2KNG++O8/mjk7 0+nGCogvvjDqNrRvn3bM+QXncW7pnOUky6TUJEb8MoIOPh0Y0HiA1eIa4+XFY25uDDx8mKPZVbT0 9IQVKyAoCN57L8f+EhLg3QgflJMd5yfkXAQnvUd8H2HfkH14unjy4IIHmbpzKmad+yTPwnQpOZnu Bw7g5uDA6oYNccyhYiX//AOPPgotWxorNHJZIujmBs2bZyyXnRWlFON9fNhz7RqbBg2Ce+6BESPy vFurEMJ2JJEQVhMeH8+6S5cYWa2asbTryBFYtw5eeSWteuT189eJXheN53NZT7Kc8dcMIi5F8L9u /8vz8rC8UEqxsH593B0deeLff0lITc36wI4djSRi0qQcVxAsXQqnL9vjOcGXC99c4PLWvC8b8y7v zbZntzG69Whe2/QavVb0Iio+Kr8vySqSzGb6/vsv0cnJrGvcmIoODtkfHBEBnTsbMyh/+inXJOIG Pz8jkcgtJ/CrUIH7XFx4/8wZmD4d/vgDli/Px6sRQtiCJBLCamacOYObg4NRxRKMDwN3d6OCpEXk kkiUvaJy/8q3nB8dH817297jxRYv0qhy9pXuCsrV3p7VDRsSFh/Py5mWomUwdix07QpPPw3//XfL j81moyRG797Q5P88KPdAOSJGRGBOyfvIgoOdA1MemcL6Aev588yfNJvdjA0RGwrysgpMa81LR46w 88oV1jZqRO2cEoMzZ4yMwNUVfv3V+G8ePfIInDsHhw/nfJxSinHe3my/coVtLVrAE0/Aa6/BtWt5 vpYQouhJIiGs4lpKCl+fP8+Lnp5GWeqrV2HhQnjpJWM7SIwPrvMLzuPexx2HCrd+8534+0TM2szE jrnX1S+oJs7OzKpbl6/Pn2f+uXNZH2QyGUtCy5QxliMmJ2f48a+/Gks+/+//QJkUdb6sQ9y/cZyd mcPOo9noVqcbfw/5mwbuDei6rCvP//g8VxKz2XTMyj4+dYoF588zv1492pUvn/2BUVFGNmA2G2s5 K9+aBObkwQehVKncb28A9KhUiSZly/LByZNGwbDoaPjyy3xdTxQv48ePJzU1lYoVK9o6FFFIJJEQ VrHo/HniU1MZemPPhKVLITHRKPdocfXPq8QfjqfKc1VuOT8sKoyZe2Yyrt04KpfN3wdVfgVWqcKL np4MP3KEfdl9261UyShWtWcPvPlmhh99+incey+0NXYxx6W5C1WHVOX4O8dJisymXkUOqpWrxsaA jcztOZdV/66i4cyGrA9fn+9+8uPbCxcYe/w473p7E1Dl1j+PNLGxxpyIqCgjE6hRI9/XKlPGeK9y qidxg0kp3qxRg42XL3OwUiUYPNgY/slDZUMhhG1IIiFum9aaWWfP0sfdneqlSxs3w2fPNioVpitP HbkkEsdqjlR4+NZS1OO2jKNauWqMvH9kkcT8Re3aNCxblif+/ZfLmUYc0rRuDZ98YnyQrV0LwN9/ w5YtltGIdFM4ar5fE2WvODY27xMv01NK8XyL5zk47CCNKjei+/LuPLP2Gc5cPZP7yfn059WrDAwN pX/lykzIqapgUhL07WsMv/z6K9StW+Br+vnB1q23DO5k6Ql3d6o6OvK/M2fgjTeM8tuzZxf42kKI wiWJhLhtO69e5VB8PC96WiZQ7twJBw4YtzUszElmLqy8gMcAD5RdxkmUe87sYfXh1bzX4T1K25cu kphL29nxXcOGXE5JITA0FHN2MwFHjjQ+TAcNgqNHmTbN+FLet2/GwxwqOVDrw1qcX3CeK38U/NZE Ddca/PL0L3zd62t+jfiVul/WZeLWicQlxRW4z/ROJCTQ68ABmjs783V2G5qBcRvj2WeNT//vv4cW LW7run5+xqDCX3/lfqyDycRLVauyJDKSy1WrGnFMnWoslRFCFDuSSIjbNvfsWWqWLn1zyefs2UYp bL+bm2xd2nCJlOgUPJ65dffOsb+NpaF7QwKaBBRVyADULFOGJQ0a8FN0NO9nV5ZZKWOfEHd3knr1 5cflsbzyCthnsd2d5/OeuNzvQtiLYZiTCr6kUynFoOaDiBgRwcv3vsyHOz6k3pf1WLx/8W0tFb2S kkKPAwcoa2fHD40aZb3FOhgjSqNHwzffwLJl8PDDBb7mDS1aGLuI52WeBMCLVauSqrUxj2XsWOPW yty5tx2HEML6JJEQtyUmOZlVFy/yvKensVV4VBR8+60xNyJdPYLIpZGUbVIW58YZa0dsOrqJ347/ xoedPsTOlM0HWyHqXqkSk3x8GH/iBN9ERmZ9kKsrrF2LOeIYK+jP84OyXjqq7BT15tQj4UgCp6ac uu3YXEu78vEjH3N4+GEe8HqAwO8DaTKrCSsOrCDVnM3y1WxcN5vpe/Ag/12/zrrGjXF3dMz+4I8+ MlbczJxprJywAjs7Ix/JayLh4ejIU5UrM+PsWVJr1jQmvX7xhbELmBCiWJFEQtyW5RcukGQ2M+jG hL2lS28Oi1ukXEkh+sdoPAIyjkZorXk76G1aV29Nz7o9izDqjMZ5e/OMhwfPhoay60rWtyVifRrx tMO3dDb/QrkJr2bbl3MTZ7xe8+LkpJPEh8VbJb5aFWqx6slV7HxuJzVcazBgzQDqflmXz3d/nqcV HmatCTx8mB1XrvBD48Y0yGlL8LlzYdw4mDgxw60pa/DzM/b1yutqzhHVqnEiMZH10dHGLaZjx+CX X6wakxDi9kkiIQpMa82cs2fpUakSnqVKGY2LF0PPnkb9CIuLqy9ivm6+pXbErxG/8teZv3ivw3tW LT6VX0op5tarx73lytH74EGOZ3EvfuFC+CGxC1fe/9L4tp7DkkTvd7wp5VWKsCFhN8q5W0Ubrzas f3o9e17YQ+vqrXlt02tUm1aNQT8M4vcTv2d520NrzeiICFZdvMiye+6hfU7LPNeuNZKH4cPhnXes FvcNfn6QkgLbtuXt+HvLlaO5s7Nxe+O++6BVK1kKKkQxJImEKLC/Y2PZHxfH8zcmWR44APv2QWBg huMil0ZSvmN5Sle/OZFSa83E3yfygNcD+NXyw9ZKmUysbdiQcnZ2dD9wgJh0ywuSk43FG/7+UPGt l+DVV41qnevWZdmXXRk76s6uy5Xfr3B+wXmrx9qqaiuWPb6Mk6NO8nrb19l2chsdFnWgxmc1GLF+ BJuPbSYxJREwakVMP3OGGXXq0DddcneLoCCjcFjfvsYthEJI7GrXNnZtz+vtDYDnPT35OTqac0lJ RsnsDRsgLMzqsQmRlYULF2IymTh1Kn+3Kk0mE+/lUmb/TiKJhCiwRefP4+HgQNcbhWYWLTI2V+jW Le2YxNOJxGyNueW2xoajG/jzzJ9MaD/BpqMR6bk5OrKuSRPOJSXx5KFDJJmNb/hLl8KpU/DWW5YD p0yBHj2gXz8jccpCRb+KeAz04OiYowWqLZEXVV2q8m77d4kYEcG2Z7fRt0Ffvg/7nkeWPEKFjyvQ cPX/Mfb4cZ5wiqeL0/XsR0e2bjVez0MPGYW4spuEeZuUulkuO68GVK6Mg8nE4shII5NzczPmbghR BJRSBfr9VNDzSqos5p4Lkbsks5llFy4w0MMDe5PJGLNeuhQGDIB0+zVcWHEBUykT7n1vfhvWWjNh 6wTaVG9TLEYj0qvn5MSahg3p+s8/DDx8mMX17uGjjxR9+kCjG1W77eyMPSA6dIAuXWD7dqhX75a+ fD/1JXpdNBGjIrhnxT2FFrNSinbe7Wjn3Y7Pu37OgQsHmBa+l8XJPjhd/I3vDr3Pd7+AaylXGlZu iFc5L6q5VKN6ueo0C43hoeFTuNayMafnvI9T3H+UTS6Lo50jDiYH7E32ONg5YKfsrPKL0c/PWARz 7pyxR1puyjs48IS7O/PPneN1Ly/Uiy/C//4HH34IOc31EMKGEhISsM9qadcd6u55pcKqfrl0iajk ZAJvTLLcuBEiI7O8rVGpdyXsy938q3ZjNGJDwIZimbV3rFCBFffcw5P//suFk0cID6/LihWZ4ixb 1pj417698em4fTtkKu7k6OZInS/qcDjgMG6Pu1H5ycKt2AlGUnHM5MmyVF/8K7uxtP1Eoru9zL7z +wg5F8LhqMOcuXqGfef3UevvkwxZdJ3fakDv9ntIXHR/jn07mBxwsHPI8F97kz1ODk5ULlsZD2cP apWvRe2KtWns0ZhmVZrdUhfkxkrS336DgDyu9h1cpQpLIyPZfuUKDw0ebCQRa9bAM88U5C0SJYjW mqSkJErdmINVQjjmtCrqDiS3NkSBLDp/nubOzjRxtiznXLTI+MrevHnaMbH7Y4k7EJfhtsaNuRFt qrfhkVqPFHXYefa4uzvz6tYnyOkcNaZG0KJFFrcF3NyMus+lShmfkCdO3HJI5QGVcX/CnSMvHeH6 ueuFHvcPUVH4HzpEHzc3ljZogL3JhIezB11rd+Wtdm+xpM8StgRuIazhbNYvN+HQ4WHqbj/EnpEH 2D14N5uf2cyP/X7kuye/Y0XfFSx+bDFf9/qar3p8xWddPuODhz9gXLtxjG49miEthzCw6UC61e5G DdcaXEq4xLeHvuWldS/RZn4bXD5y4f559zNh6wT2nt2L1prKlY1d5fNze6N9+fLULlPGmHRZq5Yx ErRgQaG9h8L6JkyYgMlkIiwsDH9/f1xdXXFzc2PUqFFcv37z34XJZGLkyJEsX76cRo0aUbp0aTZs MDazmzp1Km3btsXNzQ0nJydatWrF6tWrM1ynb9++tGzZMkNbz549MZlM/Pzzz2ltf/31FyaTKa1v gEOHDvHwww/j5OSEl5cXH3zwAWZzxgnMEydOxGQyZfl47rnnMryOG3MkDhw4cMv1Q0JCMJlMtGrV KkP/3bp1o02bNgAEBgbi7u5OahZLnjt37kyDBg1yeMeLloxIiHyLTk7m5+hoPvH1NRouX4YffoD3 388wSS9yaST2leyp2OXmZj0bj25k93+7i+1oRHoV91SBeWZO/d8RXjpiZlbdukatjPSqVjVqZj/8 sDHHYMsWY1ahhVKKOrPqsKfRHsIGh9F4XeNCe92Lz5/nudBQHnd3Z5klicjSunXw5JOodu1w+P57 fMqUsWoc11Ouc/DCQf468xdbT27liz+/YOLvE6nvVp/nmz9PW79n+eGbSmidtzmdSime8fDgk9On mZmaStlBg4yRr+PHjS3NRbF34++8v78/NWvWZPLkyezevZvp06cTExPDwoUL04797bffWLVqFS+/ /DJubm74WEb6pk+fTu/evQkICCApKYlvvvkGf39/fv75Z7pZ5mW1a9eOH3/8kdjYWJwtX3J27tyJ nZ0d27dvp0ePHgBs27YNOzs72lo2zImMjKRDhw6YzWbeeustnJycmDNnDqVLZxxR69u3L3Xq1MnQ tnfvXr744gs8PG4ttgfQqFEjypcvz7Zt29Kuv337dkwmE/v370+LVWvNrl27eMmy7HrgwIEsXbqU DRs28Oijj6b1FxkZSVBQEBMnFt7mhvmmtS6RD6AFoIODg7UoWjP++0/bb92qL1y/bjTMnq21yaT1 2bNpx5hTzPqPqn/osOFhN9vMZt16Xmvdel5rbTabizrsfDGbtW7VSuv27bX++uxZrYKC9MBDh3RS apv/7dIAACAASURBVGrWJ/z3n9b16mnt6an133/f8uOon6N0EEH6zOwzhRLv56dPa4KC9POhoTol p/d2/nyt7ey07tVL6/j4Qokls+TUZL3p6Cbd77t+2nGSoy7znoum49t69/5Lee7jaHy8JihILzt/ XuvYWK1dXLQeP77wgi5iwcHB+k7+fTZhwgStlNJ9+vTJ0D58+HBtMpn0gQMHtNZaK6W0vb29Dg0N vaWPxMTEDM9TUlJ048aNtZ+fX1rb3r17tVJK//rrr1prrQ8cOKCVUvqpp57Sbdq0STuud+/eumXL lmnPR40apU0mk967d29aW1RUlC5fvrw2mUz65MmTWb6uqKgo7e3trZs1a6bj0/17UkrpiRMnpj3v 0aOHbt26ddrzvn376ieeeEI7ODjoDRs2aK21DgkJ0Uop/dNPP2mtjd+XXl5eun///hmuOW3aNG1n Z6dPnDiRZUxa5+3v041jgBb6Nj+P5daGyLcVFy7wSIUKN6sjLlpkTDpMN3suZmsMSWeTMtzW2HRs E7v/212sVmpkZ9Mm2LsX3n4bBnl6sqxBA1ZcuECPAwe4mpJy6wnVqsHvv0OVKtCunTFnJJ1K3Svh +YInEa9GEB9hnUJVAClmMyPCwxkVEcHrXl7MqVsXu6zeW7MZ3n3X2E3z+edh9WpjW84iYG+yx6+W Hyv6ruD06NMMafkSPPApD3/vy4J9C/JUa6NWmTK0LVeOJZGRxvwUf3+juIe54CXDS6rU+FSuhVwr 9EdqvHWriCqlGD58eIa2ESNGoLVm/fqbu9126NCBellMXk4/TyImJobLly/Trl07QkJC0tqbN2+O s7Mz2yzFSrZv346XlxcDBw4kODiYxERjWfSOHTto165d2nm//PILrVu3znBbpFKlSjz99NPZvh6z 2Uy/fv2IjY1l7dq1lMnh39ONOBMsNWp27NjBo48+StOmTdm+fXtarCaTiQcffDDt/Xr66af58ccf iYu7udfO8uXLeeCBB/D29s72ekVNbm2IfDmVmMiOK1dYXL++0RAeDrt2GfsypBO5NJIytctQ7v5y aW2Td0ymVdVWdPbtXJQhF8j77xs1kDp1Mp739/DAw9GRPgcP8tC+ffzQuDHemYY98fAwqi35+0P3 7sbqgiFD0sbvfaf5cvm3y4QGhtJ8W/NbNi/Lr8vJyfw/e/cdX/P1P3D89bnZkb2FREJq1UwoSlBF EaPUaGhV1ShaihYdarS1qv22tKXVX1szSqlN0UbNFLGJndiZInvee35/HNXETMjOeT4e96G595zP fV+Ne9/3jPfpFxbG1ps3mffUU7yZ46TVXBIT5cLE9etl+evx4wulTkReuFRw4X+dZvHP12O4UnMc A9cNZMnxJfzc7Wc8bR9+RPkrrq6MOHeOqMxMXF9/XW7/+PtveO65Ioq+ZEg9nUqoX2ihP49fqB/W vtYFek2fHNN+ANWqVUOn0xGRY32R112Llv+1YcMGPvvsM44cOXLPuoqc/92sWbNcH87+/v40b94c vV5PSEgILi4u3Lx5M1cicenSJZo2bXrPc94vofnXhx9+yI4dO9i0adMDY/6Xv78/WVlZ7Nu3j8qV KxMTE4O/vz8nTpy4E+vu3bupXbs2djmKxvXv35+ZM2fy+++/88orr3DmzBlCQ0P54YcfHvp8RU0l Ekq+/BodjblOx4tOTvKORYvkWRRdu95po0/VE7MqBo+xHndGHv65+g/BEcGs6r2qxI9G7NghN2Gs W5f787aNvT17Gjaky4kT+B48yLLatXnBwSF3Zysr2fGdd2DYMJlkzZsHlpYYWxlTc2FNjrQ8wqXp l/D6yOuxYzyQmEjvU6e4lZ3N5nr1aHd3HP86fFgWmrpxQyYSAQGP/ZwFKaClG7NmLWLTgVd4c9Ng fL/3ZXnP5Q/dDtzbxYWR588TFBXFO88+KxdeLltW7hIJy5qW+IX6PbphATxPYbvfe8H9vtnv2rWL bt260bp1a+bNm0fFihUxMTHhp59+IigoKFfbFi1aMG3aNDIyMti1axcTJ07E1taWOnXqsGvXLlxc XOSW6RyJRH6tWbOGWbNm8dlnn9Gu3aMXjTdq1Ahzc3N27tyJh4cHLi4u+Pj44O/vz7x588jMzGTX rl306NEjV79atWrh5+fHkiVLeOWVV1iyZAlmZmb06tXrsWMvDCqRUPIlKDqaLo6OWBsby2HlRYvk N/Ac//hj18WiT9Lj0u+/7Y4z9syghmMNXqz5YnGEnWdCyMJTjRrJGk13q2NlRaifH6+GhdHx2DHG eXgwxdsbs5wLG42NZSnnpk1hyBAIDZV/T76+2LWwo8pHVYiYFIGdvx12rR5Ssvo+sg0G/nf1Kh+G h9PQyorg+vXvv1jSYICvvpInZ9auLc/vfsi3q6LWtq2cNrK/2Z5DQw7Rb3U/2i9uz+ftPmfss2Pv 28fBxIQAR0cWR0XxjoeHTJC++07+XZey7YFPwsjSqMBHCorKuXPncg3Jnz9/HoPBgPcjFs2uXr0a CwsL/vjjj1z1Gf7v//7vnrb+/v5kZmYSFBTE9evX7yQMLVu2ZOfOnbi6ulK9enWcc1R6rVKlCufO nbvnWqdPn77nvrNnzzJgwAB69OjBhAkTHv2iARMTE5555hl27tyJp6fnnZj8/f3JyMhg6dKlREVF 0bJly3v69u/fn7FjxxIZGUlQUBABAQHY2trm6XmLilojoeTZ6ZQUDicnE+hyO0H4+29Z8vE+tSNs mtpg6SO/0YTFhLHm9BrGNR+HTivZv3IbN8pBhGnTHjz672Biwvq6dfnM25svr17F7+BBDiQm3tvw lVfkB7iJCTRpApMmQXo6XpO8sGtpx6nAU/mqenk8OZlnDx9mwsWLjKpcmV0NG94/iTh2DJo3h7Fj 4a235ElZJSiJAPDzkwNZ27aBo6UjG/tuZHzz8by77V0mbJ/wwHUT/VxcOJSczLnUVJlIxMfLstlK iSeE4Ntvv81135w5c9A07c6uiwcxMpIF0bJzrE+KiIhg7dq197Rt0qQJxsbGzJw5EwcHhzvbJP39 /QkJCWHnzp33jEZ06tSJkJAQDh48eOe+mJgYli1blqtdSkoK3bt3x8PDI9dOk7zw9/fnn3/+YceO HXee39HRkZo1azJz5swHjpIEBgYCMGrUKMLDw3m1BNZPKdnv6kqJEhQdjY2RER1zlsT28YFnn73T JjMmk5tbbuZaZDlr7ywqWVfilXp5rEBUTAwGefBl69byG/PD6DSN96tUIdTPDzOdjiaHDjEgLIxr GXfViqhTB/75R1542jSoVQvt91XUWloToRec6ncKQ/bDFwxGZmQw9MwZGhw8SLJez56GDfm8WjVM 797eGRkpz6Pw9ZXrInbuhC++KJHf1o2N5YzEv/UkjHRGTG87nf+98D9m7pnJmxvevO8hZJ0cHamg 07EiJgaefhrq1oW7hraVkis8PJxu3boxb948Xn31VebNm0e/fv2oc6ds7P0FBASQkpLCCy+8wPff f8/UqVNp2rTpPVsxQU6N+Pn5cebMmTvbO0GOSKSkpHDt2rV7PrDHjRuHg4MDL7zwAlOnTmX27Nm0 aNHinrUPkydPJiwsjB49erBmzRqWLl165xYSEvLQ1+Dv709aWhpXrlzJ9fwtW7bk7NmzeHl54e7u fk8/JycnOnTowMqVK7Gzs8u1FbTEeNJtH8V1Q23/LFIGg0E8FRIiBoSFyTuSkoSoUEGIqVNztbsy 94rYYbxDZETLraGXb10WxlONxZd7vyzqkPNt6VIhQIi9e/PXL0uvF99dvSqcdu8WFn//LUacOSPO 329r5enTQnTuLJ+kYUNx88NVItgoWJx/7/x9r3s+NVWMPHtWWP79t7DftUt8efmySL/f9tOLF4UY O1YICwsh7OyEmDFDiH+35pZg33wjhImJ/FXK6efDPwttsiZGbxl9323CL588Kert3y9/mD5dCEvL ey9SypSH7Z86nU6cPn1a9OrVS9ja2gpHR0cxatQokZHjd1Wn04mRI0fe9xo///yzqFGjhrCwsBC1 a9cWCxcuvHPdu40bN07odDoxe/bsXPc/9dRTwsjISISHh9/T58SJE+K5554TlpaWwsPDQ0ybNk38 9NNPubZ/DhgwQOh0uvveXn/99VyvY+pd741JSUnC2NhY2NnZ5fq9Xrp0qdDpdGLAgAEP/PtbuXKl 0DRNDBs27IFtcirq7Z/FnhA8duAqkShSBxMTBcHB4o+4OHnHwoXy1+euf5AHmxwUxzofu/PzqM2j hP0Me5GUUbLf6DMzhahWTYguXR7/GreyssTk8HDhtHu30IKDRbsjR8SP16+L2MzM3A3//FOIdu2E AHHZdqAIJlhEfhYihF4vYjIyxI/Xr4v2R44ILThYOO7aJT66eFHcvPsasbFC/PKLEJ06CaFpMoH4 8EMh4uMf/wUUsdOn5a/Qpk33Pjb3n7mCyYhpO6fd89jq6GhBcLAIS06Wv38gs8BSrLwkEnH/vn8o +bJ27Vqh0+nEnj178tS+qBMJtdhSyZOgqChcTExo8+/WpIUL5RxAjqG/1HOpJP2TRO3l8oCq2NRY FhxawLvN3sXK1Krog86Hn36CixflEQ6Py9bYmEleXozz8GBpVBTLoqMZfOYMg86coZalJU1sbKhq bo5HrVpUWLIEIiJI3vE3lj9GkD3Jg/7Zv7G1pQs6IWiVns4PRkb00+uxCA+HAwfk1MWJE7LAxdGj ci6mWTNYsECuF7As/FX2Bal6dahcWU5v3D1F/tYzbxGXGscHf32Ah61Hrmmxjg4OWBkZsTImhole XvLv4Ndf5YFxilIG/fDDD1StWpVnc0wjlyQqkVAeySAEv8bE0NvFRZZdvnwZgoPlp28OUUujMLI2 wrGLIwDf7P8GgLebvF3kMedHWhpMnSo/i+vVe/LrWRgZMcjdnUHu7tzIyODP+Hj2JiZyICmJTXFx RGdl/df4mcZUbmTMp29nMfpLRwZEbOW5kDW4hYXde2EzM7lo0s8Phg+X20r+PTStFHrUseIft/qY iIQIBq8fTG3n2vhW9AXA3MiIbo6OrPg3kejZU261SU6W228VpYxYvnw5x44dY/PmzcyZM6e4w3kg lUgoj7Q7IYGrGRn/7dZYskRu93zppTtthBBELYnC+SVnjCyNSM5MZu7+uQz2HYyTpVMxRZ43334L 0dFQGKXrK5qZ8YqbG6/k+MDPMBjIuF2R0Uynw0ynIzM4k0PNDuEQ8iKOe6eAuR5iYuTx7AaDPCDM xqbYCkkVlnbtZIHKqChZzysnTdOYFzCPk9En6f5rdw4OPohzBbllr7eLC0tPnOBUSgq1u3eXO1Q2 b4YStr9eUZ5E3759sba2ZtCgQQwbNqy4w3kgtWtDeaRlUVFUMTOjmY2NLLSwcCH06AHW/+1lT9qf RPqF9Du7NRaELiAxI5ExzcYUV9h5cvOmLPb4xhu5ztoqVGY6HTbGxtgYG9+pP2HqYkq9TfXIjMzk RJcT6A0m4OEhD6WqVk3ulSxjSQT8Vzn0r7/u/7i5sTmr+6wmPTudfqv73dnJ8YKDAzZGRqyIjpZ/ Rw0bPtm8lFKoJk2ahF6vx+FBhdOU+zIYDCQkJPD999/nquBZ0pTcyJQSIctg4LeYGF6+XQ2Of/6B s2fvWzvC1N0Uu9Z2ZOoz+WLfF/Sr2++RZY+L25QpkJUFkycXdyRgWcOSupvqknQ4iRM9TmDILPvn SLi6yh2c27Y9uE1lm8os7r6YbRe3MecfObxrdru66oqYGLn4ukcP2LABbp+loChK0VGJhPJQ2+Lj icvOJvDfceeFC+UKuRxliQ1ZBqKXR+Pa1xXNSGPpsaVcS7rGuObjiinqvDl1Sk5rTJxYcpYa2Da1 pe7autwKvsWpwFMYssp+MvHvOgnxkLO72ldrzztN3mH89vEcizoGyOmNsNRUTqakyEQiOfnBCy4U RSk0KpFQHiooOppalpbUq1BBfttbvlweAGVkdKdN/NZ4smKzcH3FFYMwMHPPTLrV6EZt59rFGPnD CQGjR8tNJyNHFnc0udk/b8/Tvz1N3Po4TvY8iSGjbCcTbdvClSvy/LeHmd52OjUca9BvdT8ysjNo Z2+PnbGxLE5Vq5ZciKqmNxSlyKlEQnmgVL2eNbGxBP47rbF+Pdy6dd9pjQp1KlChXgXWnl7Lmbgz TGiRtxr0xWXjRnnS95dflsjCjzh1caLO2jrc/OMmJ7qfKPAjnUuSli1lpctHDSaYG5uzuPtiTsee ZtaeWZjqdHR3cmJFdDQC5OLftWvlAlVFUYqM2rWhPNDGuDiS9fr/dmssXCjPjMhxbkN2Yjaxa2Lx muwFwPTd02nt1Zqmle89krekyMyUoxHt2kGXLsUdzYM5dnSk7oa6nOh2giNtjlB3fV1MnU2LO6wC Z2UlS0Fs3y53tT5Mfbf6vPfse3y661N6Pd2L3s7O/BwZybGUFOr36CHLkO/cCW3aFE3wBSzsftt+ FSWfivr3SCUSygMFRUfT2NoaH0tLuT9vyxaYOzdXm9jfYzGkG3AJdCE4IpgD1w+wpd+WYoo4b+bM gfBwWLOm5G+EcGjrQIO/G3A84DiHmh2i3qZ6WFYvXYWn8qJtWzk6pNfnmjW7r4ktJ7Ly1EqGrB/C tv5/YW9szIroaOr7+oKnp5zeKGWJhJOTE5aWlrzySsk+j0YpPSwtLXFyKpqt9yqRUO7rVlYWG+Pi mFG1qrxj2TL5Dt+nT652UUuisG1li7mnOTMWz6ChW0PaV2tfDBHnTVSULD41bJg886k0sGlkg2+I L8c7HSe0cSi1ltTCqUvJrs2RX+3aycNRQ0PhmWce3tbCxILvO3/P84ueZ9mxxXR3asZvMTF86u2N 1qOHrHI5Zw6U4O1yd/P09CQsLIzY2NjiDkUpI5ycnPD0LJpdcyqRUO7r99hYsoSgT85pjS5dIMc+ 8IzrGcT/GU/1H6oTej2UbRe38WvPX+V6ihJqwgR5qndhFJ8qTBbeFviG+BL2Whgnup7A80NPvCZ5 oTMpPR+WD9O4sSxLsm3boxMJgDbebXi5zsu8/+f7fPPKAX6KjORkSgp1evSAr76S25SbNSv8wAuQ p6dnkb3xK0pBKhvvQkqBC4qOppWdHe5mZvJch6NH71lkGb08Gs1Ew7mnMzP2zKCafTVeqvXSA65Y /P76S1ZRnDEjVz5UahjbGlNndR28p3lzecZlDjc/TOqZ1OIOq0AYG8viVFvyMSs2q+0sEjMS2Xv8 W2yNjPgtJkYeae/ionZvKEoRUomEco+ozEz+jI/PvcjS2Rk6dMjdbkkUjl0cuZh9kVWnVjG++XiM dI+Y4C4maWkwZIjcIfDGG8UdzePTdBpV3q+C715fshOyOdjwIJemXSq1W0SFEBgyDAghCAiAvXsh Li5vfT1sPZjQYgLfhHxJK2tTVsXGyum37t1lIvGwwhSKohSYx0okNE0boWlauKZpaZqmhWia1vgh bd00TVuqadoZTdP0mqZ9+YB2vTRNC7t9zaOapnW8Xzul8K2Mjkanabzk7CzLPi5dCv36yTmB21JO ppB8OBnXV1yZuWcmFa0r0r9+/2KM+uGmToWrV+GHH0rV1PkD2TxjQ6PDjXAf7k74x+EcqH+AuI1x sspjCaNP1XNr5y2uzr3KmSFnOPL8EUJ8QthptZO/jf5mp/lO/jb+m+rv7uYHwwH+6XqKK19cIeV0 yiNfz3vPvoe7tTuR4Ss4kZLCmdRUWZzq4kU5iqYoSqHL9xoJTdP6AF8AQ4D9wGjgD03Tqgsh7rdS yAyIBj653fZ+13wWWAaMBzYC/YA1mqY1FEKcym+MypMJio7mBXt7HE1MZNnh6Oh7a0csjcLY3pjU Z1NZ/P1iZjw/AzPjEliQAfl58vnnsgx2jp2rpZ6RpRE+s31we82Nc2+f43jn49g0s8Frihf2be2L ba1KdkI2CXsTSNiZwK2dt0g6kITIEmimGpa1LLGsbom1rzWmFU0xsjJCZ65Dn6pHn6Bn9+w0LM+l Ej4xlgvvXsDiKQvch7pTcXBFjG3ufbuyMLHg0zaf8uraN7Bo2YVVMTF80Lq1PJtk7Vpo0KDo/wIU pZzR8vsNRtO0EOAfIcSo2z9rwBVgjhBi1iP6BgOHhRBj7rp/OWAphOia4759t9ved2e5pmm+QGho aCi+vr75eg3Kg0WkpeH9zz8srVWLvq6u8jTFs2dzfbsTBkGIdwgOHR34rtt3LD62mMujL2NlWvKO cNbr5Zq71FQ4dAhMy14ZBkBOEcRvjSf8o3CSDiZh+bQllUdWxqWPC8a2hbumOjMmk4RdMmlI2JlA 8tFkMICpmym2LW2xa2mHbQtbLGtbPnJx6KRJcsNF5GU9yTtvEb08muhfo9FZ6PAY64HHOA+MzHNP nxmEgYbfN+R65UF4ujUjtFEj6NsXTp+W/9MVRbnHoUOH8PPzA/ATQjzRP5R8vcNommYC+AHT/r1P CCE0TdsOPMkS6WbIUY6c/gC6PcE1lcewPDoaC52Oro6O8mjMdetkkZ8cEnYlkHE5A7OXzFiwfwHj mo8rkUkEwDffwMGDsGdP2U0iQB657fCCA/bt7bkVfIurc65y9s2znBt5DscAR5xedML+eXvM3J9s 1MiQbSD1ZCoJ+xJI3JdIYkgiaWfTADD3Mse2pS2VRlTCtqUtFj4W+R4VCQiQ01D7jxjhH+CIY4Aj VWdU5cr/rnDp00tELY2i+vzq2D9nf6ePTtMx/fnpBGz7nFiruoSnpeHdrRsEBcGlS1ClyhO9ZkVR Hi6/X1WcACMg6q77o4AnGTR2e8A1S8hRSuVHUHQ0XR0dsTI2lvvx9Xq5PiKHyF8iMfc250ftR3Sa jrefebuYon24iAj48ENZLbGU7QR8bJqmYd/GHvs29qRfTSfm1xiil0dzuv9pACyqW2Dta41VAyvM q5pj7mmOiZPJnSkGkS0wZBrIjs8mKy6L9Ih00s6mkXo29c6fhlQDGIFVfSvs29nj9bEXtv6ylsiT atRIbrrYsAH8/eV9ZpXM8JntQ8WBFTn75lmOPn8Ur6leVPmgCppOJiodfTrSfO//2GvI5LeYaN7r 2FGu6Vm3Dt4umb+filJWlPo6EqNHj8bW1jbXfYGBgQQGBhZTRKXXieRkjqWk8Im3t7xj0SJ44YVc R2NmJ2cTvTIa1zGufHPwG4b6DcXR0rGYIn4wvR769wdHx3sGVMoN88rmcjpgrAeZMZnE/xlP4p5E kg4nEbcxDn1S3s7vMHU3lesanrHG9RVXrBtbY93IGiPLgt+ho9NBp07yLJSZM3M/VqF2BRrsaMCl Ty4RMTGC5NBkai6uibGVMZqmMavNFJr/8ycLLmu859lOnlC7dq1KJJRyLygoiKCgoFz3JSQkFNj1 85tIxAJ6wPWu+12ByCeII/Jxr/m///1PrZEoIEHR0dgbG9PBwUGuiwgJkaMSOcSsjMGQamBTvU2k hqUyptmYB1yteH3+OezeDTt2gI1NcUdT/EydTXF92RXXl+U/MyEE2beySb+UTvbNbPTJegzpBjQT Dc1Ew8TeBGNHY8wqm2FsVbTfNzp3lvU+IiLk6aw5aToNr0leWPlaEdYvjGMdjlFvcz2MrY151uNZ 6uxfyYlsEy6np+HZrRuMGiUPmrOzK9LXoCglyf2+XOdYI/HE8rURTgiRBYQCz/973+3Fls8De58g jn05r3lbu9v3K0VACMGy6Gh6OTtjqtPBzz/LN9+uXXO1i/w5EpvnbJgZMZMBDQZQyaZSMUX8YIcO wcSJMH68rBuh3EvTZLJg3cAa+zb2OHV1wqW3C87dnXHq7IRtc1sq1KxQ5EkEyHLZJiZyVOJBnLo4 UX9bfVKOp3Cs/TGyE+SJn5/7vgSGLKac+FP+7mZnw6ZNRRS5opRPj7Oj/ktgsKZp/TVNqwnMByyB XwA0TZuuadrCnB00TauvaVoDwApwvv1zrRxNvgY6aJo2RtO0GpqmTUYu6vzmMeJTHsO+xEQi0tPl To3sbDmt0bcvmP837516PpWEXQmEtQ4jJjWGcc3HFWPE95eaKsOuV6/0lcFWJBsbmQBu2PCIdk1s qP9nfVJPp3K883EMGQY6eLfAKeMSy6NuYKjkDn5+cnpDUZRCk+9EQgixAngXmAocBuoBLwghYm43 cQM87up2GDmS4Qv0BQ4h60X8e819t+8fAhwBegDdVA2JorMsKopKpqb429rC1q1w/ToMHJirTeQv kRjZGDHVfCq9n+6Nj4NPMUX7YO+9B5cvyxpaZXmXRlnXuTMEB0NKysPb2TSyoe6muiQeSOT0G6cR QjDYswapltX45eRa6NYNNm+GjIyiCVxRyqHHqvEnhPhOCOElhLAQQjQTQhzM8djrQog2d7XXCSGM 7rpVvavNKiFEzdvXrCeE+OPxXpKSX1kGAytiYgh0dUWnafDTT/IrfY61J0IviFoYRUK7BM6mnmVC 8wnFGPH9bdoE330Hs2dDzZrFHY3yJAIC5Gf/n38+uq1tM1tqLaxF9NJoIqZEMLZ6UwA+ORWM6NoV kpLkYhlFUQpFGSgWrDypP+PjicnKoq+LC8TGyi1zr78OOWoAxP8ZT8bVDOZ5z6PTU52o71a/GCO+ 17VrMuSOHeUR4Urp9tRTUL36o6c3/uXSxwXvT725NOUSbE+kgbkgwsSTv21uyhWbanpDUQqNSiQU lkVHU8vSkgZWVnJOAO6tHfFzJPqqejZV2MQHLT4ohigfLDNTFuA0MZGr/UvwKeZKPgQEyAWXeS2+ 6/m+Jw6dHDjd/zTDTXzAriGfhsyV0xvr1qlDvBSlkKhEopxL1ev5PTaWvi4uaCCnNbp2lad93pYV n0XM7zFsbrgZ/yr+NPdsXmzx3s/YsbJ65W+/yWJGStnQubNcqnP4cN7aazqNmgtroplq1BsTh5FB x58JaVzwryOHrEJDCzdgRSmnVCJRzq2PiyNZryfQ1VW+Yx87ds8iy+jl0RiyDfzk9ROTWk0qOmiS dQAAIABJREFUpkjvb8kSWQb766+hadPijkYpSP7+cgfymjV572PqZErtoNqk7Ulk3FpzzCu+wFQR DPb2anpDUQqJSiTKuWVRUTSxtqaahYUcjahYEdq3z9Um8udIwp4Oo3bt2rTxbvOAKxW9Y8dgyBBZ wfLNN4s7GqWgmZhAly6wenX++tm1tKPy6Mq0/SET14R6LDmzgeR2rVUioSiFRCUS5djNrCw237wp a0ekp8v1Ea+9Bsb/FSFKPppM0oEkltdczuTWk4vtaOq73boFPXrIY8Hnz1frIsqql16CkyfhzJn8 9fOe6o1ZZTPGzNZh6fIcK3zS4fhxCA8vnEAVpRxTiUQ5tjImBr0Q9HFxkd/Wbt2SWx9yuDbvGom2 ifA8PO99d/HR4pGdDYGBEBcHq1aBhUVxR6QUlvbtwdIy/6MSRpZGPP1TTeodh37H3+B94x0IU1M1 KqEohUAlEuXYwshIOjg44GpqKqc1WrSQe+5uy07K5vqS6/ze4Hc+bvtxiRiNEAJGjIDt22HlSqha 9dF9lNLLwkIe4pXfRALkFEdMX2s6/2SNlu3K+YZVVCKhKIVAJRLl1JnUVPYlJvKam5s8HWnbtntG I6KWRiFSBVGdo0rMaMTMmfDDD7BgAbRtW9zRKEWhRw+5K+fy5fz3bTjzKQw6eP/gTOZXuo7YtQtu 3iz4IBWlHFOJRDm1MDISO2Njujo6yk9mGxvo0+fO40IIznx9hn3V9zG6++gSMRqxbBm8/z58/DEM GFDc0ShFJSBAljt/nFEJn8o2bB1mRv2tLuw380DT6x9+GpiiKPmmEolySC8Ei6OiCHRxwVyvh//7 P7n1oUKFO20SQxLRndZxvuN52lYt/q/+O3fKAZP+/WHy5OKORilKNjbyRNDHSSQA3IdW5KIPDNs/ iWNVLBFqekNRCpRKJMqhv+LjuZqRIac1fv8doqPv2T954PMD3LC7Qd/hfYt9NOLkSXjxRbmEY8EC tUOjPOrRA3bvhqio/Pd9yc2FOSPA/YIbO6yaoN+8Ue5SUhSlQKhEohxaGBlJTUtLnrG2lnsnW7aE 2rXvPJ4Rl4Fhg4Hjzx+nrU/xjkacPQvPPw8eHnKHhjrRs3zq2hV0uvwVp/pXDUtLsp+15HIrUzyv vYkuNRv++qvgg1SUckolEuVMQnY2q2Njec3VFe30aXkq4l2nXG2ZuQVNr9Hx/Y7FOhpx4QK0aQOO jnKXhp1dsYWiFDMnJ2jV6vGnN15ydmb269nYJjpzzKILCSsWF2yAilKOqUSinFkZHU2GwcCrbm7w /ffyTI3u3e88npmdSerCVC48cwF/P/9ii/PSJZlEWFrKJCLH0R9KOdWjhxxIiI/Pf9+ezs4cr2Ig s7ctsVmvYVi7DQyGgg9SUcohlUiUMwujomhnb08lvR4WLoQ33gAzszuPL/9xORWjK9J4XONii/Ha NZlEGBnJD46KFYstFKUEefFFWYxs/fr8961ToQJPWViwYagZOiqQcCuAlD07CjxGRSmPVCJRjpxP TWV3QoJcZLl8OSQkyMMqbkvNSuX6vOvcqnQL3xd9iyXGy5dlEpF9exq7cuViCUMpgSpVgmbNHm96 Q9M0XnJ2Jsg4HtuB9lymF6fm/a/gg1SUckglEuXIoqgobIyMeNHJSS6y7NABvL3vPP79mu9pfLwx 3qO9i2VtRFgYNG8OmZkyifDyKvIQlBKuRw/YsgUSE/Pft6ezM3HZ2dwa7YFBZ4JunSsGoaY3FOVJ qUSinDAIwaLISPq4uGBx5AgcOJBry2d8WjxX5lwh2yqbOm/WKfL49u//79joPXugWrUiD0EpBXr3 hoyMx6t07WtlhZe5Ob/pblHh+ThSU7qzY/VPBR+kopQzKpEoJ7bevMmljAwGurnBvHlyP2VAwJ3H v9z6JW0PtMV9qDtGFYyKNLbt2+V0Ro0asvCUu3uRPr1Sinh6ylGroKD899U0jR5OTvweE8PT8zsg 0BE/KZ/HiiqKcg+VSJQT869fp36FCjTJyIAlS+RohJFMGK4mXuXi9xcx15tTfXT1R1ypYP36qzyU qWVL2LoV7O2L9OmVUigwUB4NExub/749nZ2JysrioIMOm8ohOJ5qxckLJws+SEUpR1QiUQ5cTU9n fVwcb7q7o82fLxOIHNMaH2z9gBf3vYhTHyfM3M0ecqWCYzDIMzNeflke8bF2ba4K3YryQL16yd+f Vavy37eJjQ0eZmYsj47G563KaMKUXR9tKfggFaUcUYlEOfDjjRtYGhnRz84Ovv1Wnnjl4ABAyNUQ rvx6Bedbzni/6/3wCxWQ5GTo2RM+/RSmT4dFi8DEpEieWikDXFxktdPly/PfV6dpBLq4sCI6GrPX uuDKVqr87k384xSnUBQFUIlEmZdtMLDgxg36ubhgvXw5xMTAqFGAPOHznc3vMODgAGzb2GLdwLrQ 44mIkHPc27bJUYgJE9TZGUr+BQbC33/LmiP57uviQlx2NttNTKhY7zjmGbZsmL6h4INUlHJCJRJl 3Ia4OK5nZjK0YkX48kvo0gWqy3UQQSeCSA5JpkpEFTzHeBZ6LNu3Q+PGckQiJESGoiiPo3t3ee7K 44xK1LeyopalJcuio7Ht2wYn3U4s/s8cfZa+4ANVlHJAJRJl3Pzr12libU3Dffvg1CkYMwaQxafG bx/POyfewaKGBQ4dHQothqws+OADaN8eGjaUWz2ffrrQnk4pB+zs5EFeixblv692e3rj95gYUrt2 xcuwFKebzmyfu73gA1WUckAlEmXYxbQ0/oiPZ1ilSnI0wtdXbo8AZu+dje6KDp+DPniM9kDTFc78 QkSEPGzp88/leogtW+QhXIrypF59FY4dk7f8CnRxIcVgYIOjI1bVjciyP0TCVwkIIQo+UEUp41Qi UYZ9f/06dsbG9I6JkXsrx4wBTeNq4lVm7pnJ1HNTMXEwwbW/a6E8/2+/QYMGcOMG7NoF48fLo6AV pSB06CBPBV38GAd5+lha8oy1NcuiotC6daNe9kpcrrhwLOgxshJFKefU23oZlWEw8FNkJAPc3LD4 6it5UEGvXgCM3z6eyumV8drmReXRlTGyKNgCVNHRcktnr15yOuPwYWjatECfQlEwMZGLLpcuBf1j LG8IdHFh082bxPfogUtSCNddwzj/6Xk1KqEo+aQSiTJqdUwMsVlZDDU1lQWo3n4bTE3ZfnE7y44v Y1bELHTmOiqNqFRgzymEfFOvXVuelbFsmSw4ZWdXYE+hKLm8+qoc8frzz/z37ePiQrYQrPb0RPP0 xKvKHhzDHLnx142CD1RRyjCVSJRR312/TitbW2rOny+/ug0ZQnp2OsM2DqOjQ0fsV9lT+e3KGNsa F8jzXbkid2G88gq0ayfXdQYGqq2dSuFq1Ahq1oSFC/Pft6KZGW3s7FgWHQ29e/PMxT+IcA7n4JSD BR+oopRhKpEogw4mJrI7IYFR9vayANWwYWBvz7Rd07h06xJTIqYAUGnUk49GpKXBJ5/IN/NDh2Rt iKAgcHZ+4ksryiNpmqyvtno13LqV//6Brq4E37rFjZ49MY6NJaPZUWx22ZB8OrnAY1WUskolEmXQ V1ev4m1uTtclS+RRiWPHEhYTxozdM/io3kekL0jHfZg7pk6mj/0cQsjFlLVqyURi+HB5DHjXrgX4 QhQlD/r3l1uMly3Lf98eTk6YaBq/uruDlxedLa8QZxVHyJSQgg9UUcoolUiUMdczMvg1JoaRzs4Y ffUVDBqEcHVl2MZhVLGrwsshLyP0As9xj1+A6sABeVpnr15Qty6cOCG3d9raFuALUZQ8qlhRHvz2 02OcCG5vYkJHB4c70xvu23ey/7kQxCpBZnRmwQerKGWQSiTKmG+vXcNCp2Pg+vWQkADjxrHw6EL+ vvQ385rNI3JuJJXeroSpS/5HI44ehW7d4JlnICoKNm+G9evvFMpUlGLzxhsQGip/R/Orn6srB5KS CHvpJbTYWJ5rZUw22RyffbzgA1WUMkglEmVIql7P99evM9DJCZsZM6B/f2KdLHl367v0q9sP75Xe aJqGx7se+bruqVNy9KFBA/nfixfD8eNyH7+ilASdOoGrK/zf/+W/b1cnJxyMjfnF0RGqVqVtWDQ7 Gu8g9vtY9GmqbLaiPIpKJMqQn27c4FZ2NqO2bYO4OPjoI0ZsGoFBGJhZfybXvrlGpZGV8rQ2QghZ RKpbN1nO+sAB+SYdFiZ3ZhgVbOkJRXkiJiZyrcSSJXIBcH6Y6XT0dXVlUVQU2X36YLxmLTaDLDFO MubS/10qnIAVpQxRiUQZkW0w8MXVq/R2cMD7k09g4ECWp/zDipMr+C7gO1K+SEFnpnvkaER2Nqxc KQtItWwJ58/LBOLsWRg4EIwLZreoohS4wYMhPl4uAs6vgW5uRGZmsuXFFyEujsF2PuyutZtzn59D GFSBKkV5GJVIlBErYmKISE9nXHAwJCYSNWoQwzcOp/fTvelq1pUbC27g+b4nJvYm9+1/9SpMnQpV q0Lv3mBlBZs2yYWUAwfKkxYVpSR76ilo2xbmzct/34bW1tSvUIGfLS3BxweXjcHE9I3B7LIZsetj Cz5YRSlDVCJRBgghmHX5Mi9YW9NgyhTEoEG8fngSZsZmfNfpO8I/CsfUzZRKb+WuG5GdDRs2yC2b VarArFnwwgty0dqff0LHjqqglFK6DBsG+/Y93qLLgRUrsj4ujph+/WD1avr06cFxj+Mc/0wtulSU h1GJRBmw5eZNjqakMD44GNLTWdbFi83nN/Njlx8xOWVCzIoYvKZ4YWRhhBCwdy+89Ra4u8tqlNeu yW9xN27AggXykFBFKY26dJHbQefPz3/fvi4uACzt2BHi42lxLoN/Ov2D7oCOxP2JBRypopQdKpEo 5YQQTL10iabm5rT++GNuDXudNw9PZVDDQXR6qhMXRl/A8mlLLtVw5f335dRF8+awZo1cnBYaKm9D hoC1dXG/GkV5MiYmMGiQXHSZlJS/vk6mpnR1dORnnQ5RvTraihU898ZzXHW4Stj0sMIJWFHKAJVI lHLb4+MJSUxk0pYtYGFB32pHcLJ04rOWX/LHBzEk7E7go+s+NGuhY8ECeRrnjh1w+TLMnq1GH5Sy Z/BguXNj0aL89x1YsSLHUlI4PHgwrFpF3xrd2dRyE6nrUkkLz+d2EEUpJ1QiUYoJIZgSEUFjExPa f/opKzs1YktMCI47F+LjZsmtGRc4YulIvYEO7NwJkZHw/ffQqhXo1P95pYzy8IDu3WHuXDAY8te3 vb09FU1N+alVK0hKwmLLdrze8CLJPInwL8MLJ2BFKeXUx0kplZoKX++8xZ7ERAI//ZXLRk70r7IV 411TcU1vyfznr+JmnMngQ9WYPRv8/dXWTaX8GDkSzpyBbdvy189Yp+M1NzeWZWSQ3qIFLF7M0BZD Wdt4LZH/F0lWfFbhBKwopZhKJEoBvV6+KQYFyTfIxo3BxlYw+kgEtucMvLNlLh92S6W+awcSN77P qnnpVN5xicojK1GhhmVxh68oRa5FC2jYEL7+Ov99X3dzIz47m3VDhsCWLVTJsiQ9MB19lp7r868X fLCKUsqp76glTGwsHDsmS1AfOyZvJ05Aerp83McHmjWDJiNv8q1HAku+ncfRp2zY2dSaw28sxtxM x4nR5zG2NcZrklexvhZFKS6aBqNGySPGz5yBGjXy3re6pSXNbWz4sWZNegOsWMHggMFsqLcB46+M 8Rjrgc5UfQdTlH+pfw1FTAiZLISEyJXlkyfLktNNm4KjIzg7w/PPw4QJci983bowbRps3w7R0XDu HPyyULC3VjgtUlLouOo3hjyfwq+9VuBk6UTcljhiV8dS7ctqGNuoPFEpv15+GVxcYM6c/Pcd6u7O tpQUzr38MixeTKsqrTje5ThatEZ0UHTBB6sopZj6pCkgQsjtZjExMlGIipL1Ga5evfeWmvpfPzc3 OcpQq5bcA1+9ukwefHwevKbht5gYDicn8+enU/m5AbzcfxbPejyLPk3PubfOYdfGDpc+LkXzwhWl hDIzg+HDYeZMmDIFnJzy3reXszPvnD/P94GBzA4IQDt7lv49+rNv2T6MZhrh2t8VTVVrUxRAJRJ3 ZGfLLWPJyZCYKJOCu2//3h8f/1/CEBv7339n3bUOy9gYKlWSt8qV5emZlSvLVeU+PlCtWv5rN2QZ DEwMD6ft5XAaHN3Pwq878UvT0QBcmnqJjCsZ1N1QV73JKQowYoRMJL77Dj7+OO/9zI2MeN3NjZ+B T1xdsfj5Z3p/9gkB7QJo9l0z4rfF49DeodDiVpTSRBOidB5Io2maLxDapk0otra+6PVyq5deT67/ /vfP7GzIyJBrDf695fz5UdvEjIzAxkZ+8Nvby283zs7yz39vOX92cZG3gt5m+e21a7x99iyHBg9m XdMMxvwUhpWpFUmHkwhtHIrXZC+8PvIq2CdVlFLsrbfg11/h0iWwzMfa43OpqVTfv5+F+/fT/6uv 4PJlvtw/B6teVtSvUZ8mfzUpvKAVpZAdOnQIPz8/AD8hxKEnuVapH5FITZVDmDqd/LA3NpZ/Ghn9 d59OJ+83N899MzO792dr6/9u/yYO1tby8eL+kn8rK4vJ4eG89Pc2srMv8/rcc1iZWmHINnBm0Bkq 1K6A5zjP4g1SUUqYMWNkCfiFC+VZHHn1lKUl7eztmdesGf3Hj4etWxn8/GD6+vel+q/VST6ajFV9 q8ILXFFKiVKfSHz7bfmpzvjZpUskpaXwxXc/kLTkZzzsqwBw5fMrJB9JxjfEV60mV5S7VK0KL70k K7kOHpy/eirD3d3pHh/PwYAAGv30E9adOvH0a08T/Uc0Fz+/SL0l9QovcEUpJdSnTilxMS2N/125 xPily0jp3pKn2/cDIPloMhGTIvAc54lNY5tijlJRSqYJE+DiRTnFkR9dnJzwMjfn64EDYd06iI3l 7eZv83uT34lbHkfGtYzCCVhRShGVSJQSLx38C8ebcQzc8xe1vl4GgCHDQNirYVjWssRrslfxBqgo JZivL3TqBJ99lr+y2UaaxluVKvGroyOR9vaweDGVbCph1d+KNJM0Ln99ufCCVpRSQiUSpcD4Q2s4 oq/A3Lnf4vnLcrlgAwj/OJzU06nUWlwLnZn6X6koDzNxIoSFwerV+ev3hpsbpprG/Pfek4fVCMGo tqNY57uOK/OvkJ2UXTgBK0opoT59SrhVZzbw1fU02oYe5CU/P7TmzQG4ue0mV2ZdwftTb6zqqQVf ivIoTZtC27bw6aey7kte2ZmY8JqbG/MaNSLj4kXYuZM6LnW42ecmIkVw48cbhRe0opQCKpEowf4K /4u++9YgzJ2Yu3kzRtOmA5AZlUnYq2HYt7fH412PYo5SUUqPiRNlxdh16/LXb2TlykQDQf36wfz5 AAzvOpw/6/zJuS/OYcjO5zGjilKGqESihNp3ZR+d14xA7/Ey761YSc0v/wdmZgiDIKx/GAC1FtVC 06nCU4qSVy1bQps2sjhVftZK1LC0pLOjI7N790asWgUxMbSq0oqz3c+iu6Yj5reYwgtaUUo4lUiU QHsu76HD0gDsqozD59p1JtasCfXkNrNLn1wifls8tRbXwtTVtJgjVZTS59NP5WF4K1bkr997Hh6c tLBgc5Mm8MsvaJrGkFeHEOodyslpJymtxf0U5UmpRKKE2XJ+C+0Wt8O70uvccPDmxz17MH/nHQDi NsURMSUCr6leOLRT5XkV5XE0awYBATBpkqx4m1f+trY0sbbm8+HDZYUrvZ52VdtxpOsRdMd13Npx q/CCVpQSTCUSJcivJ36la1BXWnh357xLe4Zv306LadNApyPtQhph/cJw7OxIlQ+qFHeoilKqffIJ nD0LixfnvY+mabzn6cmOihU5YGoKGzeiaRp9hvXhvOt5jkw8UngBK0oJphKJEuKH0B8IXBVIrzov k2TWA5ebN5nRoQM4OpKdkM3xLscxcTKh5qKaal2Eojyhhg2hVy85KpGWlvd+Lzo54WNhwcwRI+6c Tx5QPYDdXXej7dFI2JdQSBErSsmlEoliJoTgs52fMXTDUN565i1qa93Zb2fH4rQ0rFu0wJBt4GSf k2TeyKTuhrqY2JkUd8iKUiZMmwaRkfD113nvY6RpjPfwYHWdOpw6fx5OnkTTNLqN6kaEcwRHPlCj Ekr5oxKJYpSalUq/1f34KPgjprSewmsO/ZhsZc34kydp/vrrCCG4MOYC8dvjqb2yNpY18nF0oaIo D+XjIw/xmj4dYvKx6aK/mxuVzcyYNmgQzJ0LQLfa3djReQdihyDxYGIhRawoJZNKJIrJlYQr+P/s z9oza1nRcwXvVOlPn/Bw6kVGMnnQINA0rnx+hWtzr1H92+o4tFWLKxWloE2cKP/85JO89zHV6Rhf pQpBzZtzbvt2iItDp+noOKojlx0vc/TDo4UTrKKUUI+VSGiaNkLTtHBN09I0TQvRNK3xI9q31jQt VNO0dE3Tzmqa9tpdj7+maZpB0zT97T8NmqalPk5spcHeK3tpvKAxsamx7Bm4h56V2zN49WpibGxY 0aoVppaWRC6O5OL4i1SZWAX3oe7FHbKilElOTvDBB3ITRlhY3vu94eaGq4kJ03v3hu++A6Bn3Z4E dwxGv1VP0pGkQopYUUqefCcSmqb1Ab4AJgENgaPAH5qmOT2gvRewAfgTqA98DfyoaVq7u5omAG45 bmVua4IQgm/2f0PrX1pT3bE6BwYfoIFDbeZPn84KX19+dHOjmocHsetiOTPwDG5vuOE1xau4w1aU Mm3UKPD0hHfeyXvpbHMjI96rUoXFbdtyYcUKSEvDSGdEx7EduWZ/jdD3Qws3aEUpQR5nRGI08L0Q YpEQ4jTwJpAKDHxA+2HARSHEOCHEGSHEt8Bvt6+TkxBCxAghom/fylSpuOiUaDoHdebtzW8z1G8o 2/tvx8Xckb3vvceo559nhBD08vXl5tabnOx1EsdujlSfXx1NUzs0FKUwmZvDV1/B1q35K539prs7 zsbGTOnSBRYuBKBn/Z7s6bwHtkDyieRCilhRSpZ8JRKappkAfsjRBUB++gPbgWYP6Nb09uM5/XGf 9laapkVomnZZ07Q1mqbVzk9sJdnmc5upO68uB64dYEPgBuZ2moupzoRr48bxUsuWNAW+bNWK+OB4 Trx4Avt29tReVhudsVrCoihFoXNn6NABRo+G9PS89bEwMuKjatVY0q4dp5YtA70enaajxwc9iLSN ZO+EvYUbtKKUEPn9pHICjICou+6PQk5H3I/bA9rbaJpmdvvnM8gRja5Av9tx7dU0rVQvDkjJTGHk 5pF0WtYJv4p+HB92nIDqASAEae++Sw8fH4xtbVnZqhXJ225xvNNxbP1tefq3p9GZqiRCUYqKpslR iatXYcaMvPd7o2JFPHU6JrVpc+d88rY123L4xcMYbzIm4ZiqK6GUfSXi00oIESKEWCKEOCaE2AX0 AGKAocUc2mNbd2Ydtb+rzYJDC/i6w9ds7LsRVytXEAL92LG8YmvLiRo1WNOkCUZ/JHK863Hs29pT Z20djMyNijt8RSl3atSAcePkdtAzZ/LWx0yn4+Pq1fmtdWsO/fLLnZPAek3uxQ27G+weubvwAlaU EsI4n+1jAT3getf9rkDkA/pEPqB9ohAi434dhBDZmqYdBnweFdDo0aOxtbXNdV9gYCCBgYGP6loo LidcZuTmkaw9s5YOPh0Ifi2YqvZV5YMGA7zzDu/p9azx9+f3unVx/y2ZE4PP4PSik5zOUCMRilJs PvwQli+HN9+Ev/6SIxWP0t/Vlc/PnGFcmzZsW78erVs3Gnk1Ys2ra2g7py3RO6NxaelS+MErygME BQURFBSU676EhAIcLRNC5OsGhABf5/hZA64A7z2g/Qzg6F33LQM2PeQ5dEAYMPshbXwBERoaKkqC lMwUMX3XdGH5maVw/8JdrDy5UhgMhv8aZGYK8eqr4otevQTBwWLu5csiYlqECCZYnB56WhiyDQ++ uKIoRWbrViFAiJ9/znuftTExguBgsalvXyFu/7s/E31G/Oj2o1hXf13u9wJFKQFCQ0MFIABfkc88 4O7b43z9/RIYrGlaf03TagLzAUvgFwBN06ZrmrYwR/v5QFVN02ZqmlZD07ThQM/b1+F2n4maprXT NM1b07SGwFLAE/jxMeIrUln6LOYfnI/PHB8mBk9ksO9gwkaE0bN2z/92XCQnQ48eLLh1i7HDh/O+ mwdtJ6cQ/kE4XpO9qD6vOpqR2p2hKCVBu3bQrx+MGQM3buStTxdHR1oKwXtt25K9aRMA1Z2rc3Xo VayPWnNl7ZVCjFhRile+EwkhxArgXWAqcBioB7wg/tuu6QZ45GgfAQQAbYEjyG2fbwghcu7ksAd+ AE4BGwEroJmQ20tLJIMwEHQ8iFrf1mL4xuG08W7D6RGn+arDV9iY2fzX8Pp1aNWKIIOBoaNH8465 K72GJhK1JIqai2riNclLbfFUlBLm66/BxEROceSltoSmacz29eWktze/bNx4p9PgMYM57nWcw2MO Iwx5LFKhKKXMY03ICyG+E0J4CSEshBDNhBAHczz2uhCizV3tdwoh/G63f0oIsfiux8cIIbxvP+4u hOgihDj2eC+pcKVkpvDdge+o+U1N+q7uS23n2hx58whLeiyhmkO13I1DQ6FpU5ZWq8Yr773H2GsO 9OoZT2pYKg3+aoDbqw/a6KIoSnFydIT582Vdibumlh+osa0tfYEP27Yl4fffAXC3cUeboGEbbsuh +YcKL2BFKUZqZV8eXU+6zod/fojnV568vfltGrg1IOSNENYFrqOea717OyxaBM2b80tAAP3fHM6s 9VYEDIjHoqoFjQ43wra57b19FEUpMbp3h5dfhrfflgOLeTGrWTNSrKyYeugQZGcDMPiNwRyud5jL ky6jz9AXYsSKUjxUIvEQ6dnp/HbqN7oGdaXKV1WYu38uA+oP4MLIC6zotYImlZvc2ylV98YWAAAg AElEQVQtTY6HvvYaX376Ke+80IfFk83w+18ynhM8qf9Xfcwqmd3bT1GUEuebb8DMDAYMuLOz86Eq mZnxoZUVc1q3JuzXXwEwMzaj1oxa2MTZsGnKpsINWFGKgUok7pJtyGbnpZ28ueFNKn5RkV4rexGd Es3XHb7m6pirfPHCF3jZed2/88mT8MwzGBYt4t3Vq/ktsxHL3zSiymkD9bbUo+qnVVW1SkUpRRwd ZfXrbdtgzpy89RnTtCleycmMjI9HpKUB0KFjB061PoX2tUbCDVWkSilb1KcaEJcax5JjSwhcFYjz 5860+qUVm89vZkTjEZwecZqQQSEMbzw89yLKnPR6+Pxz8PMjxcSEASu2UWGOPdM+BHdfWxodboRD e3UMuKKURu3ayQO9JkyAY3lYuWWm0/F11apsr1OH5UuW3Lm/w7wOaHqN9UPXF2K0ilL08luQqtQT QhB+K5x9V/ax98pe9l7dy7GoYxiEAb+Kfox8ZiSdq3fGz90PnZaHPOvECRgyBEJCuPz+B3xm1Ile fTOpYGpErWXVcXnZRe3KUJRSbvp0CA6GXr3g4EGwtn54+0716tFz6VLecXbmhWvXcKhUiadqPMWO QTuo9l01TgWfovZzZeY4IaWc00Rez80tYTRN8wVCQ0ND8fX1vefx9Ox0IpMjOX/zPGExYZyOPU1Y bBgnY04SnRINQA3HGjzr8SwtPFvQ0acjFa0r5j2A5GT45BP48kuoVo2tY37g3DzB00cEpoGONJpT A1Mn0wJ6tYqiFLezZ8HPD7p2hSVLHl318npUFLUOHqT3jRssGDQIgOTUZNZUW4NmrRF4OhCdTg0K K8Xj0KFD+Pn5AfgJIZ5oS1GpH5GY+NdEKlyoQHp2OokZiUSlRHEj6QYJGf/NQ5oamfKUw1PUcq7F UL+hPFPpGZpWboqTpVP+nzArCxYsgKlTISGBxLdnsOl0C9yGpuFSzYgqG2rgHaDK4SpKWVO9uvyn HxgILVvC0EecBOTu6sqM+HiG+/jwysGDtGrUCCtLK+xm2GE1wIqNszbSZUKXogleUQpRqR+RaDip IU7VnDA3NsfK1Ao3K7dcN287b7ztvTHWPWHOZDDAb7/JYvwXLpDx0hCOmr9BUlAKcQ6Q+J4Tr4+u jZFaTKkoZdqIETKh+OsvaNHi4W0NmZm0WrSI6/b2HOvalQomJgD80OwHXE640Px8c5xdnYsgakXJ rSBHJEp9IvGgqY0Ck50Nq1bJxZShoaS07M8l+6FEbsok1Qy29jem78d1aOpqV3gxKIpSYmRlQfv2 cpPW/v3g5fXw9ud37KBeejpvZGQwt1s3AC6FXSKsfhgXOl1gxJoRhR+0otylIBMJ9fX5QeLjYdYs qFoV8XIg8dn1OdYkmAM7X+fMviy+HwTBf1dkxpxmKolQlHLExARWrgQrK+jWTS6Xehif1q2Zefgw 39jaEnzpEgBValUhZUgKNdbXYOvmrUUQtaIUnlK/RqJAGQywcycsWwZLl5KW5UTk02OJ0jck/aiB uBrGzP8gm5tdLJlfuwaNbR6wHVRRlDLNyQnWr4emTeHVV+Wg5cPWTY54/XVWr1zJaykpHHV3x97E hBdnv8iaVWuIHR7LzRM3caigtogrpZMakRBCnokxdix4epLxXC+ur8rksNNS/slayJULvpxrbsG4 ORpv/gg9R1Tnn2f8VBKhKOXc00/L7xxr18LHHz+8rc7NjYUVKpBkMDBk1y6EEBiZG/H/7d13eFRV 3sDx729KksmkkRAIQXoiTenNgiiiqKuuuq699/auiO9aHt+1LLZ1d1lxrWsXVCysIlYECyICaijS ROk9Ib1Mpp73jzuRGBNIwiST8vs8z3nuzL1nzj1znkB+Oefccwa9MIi+m/vy1KSnmqfSSjWB9hlI 7Nhh7YVxySWYzEMoGXExm5728Z33cb7hLdYXX4Y/uwcrpqZy1izD9Td5OOF33fh5zBiuzczEoY9s KaWA006z1ph44AFrBcz96X755fznk09422bjxc2bAcg+OZuyP5Yx9JWh/Hfef5u+wko1gbY/tJGb C8uXw4oVsHw5/qVrKfnZSQkDKU44mlLvJQRx4IhzkDoxlfLjXMwYWMEr3r3E2mxcn9mV/+3WjfQY XRNCKfVbt90GP/8MV14Jyclwxhl1ZBThj5Mnc8Vzz/E/48czplMnBrjdTHx2Ip/M/4QtN25h65Kt dE/p3qz1V+pgtf5A4qOPYNkya7OsoiLM1h34Nubj21aOb2clnrIkKuhOha03FfZz8fmtIQlnmp2k o1LocWQy/lEu3upezgt79/CTJ5fexHF/r15ck5lJsqP1N5FSqumIWFuOFxfDuefChx/C8cfXkbl3 bx7r0oUl27Zxtt3O0rFjSUh2ctjzh5FwZgLTbp7GIy8+gt1mb9bvoNTBaPWPf87gDg4li5DEEiAB v0mi+oiN2A2u3k7iD08hvn887v5uEkYmsDnT8GFBAR8WFPBVURFOm42z09O5MiODY1JSsOmy1kqp BvD5rFUvFy6E+fNhdC2bAwMQCrHuggsYeemlnJqRwWtDhiAifHHhF3je8vDDiz9w24W3NWvdVfuj 60iwL5CYddqbHN5jMDaXHXuCnZiMmF+nzBiMXfixooLvSktZXFLCRwUFbK6sxGWzcXyHDpyWlsa5 nTpp74NS6qCUl8PEibBmjfUA2GGH1ZFx507evPZazr31Vh7t04ebu3UjUBbg076fstG+kf7z+zM+ e3yz1l21L7pEdjU97+1D1tBsvKEQhYEAWyor2er1sqWyiC2Vlaz8oZyc0lLKQyEA+rpcnJqWximp qRybkoLLrl2ISqnIcLvh/ffhuOOsXUPnz4cBte3NlZnJOVdcwbczZzL53HMZ4HZzQmoqY94YQ+wx scy6YRZ9Z/Wla1LXZv8OSjVUq++RcD37LN6sLEI1rifa7fSIi6N/fDwjExMZkZjIsMRE7XVQSjW5 3FwrkNixA+bOhboW3w3eeCOn9uzJ4pEjWTJqFIfGx7P6L6vZ88Aenr/1eV58+EVi7DrRW0WeDm2w L5CY/MEHHDpkCPE2G8kOBz3i4ugRG0uyw6HbdyuloqagAE4+GdatsyZgHnVULZm8XoonTGDM9dcT 7NmTRSNGkGZ38tXYr8hdlctXT33FtAunNXvdVdunS2RXc2FGBtdmZnJxRgand+zI4IQEUpxODSKU UlGVmgrz5lm9ESeeCJ9+Wkum2FiSX3mF96dMoaiwkN+vWkUlIUa/NZoO9g4ccs8hPLn4yWavu1IN 0eoDCaWUaqkSE63eiGOPhVNPhf/WtuZUr170mTqV9//8Z5YVFnLR2rU4MmMY+tZQRmwaQc7tOXy2 6bPmrrpS9aaBhFJKNSGXC955B848E84+29oL8DcjyiefzKirruKNv/yF2Xl5XLluHSnHd6DnlJ5c tOAiHrr3IVbuWRmV+it1IBpIKKVUE4uJsfbluPNOuP12axVMn69Gpltu4bS+fZnx0ENM37OH69av p/sdPUg5PYVb37yVK/9xJZsKN0Wl/krtjwYSSinVDGw2a0+O6dPh1VdhwgTYu7dahvASmecFArzw 2GM8t2sXkzZsYOD0gSRnJXPbi7dx1lNnkVueG7XvoFRtNJBQSqlmdNFF8Pnn1tMco0fDDz9Uuxgb C++8w6U//8zTL7zA4zt2cGfuFobMGUJnW2eufe5aTn/pdEq9pVGrv1I1aSChlFLN7MgjYelSSEiA UaPg2WerzZtIToaPPuKaL7/k3zNn8s/t27k3uJNB7w6i365+nPrMqZw18yy8AW9Uv4NSVTSQUEqp KOjZExYvhksugWuugQsvhNKqjoauXWH+fG567z0enTWLR7ZtY3Lqbvq/OoCjVx/NwKcH8oc3/kBl oDKaX0EpQAMJpZSKGpcLnnkGXn8d5syB4cNhxYrwxawsmDePm2fOZPqrrzJ9926uzNpNz39nccbi M0h/KZ3TXj+Ncl95VL+DUhpIKKVUlJ13HuTkWHt1jBoFDz8MgQDWRh3z53PR7Nm8/+STfFFYyPlj cul0T3cunXcpnWZ24uRXT9Y5EyqqNJBQSqkWIDsbvvkGJk2Cu+6CI46A1auBQYPgyy+ZuHAhnz/4 IBvKyjjrpFySbu3C1R9eTZfZXThh+gkUVRZF+yuodkoDCaWUaiHi4uBvf4NFi6wtyYcNgwcfhEB2 f1iwgJE//cTXkyYR8PmY8PtcAtekcf3s68l6P4vjXj6OnaU7o/0VVDukgYRSSrUwo0dbQx233gp/ +QuMGAELd2fBokVkA9+edx5j/H5OPC+fnVclcdXsqxj5/khGPzeaZbuWRbv6qp3RQEIppVqguDir N2LpUmt5ibFj4aL/zWDX61/QYdAg5kycyP/t2smFF5Tw7dUuLnj/Aq786ErGPj+W2etmR7v6qh3R QEIppVqw4cOtuRPPPw9z58KhI5L4x3EfYCbdyl8vvJDZcz/h/ot9vHmLk2PnHcu/PvgX58w4h79/ /XfMbzb1UCryNJBQSqkWzmaDK66A9eut4x132cl++2EW3DCT0x57jG+nTGHx2cK9f4Xeyw5l5rtv cP9793PZ7Mv08VDV5DSQUEqpViIlBaZNs5bVHjYMxj15Lmd3WUTXFT/xzZlnctRwDzdPNcTs6MAb b8xi4VcLGfHsCN05VDUpDSSUUqqV6d8fZs2CJUuguOdguud+xzf+o3jglFN4etMH3P+Mg/ygg6ef f57Bq4cy6tlRPP3d0zrUoZqEBhJKKdVKjRoF8+bBG5+mcVe/WVzKSwyZ+gzvTL6CRY/D0oFw3VPX 8MDKp7jxvRs55+1zKPQURrvaqo3RQEIppVq5CRPg60XCVQsu5cajV/Ljjgz+fcZ4uvZewH9vdDBk Vi9emjOX71asZsCTA5i1Zla0q6zaEA0klFKqjRg7Fl7+sidJ333OjMH/4OwZj/DnZ85jzsWluLbb efSJJxlf+GfOfuscznrjLHaV7op2lVUboIGEUkq1MUOH27hk+WRKlqyjMPsoHn35dMQ8wZZM4eoH hjHl60/5dqeh3xP9eS7nOUImFO0qq1ZMAwmllGqjMkcdwqA1b+D74FOOj1nF9WuOZ2WXHxiy0Ma0 KTdzdNmLXP3FVEY9O4oFWxZEu7qqldJAQiml2riYUyaQsnkFzn8+wg2e+zjWewEeWwF/fqAD985+ kt1yA+Pe+RNnvfkHNhRsiHZ1VSujgYRSSrUHMTEweTKOLRtJuOc6zvddTnbMI4xe6ue5m3pz2bJH +Th4Moe+ehlXzZqk8ydUvWkgoZRS7UlSEtx9N7ZNG+l6yyAmyPlkB9/g4hkhpt+YxfjdU3jBMZTM V29i9P2TmbdkJ7r8hNofDSSUUqo9SkuDhx/GsX09faZ054jUSfQt/JK7HoTpt3TnyL03sXTU8Zzw 48MkXncHl/xpM3Pngtcb7YqrlkZa60pnIjIM+P77779n2LBh0a6OUkq1bl4vvPYaRfe9y6Yt4ylm MMU9fEy7XPj8GCcU5UBOHs53JjIucxwTjhfGj7eW6rbbo1151VA5OTkMHz4cYLgxJudgytJAQiml 1D7GwIIFFE6Zw5bPulFkBuPtVMLMiw0zJiYTkHKcu1ZiPuhB4J3TSXYlMG4cjB8P48bBYYeBwxHt L6EORAMJNJBQSqkml59P0X3vsOWFAIXl/bA5ilgzvpiHLktia5cO4N1Lp7w8UhYezsaXjiTgteF2 W0t3H3GElcaMgY4do/1FVE0aSKCBhFJKNRtjKHtnOTumrGLPik4YI5hOq3n3jzb+c0p3PPEdcPgK 6FtZyYBtg6icP4AlX9vIzbU+np0No0fD0KFWGjIEOnSI7ldq7zSQQAMJpZSKBn++j133LGXn9BIq S+KJYweezB+YfkE8bx7Tn/LEdGzBSgbYyznVnc0hG/qy7utYvv0WVq4Ej8cqp2fPfYHF4MEwcKB1 TudbNA8NJNBAQimlosmEDEULitg9bT15H5QR8gvJrMTXcRVzfhfHq+MHsrl7fwA6mjLGJSdxbmZf DtmbysYVTpYt45dUGN6QNC7O2iJ9wAArDRwI/fpZAUZsbPS+a1ukgQQaSCilVEsRKA2Q93YeuTN2 UvhFCYQg2fUTcSzghyHlzBqfxedDhpDXsSsYQw+7l5M6duJ3nbozOjEJ/94YVq+GNWv41bG42Crf ZoNu3SAry0p9+ux73bs3uN3R/f6tkQYSaCChlFItkT/fz9739pL3dh6FnxZg/BDfoZhE2xKMWcri kXF8NGownw0bSkGKNQszI1TJEWkdOb5jF8YkJTHI7cYhNnbtgh9/hA0b4OefrVT1uqxs3z27dLEC jW7doHv3fa+rUkaGFYyofTSQQAMJpZRq6QLFAQrnFZL/YT4FHxbg2+3DFmdIzMwnJrAEf3AZ67KE bw7vx8LDBrCyTxYBh5PYYIBDJcioTl0Y0SGNIQkJHJ6QgDs8gcIYyM3dF1Rs2ADbtllp61brWDUX A6zHUbt2tVLnzlZgUT1Vnevc2RpeaQ80kEADCaWUak2MMZQtL6NwbiFFXxZRvLCYYGkQW6wQn1VJ KP4HQpVfkevaw4bu3ViWnc3yPn1Y07MnQbsdMYaelRUMc7kY1LET/dLT6e92k+1yEVdjhqYxUFCw L7ioCjB2796X9uyxgpFQjR3Uk5IgNdVa+LM+x5QU6zOxsSDSjA16kCIZSOiyIUoppZqciJA4NJHE oYl0v707oUCI8hXlFC0osgKLr9wECkaQBByRH8MRuQV4vltNhfdDdsVsJz85lR1dsljZpw+P9+hB 3t69ANhCIXqUl9I/aBgQF0dWaiq9MjPpnZrKgEFxDBlS95hGMAh791pBRVWAkZtrBSH5+dZxzx5Y u3bf+4qK2styOKyAIjHROtb2OjER4uOt5HJZaX+v4+LA6dyXWurwjPZIKKWUijoTMlSsq6D0u9Jf UtnyMkKeEAjEZcfh7+WlLGETxeYH8oJr2BlbQJm7I6UdurO7Uw/Wd+vO1s6dCYZ7KGyhEF1LSujt 8dA7FKKXw0Evt5ueqalkZmSQ2bUrcQ18HMTjsQKKqmCjuBhKS6GkxEoHeu3xWMFIY/Yssdl+HVjs L4lYyWar/VhensN33+nQhgYSSinVhoUCISrWWsFFWU4Z5avLKV9Tjn+PHwBxCM4+Try9vBR2LiAv ZiP5/lXsDm1hr7McE9cJb0ImpckZ7E3LZEd6Bnk1VsJKKykhs6SEruXlZPr9dA2F6Gq3kxkbS7rb TXpKCp2Sk0lISUFSUiA52eouOMhxjFAIKiv3BRYez69TRYV13e+vPfl8dV/z+63hnaoUCv32dX5+ Dh9/rEMbSiml2jCbw0bC4QkkHJ4Al+8778/3/xJUVKyuoHxNOXFfxJG6NQ3MSAAkVrB3t+M7xEdp Wil5SXnsdP/ATtnELtnDXnshtphkJKYjQVcaee50NiemU5iUxt7kDr/0agDg8xG7fTvpq1aRXlRE ekkJ6RUVpHu9pAYCpAApdjvJDgcpTicpTifJTicpMTEkulzY3G7rGdX4eOvodmNzu4l3u4l3uUhL j4WYmGYdu8jJgY8/jkxZGkgopZRqVZxpTlKOSSHlmJRfnQ95Q1RursSzwYPnZw+eDR4qN1aS+FMi advTyMrPAo75Jb8t1YbJMHjSPZQllVGcUMze+A3sit3D1rgCtjvzKbCX4It34HAmY3ekUOpMpiQp hfWdUvG6UvDEJVAR58bnjKm1rhIKkVRRQUpZGcl5ebg9HtyVlcR7vbgrK3F7PL+8jvf5cAcCxAeD uINBXMYQA8SKEGOzEVN1tNmIsduJDYWIAWKMIUYEB2Cz2bCJWMdwEpvNWjLUZts3tlG1fnkEaCCh lFKqTbDF2ojvG0983/harwcrgnh3ePFu9+Ld9uujb7cPX64P/x4/ocoaj3IISKoQ6hAikBDA6/bi cXkod5VTEreNopgi8p1F5DpL2B1bQl6ch0KXj4p4B5WuGCriYvHb3BTYE7C747AlxmGzubA50sHh IuSII2CPJeCIxeeMxe+IwUhkeydsoRA2E8IWMtiMgfXr4fXXI1K2BhJKKaXaBXu8nfjseOKzaw80 wHpMNVgexJ/rtwKLakd/np9AUeCX5N+6732wOFj3jQVwgXEZQq4QQVeQQGwAf6wfX6wPX4wPb2wZ PnsBPrsPr81LpS1ApcOHx+an0u7DY/dTIT68jiBeezB8DOFzhPALBGwQEkPIJhgb1rHqvfCbo3dX PpURalcNJJRSSqkwEcGR4MCR4MDV21Xvz5mgIVASDjIKrRQsCxIsr5bKgoTKQ7WfKwgS8oUwXkPI G9r32hci5LVeR9J61nMtcyJSlgYSSiml1EESu+Ds4MTZwQm9Il++MQYTMBhfONDwhn55bUIGQvz2 GKzjfMhg1hm4ITJ100BCNcjrr7/O+eefH+1qtCva5s1P27z5aZvvn4ggTgEn2N0Hv9d6cnJyBGpl adRsDhG5UUQ2iYhHRBaLyMgD5D9WRL4XkUoRWS8il9aS548isjZc5goRObkxdVNN6/UITc5R9adt 3vy0zZuftnnr1eBAQkTOBf4J3AMMBVYAn4hIxzry9wTeB+YDg4FpwHMickK1PEcCrwHPAkOA2cC7 IjKgofVTSimlVPNpTI/ELcAzxphXjDHrgOuACuCKOvJfD2w0xtxmjPnRGPME8Ha4nCp/Aj4yxkwN 57kbyAFuakT9lFJKKdVMGhRIiIgTGI7VuwCAsdbYngccUcfHxoSvV/dJjfxH1COPUkoppVqYhk62 7AjYgT01zu8B+tbxmYw68ieJSKwxxrufPBn7qUscwNq1a+tRbRUpxcXF5OQc1LLsqoG0zZuftnnz 0zZvXtV+d8YdbFmt+amNngAXXXRRlKvR/oT3sFfNSNu8+WmbNz9t86joCSw6mAIaGkjsBYJA5xrn OwO76/jM7jryl4R7I/aXp64ywRr6uBDYDBFboEsppZRqD+KwgohPDragBgUSxhi/iHwPHA+8ByAi En7/WB0f+wao+SjnieHz1fPULOOEGnlq1iUf60kPpZRSSjXcQfVEVGnMUxtTgatF5BIR6Qc8DcQD LwGIyEMi8nK1/E8DvUXkbyLSV0RuAM4Ol1NlGnCSiEwO57kXa1Ln442on1JKKaWaSYPnSBhj3gyv GfFXrOGH5cBEY0xeOEsG0K1a/s0i8jvgX1iPeW4HrjTGzKuW5xsRuQB4IJx+An5vjFnTuK+llFJK qeYg1tObSimllFINF9kNz5VSSinVrmggoZRSSqlGa5WBREM3DVP1JyJjReQ9EdkhIiEROb2WPH8V kZ0iUiEin4pIVjTq2laIyJ0islRESkRkj4i8IyKH1pJP2z1CROS68OaAxeG0SEROqpFH27uJiMgd 4f9fptY4r20eQSJyT7idq6c1NfIcdJu3ukCioZuGqQZzY02gvQH4zQQaEbkdaw+Ua4BRQDlW+8c0 ZyXbmLHAv4HRwATACcwVEVdVBm33iNsG3A4Mw3pC7DNgtoj0B23vphT+w+8arP+7q5/XNm8aq7Ae jMgIp6OrLkSszY0xrSoBi4Fp1d4L1pMgt0W7bm0tASHg9BrndgK3VHufBHiAc6Jd37aSsJaiDwFH a7s3a7vnA5drezdpGycAPwLjgc+BqdWuaZtHvr3vAXL2cz0ibd6qeiQauWmYihAR6YUV0VZv/xJg Cdr+kZSC1RtUANruTU1EbCJyHtZ6OIu0vZvUE8AcY8xn1U9qmzep7PBQ9QYRmSEi3SCybd7a9tpo zKZhKnIysH7BNXSDNVVP4ZViHwUWmn3rqGi7NwEROQxr9dw4oBQ40xjzo4gcgbZ3xIWDtSHAiFou 689401gMXIbVC9QFuBdYEP7Zj1ibt7ZAQqm27klgAHBUtCvSDqwDBgPJWKvtviIix0S3Sm2TiByC FSBPMMb4o12f9sIYU30fjVUishTYApyD9fMfEa1qaIPGbRqmImc31pwUbf8mICKPA6cAxxpjdlW7 pO3eBIwxAWPMRmPMMmPMXViT/25G27spDAfSgRwR8YuIHxgH3CwiPqy/grXNm5gxphhYD2QRwZ/z VhVIhCPZqk3DgF9tGhaRzUdU3Ywxm7B+wKq3fxLW0wba/gchHET8HjjOGLO1+jVt92ZjA2K1vZvE POBwrKGNweH0HTADGGyM2Yi2eZMTkQSsIGJnJH/OW+PQxlTgpfAupEuBW6i2aZg6OCLixvpBk/Cp 3iIyGCgwxmzD6p78PxH5GWsL9ylYT83MjkJ12wQReRI4HzgdKBeRqr8Qio0xleHX2u4RJCIPAh8B W4FE4EKsv5BPDGfR9o4gY0w5UHP9gnIg3xizNnxK2zzCROTvwBys4YyuwH2AH5gZzhKRNm91gYQ5 8KZh6uCMwHosy4TTP8PnXwauMMY8IiLxwDNYTxd8BZxsjPFFo7JtxHVYbf1FjfOXA68AaLtHXCes n+kuQDGwEjix6mkCbe9m8at1arTNm8QhwGtAGpAHLATGGGPyIXJtrpt2KaWUUqrRWtUcCaWUUkq1 LBpIKKWUUqrRNJBQSimlVKNpIKGUUkqpRtNAQimllFKNpoGEUkoppRpNAwmllFJKNZoGEkoppZRq NA0klFItgojcJCKjo10PpVTDaCChlIo6EbkZayvvnP3k+UJEQiISFJFBEb7/peGyQyIyNZJlK9XW aSChVAsnIp1F5N8iskFEKkVki4i8JyLj6/HZ3iLyo4jk1EjLRGRWPT7fI/zLtUG/uEXkMRFZUcs9 14jI2Bp5RwOXAaeHd/itiwH+A2QAqw5UPxH5vAFBwcxwud/UM79SKqzVbdqlVHsiIj2wtvQtAG7F +gXqBE4CHgcGHKAIJ/C1MeaKWsquz1bBQo3NleopHTg1vGNs9XveDbiqnzPGLAGG1rPcilo26Dvo DYOMMV4gV0R0gyilGkh7JJRq2Z4CgsBIY8y7xpifjTFrjTH/AsbAr7rlg9W652uKB10AAAP4SURB VEPhX9oHJCIpIvKqiOSKSEW4B+PS8OWN4ePycJmfhT8jInK3iGwL95IsE5GJNYuu7XbV7isicpuI /BQuY7OI3NmAttnffWp+x3F1tNELjbifUqoa7ZFQqoUSkQ7AROBOY0xlzevGmJLwy5nAR9UuHYe1 /fjCet7qfqBf+F75QBb7eg1GAUuB8cAaoOov9knALcA1wHLgSuA9ERlgjNlQz/s+HP7cJOBrrK29 D9TD0lhfYw1dVBkAfAB82UT3U6rd0EBCqZYrC+uv7R/3l6mqWx5ARPoAT2AFH5+JSN963KcbsMwY syz8fmu1a1XDCAXGmNxq528FHjbGvBV+f4eIHIcVFPzPgW4oIgnAn4AbjDEzwqc3AUvqUd/aLBKR mkMcccAyAGNMgH1tlAY8BzxvjHm5kfdTSoVpIKFUy3XALvtfZRZJAuYAc4wxDXny4ClglogMB+YC 7xpj6px0KCKJQCbW3I3qvgbqOymzPxADfNaAeu7POcC6Gudeq5lJRBzALKygZVKE7q1Uu6ZzJJRq uX7CmkjY70AZRcQGvAkUAdc25CbGmI+B7sBUoAswX0QeaXBtG8ZDAwOlA9hujNlYPYXvUdPTQFfg HGNMKIL3V6rd0kBCqRbKGFMIfALcKCKumtdFJLna20eBgcAZxpgGP3lgjMk3xkw3xlyC9Zf6NeFL VWXZq+UtBXYCR9Uo5ihgdT1v+RPWL/rjG1rXWtTrqQ0RmYy1VsXp4bZVSkWADm0o1bLdiDVpcqmI 3AOsxPp3eyJWz8NAEbkcuB44A+thiM7hz5bV5wYich/wPVYQEAecijWxEqx5BR7gJBHZAVSGJ3n+ HbhXRDZiTba8AhgMnF+fexpjvCLyN+AREfFjDYukAwONMQ19kqI+T21MAP4G3AAUVGsjT7VJq0qp RtBAQqkWzBizSUSGAXcB/8AaesjDCigmh7Mdg9W7+F6Nj98HvFGP2/iAB4GeWEHDV4QDAmNMUET+ B7gb+Gv42njgMSApXKdOWIHHaeEhhfqaAvjD9cwEdmENPTRUXT0S1c8fhdVGT9e4x8tYQZBSqpHE mINey0Up1UKFn9q4va4FqYwxRzbRfV8P33drjfP3AN8YY+Y2oszPsZ4umXzAzI3UHPdQqq3RORJK tX2RnNQY7fveICIlIjIwkoWKyAUiUgocHclylWoPdGhDqbbNgzWPYmkt11Y24X03AG/XWNuharnt jxtZ5gXsWyhr6/4yNsJsYHH4dVGEy1aqTdOhDaWUUko1mg5tKKWUUqrRNJBQSimlVKNpIKGUUkqp RtNAQimllFKNpoGEUkoppRpNAwmllFJKNZoGEkoppZRqNA0klFJKKdVo/w8H3L1vgiXCTQAAAABJ RU5ErkJggg== " >

Ćwiczenie<a class="anchor-link" href="#Ćwiczenie">¶</a>

Dla modelu z poprzedniego ćwiczenia proszę wygenerować realizację sygnału długości 1000 punktów. Proszę porównać widma:

  • prawdziwe, obliczone z prawdziwych parametrów modelu
  • obliczone z estymowanego modelu
  • obliczone przez periodogram
  • obliczone metodą Welcha
In [20]:
<span></span><span class="kn">from</span> <span class="nn">scipy.signal</span> <span class="kn">import</span> <span class="n">welch</span>

<span class="k">def</span> <span class="nf">periodogram</span><span class="p">(</span><span class="n">s</span><span class="p">,</span> <span class="n">okno</span> <span class="p">,</span> <span class="n">F_samp</span><span class="p">):</span>
    <span class="sd">'''peiodogram sygnału s</span>
<span class="sd">    okno - synał będzie przez nie przemnożony w czasie</span>
<span class="sd">    F_samp- częstość próbkowania'''</span>
    <span class="n">okno</span> <span class="o">=</span> <span class="n">okno</span><span class="o">/</span><span class="n">np</span><span class="o">.</span><span class="n">linalg</span><span class="o">.</span><span class="n">norm</span><span class="p">(</span><span class="n">okno</span><span class="p">)</span>
    <span class="n">s</span> <span class="o">=</span> <span class="n">s</span><span class="o">*</span><span class="n">okno</span>
    <span class="n">N_fft</span> <span class="o">=</span> <span class="nb">len</span><span class="p">(</span><span class="n">s</span><span class="p">)</span>
    <span class="n">S</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">fft</span><span class="o">.</span><span class="n">rfft</span><span class="p">(</span><span class="n">s</span><span class="p">,</span><span class="n">N_fft</span><span class="p">)</span>
    <span class="n">P</span> <span class="o">=</span> <span class="n">S</span><span class="o">*</span><span class="n">S</span><span class="o">.</span><span class="n">conj</span><span class="p">()</span>   
    <span class="n">P</span> <span class="o">=</span> <span class="n">P</span><span class="o">.</span><span class="n">real</span><span class="o">/</span><span class="n">Fs</span> <span class="c1"># P i tak ma zerowe wartości urojone, ale trzeba ykonać konwersję typów</span>
    <span class="n">F</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">fft</span><span class="o">.</span><span class="n">rfftfreq</span><span class="p">(</span><span class="n">N_fft</span><span class="p">,</span> <span class="mi">1</span><span class="o">/</span><span class="n">F_samp</span><span class="p">)</span>
    <span class="k">if</span> <span class="nb">len</span><span class="p">(</span><span class="n">s</span><span class="p">)</span><span class="o">%</span><span class="k">2</span> ==0: # dokładamy moc z ujemnej części widma 
        <span class="n">P</span><span class="p">[</span><span class="mi">1</span><span class="p">:</span><span class="o">-</span><span class="mi">1</span><span class="p">]</span> <span class="o">*=</span><span class="mi">2</span>
    <span class="k">else</span><span class="p">:</span>
        <span class="n">P</span><span class="p">[</span><span class="mi">1</span><span class="p">:]</span> <span class="o">*=</span><span class="mi">2</span>
    <span class="k">return</span> <span class="p">(</span><span class="n">F</span><span class="p">,</span><span class="n">P</span><span class="p">)</span>


<span class="c1">#wspolczynniki modelu AR </span>
<span class="n">a</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">array</span><span class="p">([</span><span class="mf">0.3</span><span class="p">,</span> <span class="mf">0.2</span><span class="p">,</span> <span class="mf">0.5</span><span class="p">,</span> <span class="o">-</span><span class="mf">0.25</span> <span class="p">,</span><span class="o">-</span><span class="mf">0.3</span><span class="p">])</span>
<span class="n">epsilon</span> <span class="o">=</span> <span class="mi">2</span>
<span class="n">N</span> <span class="o">=</span> <span class="mi">1000</span>
<span class="n">Fs</span> <span class="o">=</span> <span class="mi">100</span>
<span class="c1"># obliczanie widma z modelu</span>
<span class="n">f</span><span class="p">,</span> <span class="n">P_model</span> <span class="o">=</span> <span class="n">widmoAR</span><span class="p">(</span><span class="n">a</span><span class="p">,</span><span class="n">epsilon</span><span class="p">,</span><span class="n">N</span><span class="p">,</span><span class="n">Fs</span><span class="p">)</span>

<span class="c1">#generujemy realizacje procesu</span>
<span class="n">x</span> <span class="o">=</span> <span class="n">generujAR</span><span class="p">(</span><span class="n">a</span><span class="p">,</span> <span class="n">epsilon</span><span class="p">,</span> <span class="n">N</span><span class="p">)</span>

<span class="c1"># estymujemy wspolczynniki modelu metodą Yula-Walkera</span>
<span class="c1"># obliczamy widmo dla estymowanego modelu</span>
<span class="n">a_est</span><span class="p">,</span><span class="n">epsilon_est</span> <span class="o">=</span> <span class="n">parametryAR</span><span class="p">(</span><span class="n">x</span><span class="p">,</span><span class="n">p</span> <span class="o">=</span><span class="mi">5</span><span class="p">)</span>
<span class="n">f</span><span class="p">,</span> <span class="n">P_est</span> <span class="o">=</span> <span class="n">widmoAR</span><span class="p">(</span><span class="n">a_est</span><span class="p">,</span><span class="n">epsilon_est</span><span class="p">,</span><span class="n">N</span><span class="p">,</span> <span class="n">Fs</span><span class="p">)</span>

<span class="n">okno</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">blackman</span><span class="p">(</span><span class="n">N</span><span class="p">)</span>                  
<span class="n">f_periodogram</span><span class="p">,</span> <span class="n">P_periodogram</span> <span class="o">=</span> <span class="n">periodogram</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">okno</span> <span class="p">,</span> <span class="n">Fs</span><span class="p">)</span>

<span class="n">okno_welch</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">blackman</span><span class="p">(</span><span class="n">N</span><span class="o">/</span><span class="mi">20</span><span class="p">)</span>
<span class="n">f_welch</span><span class="p">,</span> <span class="n">P_welch</span> <span class="o">=</span> <span class="n">welch</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">Fs</span><span class="p">,</span><span class="n">window</span> <span class="o">=</span> <span class="n">okno_welch</span><span class="p">,</span> <span class="n">nperseg</span><span class="o">=</span><span class="nb">len</span><span class="p">(</span><span class="n">okno_welch</span><span class="p">),</span><span class="n">noverlap</span> <span class="o">=</span><span class="nb">len</span><span class="p">(</span><span class="n">okno_welch</span><span class="p">)</span><span class="o">/</span><span class="mi">2</span> <span class="p">)</span>
               


<span class="n">py</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">f_periodogram</span><span class="p">,</span> <span class="n">P_periodogram</span><span class="p">)</span>
<span class="n">py</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">f</span><span class="p">,</span><span class="n">P_model</span><span class="p">)</span>
<span class="n">py</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">f</span><span class="p">,</span><span class="n">P_est</span><span class="p">)</span>
<span class="n">py</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">f_welch</span><span class="p">,</span> <span class="n">P_welch</span> <span class="p">)</span>
<span class="n">py</span><span class="o">.</span><span class="n">legend</span><span class="p">((</span><span class="s1">'period'</span><span class="p">,</span><span class="s1">'model-teoret'</span><span class="p">,</span><span class="s1">'model-est'</span><span class="p">,</span><span class="s1">'Welch'</span><span class="p">))</span>

<span class="c1">#py.legend(('prawdziwy','estymowany z AR','periodogram','Welch','mtm'))</span>

<span class="k">print</span><span class="p">(</span> <span class="s1">'enenrgia sygnału: '</span><span class="p">,</span> <span class="n">np</span><span class="o">.</span><span class="n">sum</span><span class="p">(</span><span class="n">x</span><span class="o">**</span><span class="mi">2</span> <span class="o">*</span> <span class="mi">1</span><span class="o">/</span><span class="n">Fs</span><span class="p">))</span>
<span class="k">print</span><span class="p">(</span> <span class="s1">'enenrgia spektrum AR'</span><span class="p">,</span><span class="n">np</span><span class="o">.</span><span class="n">sum</span><span class="p">(</span><span class="n">P_model</span><span class="p">))</span>
<span class="k">print</span><span class="p">(</span> <span class="s1">'enenrgia est'</span><span class="p">,</span><span class="n">np</span><span class="o">.</span><span class="n">sum</span><span class="p">(</span><span class="n">P_est</span><span class="p">))</span>
<span class="k">print</span><span class="p">(</span> <span class="s1">'enenrgia welch'</span><span class="p">,</span><span class="n">np</span><span class="o">.</span><span class="n">sum</span><span class="p">(</span><span class="n">P_welch</span><span class="p">)</span><span class="o">*</span><span class="nb">len</span><span class="p">(</span><span class="n">okno</span><span class="p">)</span><span class="o">/</span><span class="nb">len</span><span class="p">(</span><span class="n">okno_welch</span><span class="p">))</span>
<span class="k">print</span><span class="p">(</span> <span class="s1">'enenrgia period'</span><span class="p">,</span><span class="n">np</span><span class="o">.</span><span class="n">sum</span><span class="p">(</span><span class="n">P_periodogram</span><span class="p">))</span>
<span class="n">py</span><span class="o">.</span><span class="n">show</span><span class="p">()</span>


enenrgia sygnału:  75.9340655955
enenrgia spektrum AR 73.3554294318
enenrgia est 75.9325636219
enenrgia welch 75.0110603061
enenrgia period 77.0687286728


<img src=" AAAPYQAAD2EBqD+naQAAIABJREFUeJzs3Xl8VNX9//HXmewJEEB2BcIOFmQJWmVHrFpUpGotsVaC uEArKHWpfl3RWldApS609vsTCuXrUtSqtK6ACFRLIIoWEAFZZEcJS0jIcn5/TO5kJpkksySTmfB+ Ph55DHPmzr0n0Zl5z+ecc6+x1iIiIiJSkau+OyAiIiLRSSFBRERE/FJIEBEREb8UEkRERMQvhQQR ERHxSyFBRERE/FJIEBEREb8UEkRERMQvhQQRERHxSyFBRERE/AorJBhj7jTGlBpjZtaw3QhjTI4x psAY87UxZnw4xxUREZG6F3JIMMacCdwAfF7DdhnA28CHQF/gaeBFY8xPQj22iIiI1L2QQoIxphEw H7gOOFTD5pOBLdbaO6y1G621zwKvAdNCObaIiIhERqiVhGeBt6y1HwWw7dnABxXa3gXOCfHYIiIi EgHxwT7BGDMO6AcMDPApbYC9Fdr2Ak2MMUnW2kI/xzgFuAD4FigIto8iIiInsWQgA3jXWnswnB0F FRKMMacBTwHnWWuLwjlwDS4AFtTh/kVERBq6XwJ/C2cHwVYSMoGWwBpjjClriwOGGWNuApKstbbC c/YArSu0tQYO+6silPkWYP78+fTq1SvILkqopk2bxqxZs+q7GycV/c0jT3/zyNPfPLLWr1/P1Vdf DWWfpeEINiR8APSp0PYSsB541E9AAFgF/LRC2/ll7VUpAOjVqxcDBgwIsosSqvT0dP29I0x/88jT 3zzy9DevN2EP1wcVEqy1x4D/ercZY44BB62168vu/wE41VrrnAvhBeA3xpjHgP8FRgFXAKPD7LuI iIjUodo442LF6kFboL3nQWu/BS4CzgNycS99nGitrbjiQURERKJI0KsbKrLWnlvh/gQ/23yMez6D iIiIxAhdu0E8srKy6rsLJx39zSNPf/PI0988dhn/cw3rlzFmAJCTk5OjyS4iIiJBWLNmDZmZmQCZ 1to14ewr7OEGEZGGZvv27Rw4cKC+uyHiV4sWLejQoUNEjqWQICLiZfv27fTq1Yv8/Pz67oqIX6mp qaxfvz4iQUEhQUTEy4EDB8jPz9fJ3CQqOSdKOnDggEKCiEh90cncRLS6QURERKqgkCAiIiJ+KSSI iIiIXwoJIiIi4pdCgoiI1IkRI0YwcuTIWtvftm3bcLlczJs3r9b2KdVTSBARkTphjMHl0sdMLNMS SBERqRPvv/9+fXdBwqSIJyIiter48eMAxMfHEx+v76KxTCFBROQk8sADD+Byudi4cSNXXnkl6enp tGjRgltuuYXCwkKfbefPn8/AgQNJTU3llFNOISsri507d/psM2LECM444wzWrFnDsGHDSEtL4+67 7/Y8du655/psv3//fiZOnEibNm1ISUmhX79+fucY5OXlkZ2dTdOmTWnWrBkTJkzg0KFDtfzXkJoo 4omInESMMQBceeWVdOrUiUcffZR///vfPPPMMxw6dIiXXnoJgIcffpj77ruPcePGcf3117N//36e eeYZhg8fztq1a2nSpIlnfwcOHGD06NGMGzeOa665htatW/scy1FQUMDw4cPZsmULU6ZMISMjg1df fZXs7Gzy8vKYMmWKZ9sxY8awcuVKJk+eTM+ePXn99dcZP358pX1KHbPWRt0PMACwOTk5VkQkknJy cmxDfv954IEHrDHG/uxnP/Np/81vfmNdLpddt26d3bZtm42Pj7ePPvqozzZfffWVTUhIsI888oin bcSIEdblctk///nPlY41YsQIO3LkSM/9p556yrpcLrtw4UJPW3FxsR00aJBt0qSJPXr0qLXW2jfe eMMaY+yMGTM825WWltphw4ZZl8tl586dG94fIYYF8v+nsw0wwIb5eaxKgohIGPLzYcOGuj1Gz56Q mlp7+zPG8Jvf/ManbcqUKTz33HMsXryYxMRErLX8/Oc/5+DBg55tWrVqRbdu3ViyZAl33nmnpz0p KYns7Owaj/vPf/6TNm3aMG7cOE9bXFwcU6dO5aqrrmLZsmWMHj2axYsXk5CQwKRJk3z6PGXKFJYv Xx7Gby7BUkgQEQnDhg2QmVm3x8jJgdq+1lTXrl197nfp0gWXy8W3336LMYbS0tJK24D7wzoxMdGn 7dRTTw1oguK2bdvo1q1bpfZevXphrWXbtm2A+3Ldbdu2JbVCMurRo0eNx5DapZAgIhKGnj3dH+J1 fYy65j3WX1paisvl4l//+pff8xw0atTI535KSkqd90/qh0JCBFgLZ50FM2bAsGH13RsRqU2pqbX/ LT8SNm3aRMeOHT33v/nmG0pLS8nIyMDlcmGtJSMjw281IVQdO3Zk3bp1ldrXr18PQEZGhme7jz76 iPz8fJ9qwoa6HteRSrQEMgJKS2H1ati4sb57IiLinrD+7LPP+rQ988wzGGMYPXo0l112GS6Xi+nT p/t9/vfffx/ScUePHs2ePXt4+eWXPW0lJSXMnj2bxo0bM6zsW9To0aMpKiri+eef92xXWlrK7Nmz tbohwlRJiIDSUvdtSUn99kNExLF161YuvfRSLrzwQlauXMmCBQu4+uqr6d27NwC///3v+Z//+R+2 bt3K2LFjady4MVu2bOGNN97gxhtv5Le//W3Qx7zhhhuYM2cO2dnZrF692rMEctWqVTz99NOkpaUB cMkllzB48GDuvPNOtm7dyumnn86iRYs4cuRIrf4NpGYKCRHgXtWpkCAi0cEYw8svv8y9997LXXfd RXx8PFOnTuXxxx/3bPO73/2OHj16MGvWLB588EEA2rdvz4UXXsiYMWMq7a+6YzmSk5NZtmwZd955 J/PmzePw4cP06NGDl156iV/96lc+z3nrrbe45ZZbWLBgAcYYLr30UmbOnEn//v1r688gAVBIiABV EkQk2rRs2ZJXXnml2m3Gjh3L2LFjq91myZIlQT3WokULXnzxxRr717RpU8+JnbyV6I00ojQnIQJU SRARkVikkBABTiXBuRUREYkFCgkRoEqCiIjEoqBCgjFmkjHmc2NMXtnPSmPMhdVsP9wYU1rhp8QY 0yr8rscOzUkQkWhx//33U1JSQvPmzeu7KxIDgp24uAP4HbAJMEA28KYxpp+1dn0Vz7FAd8CzdsVa uy/4rsYuhQQREYlFQYUEa+07FZruMcZMBs4GqgoJAPuttYeD7VxDoeEGERGJRSHPSTDGuIwx44BU YFV1mwK5xphdxpj3jDGDQj1mrNLERRERiUVBnyfBGNMbdyhIxj2E8DNrbVUn1N4N3AisBpKA64Gl xpizrLW5oXU59qiSICIisSiUkyltAPoC6cAVwDxjzDB/QcFa+zXwtVfTv40xXYBpwPiaDjRt2jTS 09N92rKyssjKygqh2/VHcxJERKQuLFy4kIULF/q05eXl1dr+gw4J1tpiYEvZ3bXGmLOAm4HJAe7i M2BwIBvOmjWLAbF4ebUKFBJERKQu+PvivGbNGjIzM2tl/7VxngQX7qGEQPXDPQxx0tBwg4iIxKJg z5PwB2PMUGNMR2NMb2PMI8BwYH7Z448YY+Z6bX+zMWaMMaaLMeZHxpingJHAH2vzl4h2qiSIiMC2 bdtwuVzMmzcv6OcuW7YMl8vFxx9/XAc9k6oEO9zQCpgLtAXygC+A8621H5U93gZo77V9IjADaAfk l20/ylp7Uv1XdioJWt0gIhK66q426e35558nNTWV8eNrnPoWFaK5v8GeJ+G6Gh6fUOH+E8ATIfSr QVElQUQkcp577jlatmwZlR+6/kRzf3XthghQSBAROTlYayksLKzvbtQahYQI0MRFEYkWDzzwAC6X i02bNnH11VfTtGlTWrVqxX333QfAjh07GDt2LOnp6bRt25aZM2f6PH///v1MnDiRNm3akJKSQr9+ /fzOMcjLyyM7O5umTZvSrFkzJkyYwKFDh/z2aePGjVxxxRWccsoppKSkcOaZZ/LWW2+F9Pt16tSJ r776iqVLl+JyuXC5XJx77rk+/brlllvo0KEDycnJdOvWjccffxzrvFGXyc/P59Zbb/Vs17NnT2bM mFHpeC6Xi6lTp/K3v/2N3r17k5yczLvvvgu4A8NTTz1F7969SUlJoU2bNkyaNMnn71BTf+tbKOdJ kCCpkiAi0cIZ1//FL37B6aefzmOPPcY777zDww8/TPPmzZkzZw6jRo3i8ccfZ8GCBdx+++2cddZZ DBkyhIKCAoYPH86WLVuYMmUKGRkZvPrqq2RnZ5OXl8eUKVM8xxkzZgwrV65k8uTJ9OzZk9dff53x 48dXmlfw1VdfMWTIEE477TTuuusu0tLSeOWVVxg7diyLFi3i0ksvDer3e/rpp7npppto3Lgx99xz D9ZaWrduDcDx48cZNmwYu3fvZtKkSbRv356VK1dy1113sWfPHp9AdMkll7Bs2TKuu+46+vbty7vv vsvtt9/Orl27KoWFDz/8kFdeeYWbbrqJFi1akJGRAcANN9zAvHnzuPbaa7n55pvZunUrs2fPJjc3 lxUrVhAXF1dtf6OCtTbqfoABgM3JybENwaZN1oK111xT3z0RkZrk5OTYhvT+U9EDDzxgjTF28uTJ nraSkhLbvn17GxcXZ5944glP+6FDh2xqaqqdMGGCtdbap556yrpcLrtw4ULPNsXFxXbQoEG2SZMm 9ujRo9Zaa9944w1rjLEzZszwbFdaWmqHDRtmXS6XnTt3rqd91KhRtl+/fraoqMinn4MHD7Y9evTw 3F+6dKl1uVx22bJlNf6OvXv3tiNHjqzU/tBDD9nGjRvbzZs3+7TfddddNiEhwe7cudOn/4888ojP dj//+c9tXFyc3bJli6fNGGPj4+Pthg0bfLZdvny5NcbY//u///Npf++996wxxudvWFV//Qnk/09n G2CADfPzWJWECNC1G0QarvyifDYcqOrM9LWjZ4uepCak1tr+jDFMnDjRc9/lcjFw4EDefPNNrr32 Wk97eno6PXr0YMsW9/nzFi9eTJs2bRg3bpxnm7i4OKZOncpVV13FsmXLGD16NIsXLyYhIYFJkyb5 HHPKlCksX77c0/bDDz+wZMkSHnrooUpnCTz//POZPn06u3fvpm3btrXye7/22msMHTqU9PR0Dh48 6GkfNWoUjz76KB9//DFZWVksXryY+Ph4n8oIwK233sprr73GP//5T37961972keMGEGPHj0qHatp 06aMGjXK51j9+/enUaNGLFmyxOfvGK0UEiJAcxJEGq4NBzaQ+afaObtdVXJuyGFA29o9+2yHDh18 7qenp5OcnEzz5s0rtX///fcAbN++nW7dulXaV69evbDWsm3bNs92bdu2JTXVN9hU/CD95ptvsNZy 7733cs8991TarzGGffv2+Q0Jx44d4+jRo577cXFxtGjRorpfmU2bNrFu3TpatmxZ5bGc/rdr1460 tLRKvyfg+T0dzvBCxWMdOnSIVq1aVXusaKeQEAGakyDScPVs0ZOcG3Lq/Bi1LS4uLqA2oNKkvtpS WvbmeNttt3HBBRf43aZr165++/Hkk08yffp0z/2MjAxPxaO64/3kJz/hd7/7nd/fqXv37kH135GS kuL3WK1bt+Zvf/ub32P5CyrRSCEhAhQSRBqu1ITUWv+WH606duzIunXrKrWvX78eKP9G3bFjRz76 6CPy8/N9qgkbNvgOy3Tu3BmAhISEgGb0e096HD9+PEOHDvXc9/6gruqkS126dOHo0aOMHDmy2uN0 7NiRDz/8kGPHjvlUE5zfs2PHjjX2tUuXLnz44YcMGjSIpKTqr1wQ6Emi6oOWQEaAhhtEpCEYPXo0 e/bs4eWXX/a0lZSUMHv2bBo3bsywYcM82xUVFfH88897tistLWX27Nk+H4gtW7ZkxIgRzJkzhz17 9lQ63oEDB6rsS0ZGBueee67n55xzzvE8lpaW5ne55ZVXXsmqVat47733Kj2Wl5fnqWyMHj2a4uJi /vhH3ysIzJo1C5fLxU9/+tMq++V9rOLiYh588MFKj5WUlPjMwaiqv9FAlYQIUCVBRBqCG264gTlz 5pCdnc3q1as9SyBXrVrF008/7fnWfckllzB48GDuvPNOtm7dyumnn86iRYs4cuRIpX0+++yzDB06 lD59+nD99dfTuXNn9u7dy6pVq/juu+9Yu3atZ9tAhz0yMzN54YUXePjhh+natSutWrVi5MiR3H77 7fzjH//g4osvJjs7m8zMTI4dO8YXX3zBokWL+Pbbb2nevDmXXHIJI0eO5O6772br1q2eJZBvvfUW 06ZNo1OnTjX2YdiwYdx44408+uij5Obmcv7555OQkMDXX3/Na6+9xjPPPMNll11WbX+jQrjLI+ri hwa2BDI3170E8qKL6rsnIlKTk2EJpMvlsgcPHvRpz87Otk2aNKm0/YgRI+wZZ5zhub9//347ceJE 26pVK5ucnGz79u1r582bV+l5P/zwgx0/frxt2rSpbdasmc3Ozraff/55pSWQ1lq7detWm52dbdu1 a2eTkpJs+/bt7ZgxY+zrr7/u2SaYJZB79+61l1xyiU1PT7cul8tneeGxY8fs3Xffbbt3726Tk5Nt q1at7JAhQ+ysWbNscXGxz3a33nqrPe2002xSUpLt0aOHnTlzZqVjuVwuO3Xq1Cr78uKLL9ozzzzT pqWl2fT0dNu3b19711132T179gTU34oivQTS2DqakBIOY8wAICcnJ4cBA2J/rG/tWhgwAC68EP75 z/rujYhUZ82aNWRmZtJQ3n+kYQnk/09nGyDTWrsmnONpTkIEaLhBRERikUJCBGjiooiIxCKFhAhQ JUFERGKRQkIEqJIgIiKxSCEhAnTtBhERiUUKCRGg4QYREYlFCgkRoOEGERGJRQoJEaBKgoiIxCKF hAhQJUFERGKRQkIEqJIgIiKxSCEhApxKglY3iIhILFFIiABVEkREJBYpJESAQoKICGzbtg2Xy8W8 efOCfu6yZctwuVx8/PHHddAzqYpCQgRo4qKISPiMMRE/5vPPP8/cuXMjftxooZAQAaokiIjEpuee e04hIVDGmEnGmM+NMXllPyuNMRfW8JwRxpgcY0yBMeZrY8z48Loce1RJEBGRWBRsJWEH8DtgAJAJ fAS8aYzp5W9jY0wG8DbwIdAXeBp40RjzkxD7G5N07QYRiRYPPPAALpeLTZs2cfXVV9O0aVNatWrF fffdB8COHTsYO3Ys6enptG3blpkzZ/o8f//+/UycOJE2bdqQkpJCv379/M4xyMvLIzs7m6ZNm9Ks WTMmTJjAoUOH/PZp48aNXHHFFZxyyimkpKRw5pln8tZbb4X1e/7zn/9k2LBhNGrUiCZNmnDxxRfz 3//+12ebvXv3MmHCBNq3b09ycjLt2rVj7NixbN++HYBOnTrx1VdfsXTpUlwuFy6Xi3PPPTesfsWa +GA2tta+U6HpHmPMZOBsYL2fp0wGtlhr7yi7v9EYMwSYBrwfbGdjlYYbRCRaOOP6v/jFLzj99NN5 7LHHeOedd3j44Ydp3rw5c+bMYdSoUTz++OMsWLCA22+/nbPOOoshQ4ZQUFDA8OHD2bJlC1OmTCEj I4NXX32V7Oxs8vLymDJliuc4Y8aMYeXKlUyePJmePXvy+uuvM378+ErzCr766iuGDBnCaaedxl13 3UVaWhqvvPIKY8eOZdGiRVx66aVB/45//etfyc7O5sILL+Txxx8nPz+f559/nqFDh7J27Vo6dOgA wGWXXcb69euZOnUqHTt2ZN++fbz//vts376dDh068PTTT3PTTTfRuHFj7rnnHqy1tG7dOoy/fgyy 1ob0g7sKMQ44DvSsYptlwMwKbdnADzXsewBgc3JybEPwxhvWgrXNm9d3T0SkJjk5OTao959jx6zN yanbn2PHau33e+CBB6wxxk6ePNnTVlJSYtu3b2/j4uLsE0884Wk/dOiQTU1NtRMmTLDWWvvUU09Z l8tlFy5c6NmmuLjYDho0yDZp0sQePXrUWmvtG2+8YY0xdsaMGZ7tSktL7bBhw6zL5bJz5871tI8a Ncr269fPFhUV+fRz8ODBtkePHp77S5cutS6Xyy5btqza3+/o0aO2WbNmdtKkST7t+/bts02bNrU3 3nij53er2Ed/evfubUeOHFntNpEUyP+fzjbAABviZ7zzE1QlAcAY0xtYBSQDR4CfWWs3VLF5G2Bv hba9QBNjTJK1tjDY48ciVRJEGrANGyAzs26PkZMDAwbU2u6MMUycONFz3+VyMXDgQN58802uvfZa T3t6ejo9evRgy5YtACxevJg2bdowbtw4zzZxcXFMnTqVq666imXLljF69GgWL15MQkICkyZN8jnm lClTWL58uafthx9+YMmSJTz00EPk5eX59PH8889n+vTp7N69m7Zt2wb8u73//vvk5eUxbtw4Dh48 6HP8H//4xyxZsgSAlJQUEhMTWbp0Kddeey1NmzYN+Bgnk6BDArAB9/yCdOAKYJ4xZlg1QeGkp4mL Ig1Yz57uD/G6PkYtc0rujvT0dJKTk2nevHml9u+//x6A7du3061bt0r76tWrF9Zatm3b5tmubdu2 pKam+mzXo0cPn/vffPMN1lruvfde7rnnnkr7Ncawb98+vyHh2LFjHD161HM/Li6OFi1asGnTJqy1 jBw50u/+mjRpAkBiYiKPPfYYt912G61bt+bss8/m4osv5pprrjn5hhSqEXRIsNYWA1vK7q41xpwF 3Ix7/kFFe4CKf+3WwOFAqgjTpk0jPT3dpy0rK4usrKxgu12vVEkQacBSU2v1W36kxMXFBdQGOMPA ta607M3xtttu44ILLvC7TdeuXf3248knn2T69Ome+xkZGWzZsoXS0lKMMcyfP9/vh318fPnH3s03 38yYMWN44403ePfdd7nvvvt45JFHWLJkCX379g3794uEhQsXsnDhQp+2ilWZcIRSSajIBSRV8dgq 4KcV2s4va6/RrFmzGBCDL76KtLpBRBqCjh07sm7dukrt69e7561nZGR4tvvoo4/Iz8/3qSZs2OBb cO7cuTMACQkJAa0a8J70OH78eIYOHeq5n5KSAkCXLl2w1tKyZcuA9tmpUyemTZvGtGnT2Lx5M337 9mXGjBmeFRv1cQKnYPj74rxmzRoya2kILNjzJPzBGDPUGNPRGNPbGPMIMByYX/b4I8YY77NOvAB0 NsY8ZozpYYz5Ne4hipmV995wabhBRBqC0aNHs2fPHl5++WVPW0lJCbNnz6Zx48YMGzbMs11RURHP P/+8Z7vS0lJmz57t86HbsmVLRowYwZw5c9izZ0+l4x04cKDKvmRkZHDuued6fs455xwALrjgApo0 acIf/vAHiouLq9zn8ePHKSz0LWh36tSJxo0b+7SnpaVVuXTzZBBsJaEVMBdoC+QBXwDnW2s/Knu8 DdDe2dha+60x5iJgFjAV2AlMtNZ+EG7HY4mGG0SkIbjhhhuYM2cO2dnZrF692rMEctWqVTz99NOk paUBcMkllzB48GDuvPNOtm7dyumnn86iRYs4cuRIpX0+++yzDB06lD59+nD99dfTuXNn9u7dy6pV q/juu+9Yu3atZ9tAhj0aN27M888/zzXXXMOAAQMYN24cLVu2ZPv27bzzzjsMGTKEZ555hq+//ppR o0Zx5ZVXcvrppxMfH8+iRYvYt2+fzzfzzMxMXnjhBR5++GG6du1Kq1at/M53aKiCPU/CdTU8PsFP 28e4T7x00nL+v3YvhIQor16JyEmqqtK6056cnMyyZcu48847mTdvHocPH6ZHjx689NJL/OpXv/LZ /q233uKWW25hwYIFGGO49NJLmTlzJv379/fZd69evVi9ejXTp09n7ty5HDx4kFatWtG/f3/uv//+ gPpXUVZWFqeeeiqPPvooTz75JIWFhZx66qkMHTqUCRPcH1Pt27fnqquu4sMPP2T+/PnEx8fTs2dP Xn31VcaOHevZ13333cf27dt54oknOHLkCMOHDz+pQoKpqwkp4TDGDABycnJyGsSchPnzwXn9FBVB fG3MBBGROuGM5zaU9x9pWAL5/9NrTkKmtXZNOMfTBZ4iwDuHachBRERihUJCBHivatAKBxERiRUK CRHgHQxUSRARkVihkBABGm4QEZFYpJAQAaokiIhILFJIiABVEkREJBYpJESAKgkiIhKLFBIiQKsb REQkFikkRICGG0REJBYpJESAhhtERCQWKSREgCoJIiISixQSIkCVBBE52Vx99dV069YtqOeUlJTg crn47W9/W0e9kmApJESAQoKIRINXX30Vl8vFm2++Wemxvn374nK5WLZsWaXHOnTowJAhQ4I6ljEm 4Ks2SvRSSIgA7+EGrW4QkfrifNB/8sknPu1Hjhzhq6++IiEhgRUrVvg8tnPnTnbu3MnQoUMj1k+J HgoJEaBKgohEg7Zt29KpU6dKIWHVqlVYa/n5z39e6bFPPvkEYwyDBw+OZFclSigkRIAmLopItBgy ZAhr166lsLDQ07ZixQp69+7NT3/6U/7973/7bO8vJMydO5eBAweSmprKKaecwi9/+Ut27dpV47Gt tcyaNYszzjiDlJQUWrVqxejRo8nNza207aJFi+jduzfJycn06dOHDz74IIzfWkKlkBCm0lL4739r 3sahkCAi9WnIkCEUFRXx6aefetpWrFjBoEGDOOecczh06BBffvml57GVK1fSs2dPmjVrBsD06dO5 9tpr6dWrF7NmzeKWW27h3XffZfjw4Rw9erTaY19zzTXceuutdOrUiSeeeII777yTxMREn74ALF26 lJtvvplf/vKXPPHEE+Tn53P55ZeTl5dXi38JCUR8fXcg1n30EVx4IRw4AE2b+t9GlQQRiRZDhgzB Wssnn3zCsGHDKCkp4dNPP2XChAl07tyZ1q1b88knn9C7d2+OHj3KunXrmDhxIgCbN2/moYce4vHH H+fWW2/17HPs2LEMGDCAF154gdtuu83vcd9//30WLFjAbbfdxuOPP+5p97eSYcOGDWzYsIEOHTp4 +pyZmcmih19VAAAgAElEQVTLL7/MDTfcUJt/DqmBQkKYjhxxf/AXFFS9jSoJIg1XfkkJG/Lz6/QY PVNTSY2Lq5V99erVi1NOOcUz9yA3N5f8/HwGDRoEwKBBg1ixYgWTJk1i5cqVlJSUeCYtLlq0CGMM l19+OQcPHvTss23btnTu3JklS5ZUGRL+/ve/Ex8fz7333ltjHy+88EJPQADo378/aWlpbNmyJeTf W0KjkBAmJwBUt2pB124Qabg25OeTmZNTp8fIycxkQOPGtba/QYMGsXz5csA91NCqVSs6derkeezZ Z5/1POY9H+Gbb76hpKSEzp07V9qnMYYmTZpUecwtW7Zw2mmn0TiA36N9+/aV2po2bcoPP/xQ8y8n tUohIUzOUEJ1H/4abhBpuHqmppKTmVnnx6hNQ4YM4e2332bdunWsXLnSU0UAd0i444472L17NytW rKBdu3ZkZGQAUFpaSnx8PP/617/87jeQABCIuCqqJtb7zVQiQiEhTMFWEhQSRBqW1Li4Wv2WHwnO +RKWL1/OihUrmDZtmuexzMxMkpKSWLJkCZ9++ikXXXSR57EuXbp4KglOcAhUly5dWLp0KYcPH662 4iDRRasbwuQEgOo+/FVJEJFoMnDgQJKSkliwYAG7du3yqSQkJibSv39/nn32WfLz833OtHj55Zdj jGH69Ol+9/v9999XeczLL7+c4uJiHnroodr7RaTOqZIQJlUSRCTWJCQkcOaZZ7J8+XKSk5PJrDBc MmjQIGbMmIExxickdOvWjenTp3PfffexefNmxowZQ6NGjdiyZQuvv/46U6ZMYerUqX6Ped5555GV lcXMmTPZsGED559/PiUlJSxfvpwLLrhAqxailCoJYQo0JCQkuP+tkCAi0WDIkCEYYxg4cCAJzhtU mcGDB3smIvbt29fnsbvvvptXX30VgAcffJA77riDd955h4suuoiLL77YZ9uK126YP38+jz32GJs3 b+aOO+7g0Ucf5cSJE5x99tk+z/F3zQddC6J+qJIQpkBCgrUQHw9FRVrdICLR4eGHH+bhhx/2+9jY sWMpqeYbzWWXXcZll11W7f7/+te/VmozxnDbbbdVuUwyLi6uyuNu37692uNJ3VAlIUyBVhLiy+KY KgkiIhIrggoJxpi7jDGfGWMOG2P2GmNeN8Z0r+E5w40xpRV+SowxrcLrenQIppJQ03YiIiLRJNhK wlBgNvBj4DwgAXjPGJNSw/Ms0A1oU/bT1lq7L8hjR6VAKwnOsl+FBBERiRVBzUmw1o72vm+MyQb2 AZnAJ/6e42W/tfZwUL2LAYEsgfQOCToXiIiIxIpw5yQ0xV0lqHpxrJsBco0xu4wx7xljBtWwfcwI 9IyLqiSIiEisCTkkGPdalKeAT6y11V0seTdwI3A5cBmwA1hqjOkX6rGjSbATF1VJEBGRWBHOEsjn gNOBwdVtZK39Gvjaq+nfxpguwDRgfBjHjwqBTlxUJUFERGJNSCHBGPNHYDQw1Fq7O4RdfEYN4QJg 2rRppKen+7RlZWWRlZUVwiHrhiYuiohIfVm4cCELFy70acvLy6u1/QcdEsoCwqXAcGttqGe36Id7 GKJas2bNYsCAASEeIjKCrSRouEEkNqxfv76+uyBSScX/L/19cV6zZk2lU22HKqiQYIx5DsgCxgDH jDGtyx7Ks9YWlG3zB+BUa+34svs3A1uBr4Bk4HpgJPCTWvkN6pkqCSINS4sWLUhNTeXqq6+u766I +JWamkqLFi0icqxgKwmTcK9mWFqhfQIwr+zfbYH2Xo8lAjOAdkA+8AUwylr7cbCdjUaBLoHUxEWR 2NChQwfWr1/PgQMH6rsrIn61aNGCDh06RORYwZ4nocbVENbaCRXuPwE8EWS/YoYmLoo0PB06dIjY m7BINNO1G8Kk4QYREWmoFBLCFGglweUq/7eIiEgsUEgIU6CVBJcLjFElQUREYodCQpgCOS2zExJc LlUSREQkdigkhCnQ4QZj3CFBlQQREYkVCglhCnQJpIYbREQk1igkhCnYSoKGG0REJFYoJIRJExdF RKShUkgIUzAhQZUEERGJJQoJYdLERRERaagUEsKk4QYREWmoFBLCpImLIiLSUCkkhElLIEVEpKFS SAhTIGdcdK7doEqCiIjEEoWEMAU6J0ETF0VEJNYoJIRJExdFRKShUkgIkyYuiohIQ6WQECZVEkRE pKFSSAhToJUETVwUEZFYo5AQpkCXQGriooiIxBqFhDBpuEFERBoqhYQwaeKiiIg0VAoJYVIlQURE GiqFhDDpjIsiItJQKSSESWdcFBGRhkohIUzBLIHUcIOIiMQShYQwBbsEUsMNIiISKxQSwqSJiyIi 0lAFFRKMMXcZYz4zxhw2xuw1xrxujOkewPNGGGNyjDEFxpivjTHjQ+9ydNEZF0VEpKEKtpIwFJgN /Bg4D0gA3jPGpFT1BGNMBvA28CHQF3gaeNEY85MQ+ht1NHFRREQaqvhgNrbWjva+b4zJBvYBmcAn VTxtMrDFWntH2f2NxpghwDTg/aB6G4U0cVFERBqqcOckNAUs8H0125wNfFCh7V3gnDCPHRWCrSRo uEFERGJFyCHBGGOAp4BPrLX/rWbTNsDeCm17gSbGmKRQjx8tNHFRREQaqqCGGyp4DjgdGFxLfalk 2rRppKen+7RlZWWRlZVVV4cMms64KCIi9WXhwoUsXLjQpy0vL6/W9h9SSDDG/BEYDQy11u6uYfM9 QOsKba2Bw9bawuqeOGvWLAYMGBBKFyNGl4oWEZH64u+L85o1a8jMzKyV/Qc93FAWEC4FRlprtwfw lFXAqApt55e1xzxNXBQRkYYq2PMkPAf8ErgKOGaMaV32k+y1zR+MMXO9nvYC0NkY85gxpocx5tfA FcDMWuh/vdPERRERaaiCrSRMApoAS4FdXj9Xem3TFmjv3LHWfgtchPu8Crm4lz5OtNZWXPEQkzRx UUREGqpgz5NQY6iw1k7w0/Yx7nMpNDg646KIiDRUunZDmHTGRRERaagUEsKkiYsiItJQKSSESZeK FhGRhkohIUyhVBK++w4mTICiosj0UUREJBQKCWEKZnWDU0m4+2546SXYtCkiXRQREQmJQkKYAjkt c8WJi3vLrmSRllb3/RMREQmVQkKYQhlu2LevvF1ERCRaKSSEKZQzLjqVBK10EBGRaKaQEKZwKgkK CSIiEs0UEsIU6BJI74mLzqoGhQQREYlmCglhCueMiwoJIiISzRQSwhTscENhYeXnioiIRCOFhDAF W0nYvbvyc0VERKKRQkKYgq0k7NlT+bkiIiLRSCEhTMGecbGgoPJzRUREopFCQpiCPeOi9/UaFBJE RCSaKSSEKZAlkN7DDcXFlZ8rIiISjRQSwhTscINCgoiIxAqFhDAFEhJKSsorCf6eKyIiEo0UEsIU bCXB33NFRESikUJCmAINCXFxCgkiIhJbFBLCFEwlQcMNIiISSxQSwqThBhERaagUEsJU0xJIa32X QPp7roiISDRSSAhTTZUE52RLqiSIiEisUUgIU01nXHTaFRJERCTWKCSEqaZKgndI0HCDiIjEEoWE MAUTElRJEBGRWBJ0SDDGDDXG/MMY850xptQYM6aG7YeXbef9U2KMaRV6t6OHKgkiItJQhVJJSANy gV8DNsDnWKAb0Kbsp621dl8Ix446paUQH69KgohUtmcPdOwIu3bVd09EQhMf7BOstf8C/gVgTMXv xtXab609HOzxop0TEqpaAqmQIHLy+u472L4ddu6Edu3quzciwYvUnAQD5Bpjdhlj3jPGDIrQcetc MJUEDTeInFycq77qtS6xKhIhYTdwI3A5cBmwA1hqjOkXgWPXOQ03iEhVnJBQVaVRJNoFPdwQLGvt 18DXXk3/NsZ0AaYB46t77rRp00hPT/dpy8rKIisrq9b7GQrnbIrVhQTnzUEhQeTko0qC1LWFCxey cOFCn7a8vLxa23+dh4QqfAYMrmmjWbNmMWDAgAh0JzTOiZSCHW4wxv1cvXGINGwKCVLX/H1xXrNm DZmZmbWy//o6T0I/3MMQMS3YkOBUEuLjfR8TkYZJww0S64KuJBhj0oCuuCcjAnQ2xvQFvrfW7jDG PAK0s9aOL9v+ZmAr8BWQDFwPjAR+Ugv9r1fOh3x8fPmbQVXbxMWVVxISEqCoSCFBpKFTJUFiXSjD DQOBJbjPfWCBGWXtc4FrcZ8Hob3X9oll27QD8oEvgFHW2o9D7HPU8A4JhYXVb+NdSUhI8H1MRBom VRIk1oVynoRlVDNMYa2dUOH+E8ATwXct+nmHhGCGG5yQoDcOkYZNlQSJdbp2QxiCDQnOcENiou9j ItIwKSRIrFNICEOolQRNXBQ5OWi4QWKdQkIYQq0kOIEhmJCwZ0/o/RSR+qFKgsQ6hYQwhFpJiIsL LiS8/z60bQurV4fXXxGJLFUSJNYpJIQhUiHhnXfct4cb3OWxRBo2VRIk1ikkhME7JARyFUhnuCHY kLBhQ/lxRCR2KCRIrFNICEOkKgkbN7pvT5wIva8iEnkabpBYp5AQhlCv3RDMxEVr4dtv3f9WSBCJ LaokSKxTSAhDJCoJ+/aV/1shQSS2qJIgsU4hIQyRCAneV/xUSBCJLaokSKxTSAhDICHB+QYR6sRF 72tCKCSIxBaFBIl1Cglh8A4JUD5Hwd82oVYSFBJEYpeGGyTWKSSEoWJI8PdGEO7ERe+QUFQUel9F JPJUSZBYp5AQBueFX92ln1VJEDl5qZIgsU4hIQzBVBKcYOD9b4UEkYZNlQSJdQoJYahYSQh0uEEh QeTkoJAgsU4hIQwVKwl1OdzQqFFgIeGFF2Dbtpq3E5G6p+EGiXUKCWHwPuMi1E0lwQkGjRvXHBKs hcmT4ec/r3m/IlL3VEmQWKeQEIZQJy6GsrohkEpCfn7V/RCRyFMlQWKdQkIYgl0CGepwQ2IiJCXV HBKcS0mnpNS8XxGpe6okSKxTSAhDsJWEUCcuJia6fxQSRGKLQoLEOoWEMESqkpCUFFhIOHLEfauQ IBIdNNwgsU4hIQyRWgIZaEhQJUEkuqiSILFOISEMoS6BDHbiYrAhITW15v2KSN1TJUFinUJCGIKt JNT1cIMqCSLRRZUEiXUKCWEIZOJiuJeKPnEi+JDg0n9VkaigSoLEOn2chCGSSyCDCQm6WqRIdFAl QWKdQkIYnDeApCT3bV0tgQy2kuD0S0Tql0KCxLqgQ4IxZqgx5h/GmO+MMaXGmDEBPGeEMSbHGFNg jPnaGDM+tO5GF+cNIDHRfRstcxJUSRCJDhpukFgXSiUhDcgFfg3YmjY2xmQAbwMfAn2Bp4EXjTE/ CeHYUaViJSHQkFDXqxtUSRCJDqokSKyLD/YJ1tp/Af8CMMYpoFdrMrDFWntH2f2NxpghwDTg/WCP H00qVhKqG26Iiwt9uCElRZUEkVikSoLEukjMSTgb+KBC27vAORE4dp0KtZJQ12dcVEgQiQ6qJEis i0RIaAPsrdC2F2hijEmKwPHrjPNhHMjERWM0cVHkZKOQILEu6OGGSJo2bRrp6ek+bVlZWWRlZYW0 v7Vr3R/U/frVRu8CryQ4ASGUSsKJE1oCKRKrNNwgdW3hwoUsXLjQpy0vL6/W9h+JkLAHaF2hrTVw 2FpbWN0TZ82axYABA2qtI86ubI3TLQMT6BJI7wmLzm1dVBKOHvXtl4jUL1USpK75++K8Zs0aMjMz a2X/kRhuWAWMqtB2fll7xNT0ARuKQJdAOuGgrocbCssilyoJItFBlQSJdaGcJyHNGNPXGOMU7TuX 3W9f9vgjxpi5Xk95oWybx4wxPYwxvwauAGaG3fsgfPGF+zYtrfb2WVzs/uCv7rTM/ioJdR0SVEkQ iQ6hVhI2bHCfyXXfvtrvk0gwQqkkDATWAjm4z5MwA1gDTC97vA3Q3tnYWvstcBFwHu7zK0wDJlpr K654qFOffea+7dOn9vZZXOx+ITsf/vVdSXAeVyVBJDqEGhL+9jf3+0lubu33SSQYoZwnYRnVhAtr 7QQ/bR8DtTNAEiLnxRZfi7Mwiorc+4uLc9+vKSRUrCQEUoL0Dgmlpe7nOMereJziYvd2qiSIRIdQ hxuc+UWNGtVuf0SCddJcu8F50dXm2KBTSXA+tOt64iJUXU1w2tPSVEkQiRahVhKc9yt/XwhEIumk CQnOh2htfssuLnbPR6huuKGkJPThhk2bID+/fAkkVB0SnPkICgki0SPcSoJey1LfFBLCEGolIS7O /VNTSOje3X0bbCVBww0i0SHUSoJz9tS6WJUlEoyTJiQ4ibwuQkJdTFz03tfx44FXEho10rcPkWhg bfjDDXotS307aUJCtFUSagoJ3mGgTx9ITnb/+/jx6rdXJUEkOni/vkMdblAlQeqbQkIYgq0khBIS Xn4Zhg+HZs3c93/4wf/2mpMgEl2832tUSZBYpZAQhmCXQDrDDYGsbnD665zyuaaQoEqCSHTxfh2q kiCxSiEhDJEYbnDmIqiSIBJbnPcaY1RJkNh10oSEupq4WNMSyNLS8hARzMTFiiGhcWP3877/vvrt VUkQiQ7eF4ALJiRYq9UNEj1OmpAQ65UEY9zVBFUSRGKD9wXgghluyM8v316vZalvJ1VISEiInYmL zoe+ExKg+pDgXUkoKam9y2GLSGhCrSR4VwtVSZD6dlKFhNTUug0JNVUSQpm46B0SmjcPrJLg9E1E 6o9TBQi2knD4cOV9iNQXhYQwOKsboOoLNtXWcAO4KwmBzElw+iYi9cd5DSYnB1dJ8K4eqJIg9e2k CQlFRXVXSQD3B39tnnGxqpCgSoJIbPAebgimkuD92lXYl/p20oSEEycgJaVuVjdA1ddiCLeS4Jwn AQKfkwB6cxGpb85rMNg5Cd6vXVUSpL6dVCEhNdU9oS/YNctV8a4kRGK4oXnzqocbCgvdgcXZXpUE kfpVGyFBYV/q20kREkpK3C/S1FT3/dr6AK043ODvjcDfpaJDnbhY03BDYmJ5f/TmIlK/Ql0C6bx2 U1JUSZD6d1KEBOeFVpchIVITF48e9R8ATpxwf2Nxhj9USRCpX6FOXHReu6mpCvtS/06KkOC80CqG hGefhW3bQt9vIJWE2py42Lix+9Y5Zas3VRJEokuoExed125amioJUv9OipDgvNBSUty3zsmGpkyB N97w3XbvXpg3r/I+brgB/vxn37ZILIF0KgNQPonRWclQcXvvSoJCgkj9CndOgioJEg1OqpDgXUko LHQHhWPHfLddtAjGj6/84lyyBFav9m2ruLqhppDQpg386EfQuXNgISEhobz6ANWHhIqVBA03iNSv 2ggJqiRIfYuv7w5Egr+QkJ/v/nfFkODd3rRpefvhw3D8uO+2wQ43pKfDl1+6/x1ISPAeagBVEkRi SbjnSVAlQaLBSVtJcMJBxfF9JyRUbD9yBAoKfNuCnbjoLZyQ4O/bhVNJ0MRFkegQbiVBcxIkGjTo kFBSAnl5/icuVlVJcKoFzqVane2PH68+JARSSfAWbiXhhx/gm298t09K0sRFkWjhHRJCmbiYnKzX sdS/Bh0SXnkFunevPHExkOEG70qC8+/qhhuqqyQ4l5L2Fm5ImDEDLr+8/LHCQi2BFIkmoV4Fsqio /MRoqiRIfWvQIWHHDti3r/xDPtSQ4FyVrWIlwXt1Q1wcvP023HST7zZ1VUnIy/M9sZKzvSoJItEh 1OEG58tHYqJex1L/GnRIcD7wnVMZBzNx0Xu4wfl3TXMSvvzSfe4Fb7UZEpz7hYXuH+/KhioJItGl qMi9OikhIfjhhoQE948qCVLfQlrdYIz5DXAb0Ab4HJhirf1PFdsOB5ZUaLZAW2vtvlCOHygnAFQX EipOUHQ+eL3bnZDgb7jBewmko6QEcFl+KCriUJMiDqcU8+aBIg4WFXGgqIhiazme2JbS0gopoMyT T8Lixe4xSW/elYQTJ3z7c+IENGqkSoJItHC+RFQ1X6kq3sMNeh1LfQs6JBhjfgHMAG4APgOmAe8a Y7pbaw9U8TQLdAc838/rOiBAeUg4eNB9G8xwg3cl4fBhILGEw80KWH7I/UF/sKiIQ6OL+LBbMds3 FLFzchGYImhSRMuVRRwqKcYCZLn3MbZs6WPT+HhOlJbiGrATV/8eQItK/b79dvftmWf6tvsLCda6 v60UFsIpp2gJpEi0cD7sq5qvVNPzVEmQaBBKJWEaMMdaOw/AGDMJuAi4Fni8muftt9YeDuF4IQtn uMG7krDp2HGYl8uO1oUMy3W3GYCL49kYn0BpfgKQADtSIS+BCT+Kp1fbBE5JSOCpBxMoPZTA3/+S QPP4eOJdLnYXFjJy8UY2/u5LJmxow1Ndu5IeX/k/RXVLIAsL3d9OiorKJzjpZEoi0cOpNNY0tOjv eZqTINEiqDkJxpgEIBP40Gmz1lrgA+Cc6p4K5Bpjdhlj3jPGDAqls8GqWEnwd56EY8fcwWDaNPdt xeGGzcePc2/jXCh00fi+vmw46yz2DxpE0fDhpF8zhDu+/DErBwyg6//rA4/3hDlduLywI9e1a8fP Wrak+c6mpP+QRqvEROLLJie0TUpiwqY+pP6xB3/fv58z/vMfPvRzecfq5iQ43zCc/jpzEpxt9A1E pH45E5tDHW5QJUGiQbATF1sAccDeCu17cc9P8Gc3cCNwOXAZsANYaozpF+SxgxbInIRjx+Avf4Gn noJ//MN3uGHL8eOMzM0locQFv+1HSU4zeqSm0iIxkThjKl27wXHAa9DF+1LR3uJchoQP2vLFwIF0 SUnhvM8/Z8qmTeR71SUrhgSXy/3G4UxcBN+Q4H0yJX0DEalf4Q43qJIg0aDOVzdYa7+21v7ZWrvW Wvtva+1EYCXuYYs6FchwQ35++ZUgW7Qob99ljzMiN5dkl4vsL/rBwSTPHABHxZMpObxDQk2rGzJS Uvigb1+e7tqVF3fvpt/q1XB6HlA+vOAtKcl/JeHQIfelpOPi3D/+Tt0sIpHjDDeokiCxLNg5CQeA EqB1hfbWwJ4g9vMZMLimjaZNm0Z6erpPW1ZWFllZWQEdpOJwg/Oh6x0SoPzMhdaWfei2Pc6bI3I5 1eViSb9+zH49yfO4MwfA2Y/zzd07CDjHg8CWQLqMYeppp3FB8+aMX78enlkL/9eBuMMZVMxxTkhw QkBBgbtfBw64Qw7oJCwi/uzb5w7S3ldWrUtOpTHYSoLmJEgwFi5cyMKFC33a8vLyam3/QYUEa22R MSYHGAX8A8AYY8ruPxPErvrhHoao1qxZsxgwYEAwXfThPdxQ8boG3iHh66/dt4WFcLTRcXgoF1Ps DginJiX5rHQoKHDvy1r3Cz/cSoK3HqmpLOnTn9QJOyD7Wz46fJDcIz3p17ixZ5vExMqVhPx8d7+c kJCUVDkkfPIJzJ8PL7xQzR9MpAE74wz4/e/huusiczzv4QZVEqSu+PvivGbNGjIzM2tl/6EMN8wE rjfGXGOM6Qm8AKQCLwEYYx4xxsx1NjbG3GyMGWOM6WKM+ZEx5ilgJPDHmg70u9/B3oqzH4LgBIGD ByvP/PcXErYXHefo73Oh2EXfuX05taz0cNhrTYZT3ne+GdQ0JyHYkymVnHDB3zrC5EywcOaaNfz+ 228pLtvY33CDc7xTTnHfOkHC28cfw0svVT6eyMngyBH3e8m+Ol94XS7c4QZVEiQaBB0SrLWv4D6R 0oPAWuAM4AJr7f6yTdoA7b2ekoj7vApfAEuBPsAoa+3Smo71wQfw/vvB9rCcU0nIz/cfEpyRjJIS oPVx7m+cC8WGuNv7UrSr/ExGR46UDzE4Z110lhjWZiUBvL45bG7EWf8vkzvat+f+b79l0Nq1bDh2 zFMl8J646ByvukqC8xzNVZCT0e6yumXFs6bWJe/hhtJS3/lMgTxPlQSJBiFNXLTWPmetzbDWplhr z7HWrvZ6bIK19lyv+09Ya7tZa9OstS2ttaOstR8Heqz166t+rKio+vMBeJ8DwV9IaNmy7MHWx+Gp XCgxcEs/WruSK51x0fkArs2Q4G+c0vtDPD/PxcOdO7Oif3/yiovpn5PD4fN3UFBo/VYSqpuT4Oz3 cETPVCESHXbtct9GOiQ4lQQIPCQ4FYjERPf7RzDzGURqW1RfuyEhAdatq/rx9HQYOdL/Y6Wlvqct Tkgo/0AvKXEHiJYtcQeEWZ9DieFXa/vBgWRatfI9mVJBQXkp39mnUwb0N9yw22u2RbCVBO+Q4ISc s9PTWTtwIDe0bcvuyzazaEguxxof9/THX0ioWDFQSJCTWX1UEpwJiM7rP9APe+85Cc59kfoS1SHh jDPcF02qyvHj7gl5VT3mzV8lIa1zgTsglELy//SjdI97iKFlSypNVmzatPzfzj6gciUhPh527nT3 /aKLqg8JUPnbhXcFwLsSkhoXx9PdutH7f/tyOK2AA4+vhtG7yD9uOXDAfcppZ4mnv+EGhQQ5mdXX cIMzcRECn5fgPSfBuS9SX6I6JPTtC1u3+n5gB8r5gHXmHaSmlr9Yi4vhUFIBn47LBQszbD9SjiR7 Lr3cooVvyPAOCU67ExIqLoHs2tX9ol63zn2RpppCQsU3Dn+VBG+tdzXjgpfPJH55S7j9a55q/iXf /VDsqSKAhhtEKgolJFx3HbzxRujH9J64CMFVEpw5CaB5CVK/ojok9OjhvnVOduTN+xv4AT+XlXJW LzjzDkaNcl8IKT4e9lHAlim5uFyw7bJ+/PbqZBIT8QkJhYXlL+pgKglduvj2o7TU602itPxdwmmr LiR07Fj590pMhNKj8Zgne8LdvdmQeoj/7beWJt0KfLaparihFpfPisSMYENCYaH7TKyXXx76Mb0n LkLglQQnXDhXgY1k9UOkoqgOCc2bu28rDh2A7wtn48bKjzvfwjdvdt9ecYX7Nq5tATM75GItTPyy Hx3KXolJSe6zFkLl+QeFhTWHBOeNwCckNN/Eti5381brs2n0h0bEPxRPk0eacPaLZ/OPvIeg0e5K bzdWpxcAACAASURBVBzOt4b//V94663Kv1dSkrsPRUXAyhZMWjeA464SNv02h3/nlZ+pUZUEkXJO SAh0dY8zzOl8UQlFxYmLwQ43OFet9ff+JxIpUR0SmjVz3/p7kXhfD2nDhsqPOyHhF79w355zDmwv KODEY+6AkHp3P9q6ypc5JiX5VhK8j1vdcEPFSkKbNpDYfh1cdRFM7c6Rts/yi68SWPFZH/a/3JFd M2DxHZ9z7yMP8JcupzF3+sUcPuysHi1/Exs2rDyseEtK8p1U2eT7NPr/aQBNDqcwIjeX/9u7VxMX RSoItpKwumy9VqdOoR/T+yqQEPzERWeOkfc5XUQiLapDglNu8xcSnG/9UH4yJG/OC+vBB90vzu9O FDAyNxfjgkkb+3FiR7InqYNvSHA+nJ19FBSUz21w3mQqrm6IiwOSf+ANO5ET1/alTfJ/eeaPP+G7 mZbZ//iEvhsP0eKcUTS66bc0v/lO0k6/mrM2teCGR97h+Glt2HrvFDhxwvNh7u+6DU679xyN48fh xL5Exizrx5WtWpG1fj1bhm2l8ITvjEiFBDmZhRoSApk0+Le/wZNPVm73vgokuCsJW7fCggXV7895 nhMSwq0kvPgiPPRQePuQk1fMhARrfb8dOyEhPd3/WdScSkJamjsgjMjNpcRa0qf3Je1oMoWF5fsH 35DgzGPwDglpae5077zJOLfOPvY2fhd+3Yf1ha/xh7fGsvF/D5J1YA3z02/ivl9udp/w4S9/gQce gPvvZ/Ptc+mTv5fP//E+n/VvSfs//JHve3Qgbc1yT3/88RcS8vOhcbKLuT178nCnTmw8extrRv+X 415fXRQS5GR1/Lj7/cIZqguEs/Q6kEnTr70Gf/5z5faKqxtKStwBYdKk6vfnVCCcLzHhVhL+/nf4 61/D24ecvKI6JDgflMePu9N69+7ljzkhoXv36kPCoQR3BaHEWpb260fSDymecn3FSkJ+vjv1O0ML +fnuF2xJiTsMpKSUp3rnhWsTjjL57cl83OFCzv2iNVv+1JrfrX2T99uOpxubuNc8zA/NOlfqn/Mt IaXHeVz40Q5m/fFq/luyl0H3DOceHiQxzn9tMimp8mmi8/Pd+zPG8D8dOzLswx+xv9tBRuTmsqcs HXhPXLz/fpgWwDU4gzmVrEi02lN26bmMjMBDwv6yEcBAQsKBA/Dtt5VfL8XFEJdYysG4Auh1mLfy 9rO02U6OjtvC1V+t57zcXHp99hlNly/nvNxc/lP2wq7t4YYdO9z900mZJBTBXgUyopyQUFAA27e7 fwoK3B/Yzrf+7t39T1zMzwdaFDBmcy5F1rKsXz8yUlKIjy8f069YSQBo1MhdNXD24V3+T04uf5M5 fhzo8AlXfJBN4p7veO/vA/jJljXs7TYE179epV1+Xw4NAg76XwLp/QaQEJfA7ZP/yh/7DuSDu29h +tL7Kb3iY3jtlfLZm1799FdJcPYH0HVXS76fk8zOW9dx1po1vNWnD4WFjQB3wNi2reZrYsybB+PH u8OW975FYo0z1NCpE2zZEthznIvCVRcSvi8q4rvCQra2LOTEqBP87stCjiQVsuvECb4rLGTd7YUs b1TEfAM8B9d9B66eBponselYIhlpSfRp1IiWCQks2LuXs9as4YqWLTnWrBMJCalBT1zcuBFGj4Yl S6BDh/L2nTvdwWPHDndQCtfmzdCvn3typ78VWNKwRHUlIS7OnaidciGUL3c8dMj9Iu7QoTz1e9tZ WABPuQPC0rKAAO6xPueFX7GSAO6A4D0W6D2skJbm/tAsKC7guW/uIPFXQ7l92Qk2PGsYuGsXV/NX Prz/Y+jb1zPpEvyHBH+lxJsG3cyey17m/F/Gcew/H1N6zjnlyzPKeE9KbNzYf0hISoKErY35LDOT lgkJDF6zhv3d3X+4w4fdv4O/v5m3Dz903/qbFCoSS7xDQiCVhJIS9/tLx46VQ0JREXxXWMhlX37J KStWcMbq1eycsg7u2Mhfvv+Oz44cwQIDGzemxcpTGfaf7jxU1AcmDiQ3YxDj/t8wuOpsfvHJAIYv +xGzunblfzp25Iszz+T/9ejBp4cPs+W+z/iw70by4t0v9IqVhNxc+O9/K/d7/nx3CFq0qLztyJHy Zc/ffBPY36smf/qT+4vWp5/Wzv4kukV1SIDyEr+/kNC0KbRu7R5u8D5vwo6CAp7qmItJcAeETl5p IJBKgve3fO+Q0KQJfJOfQ+afMileMYsvZ5zCrxfvxjX519x03kYWcDWJSQYoH7KA6isJFb8l9I2/ kiX/eYch17n4Lm8H9uwfw8qVlfoJ7vkYx4+7f7xDghMkTk1K4uP+/Tm/eXN2XP8lXLmdvMM2oJDQ vuwSXdWdFlskFuze7X5NtGsXWEhw3msyMtyh2nlv+WazJfUX39Hr35+xMi+POd27s7xvfxh3Nvxk GM/sHMyagQN5q08f5vToQat/ZtBnezvONqfAlkY0NYkcPeJ+f5g9G559tvyYccaQ3bYtX591Fs1e 7cLGtvv50dpPYeIWDhb4XqCmf3/40Y98+2wtvPqq+99vv13evmNH+b8rfN8I2WefuW/9nexNGp6o DwnJye4PQScNOyHhhx/cH8QtW7ofd/6H3VHgnqRYjKXlH3wDAgRWSfD+lu+8qcQlnuCHvtNZU/pj npuzk7cWFLO9oC+laz6HJ5/kqKsJUH4q1ZoqCVWNNxYWQsp3F/DcLe8z9Po4Pm92AnvuufDKKz79 BHdIOHzYPfZZMSQ450lIi4vjtR/9iMZvd4DJW/jygo0cLSglP7/6sU7njbG6kFBUBJde6n+4RyRa 7N7tXpqckhJYSDh40H3bsaO7qlBQAOuPHeNn23MpnrqJwcUtWX/WWdzQrh09itNhbzIUu9j6/9s7 7/CoivWPf2ZLdje9kRAIhBJKCKFXQUUEseK1XvWnV2zgRcV+7VdFr4ooKlexKwoIYgdsgIJKCSUQ QugQShII6XWzmy3z+2Ny2E2jBs3V83mefTZ79pyz50zOzHznfd95Z2/d89TPk+By+dqe/fsbF+pW oxHbwnbcvWYwk+Lj4cocnuiUyivZ2TiPEiS0f7+qh+edB7/84hsI5eTUntfaPCKhqso3ZtFiPXT+ 3LR4kXAsS0JMjPpcUOATCB4puXpVH8LstgbnOx5Lgr9IcDqBDst4YFUKk3Y9zdY3JGcVh/L9zfO5 KGApxpQegC8oSBMJFovvPCcqEiwWODPhTD7/5zIuHGfmu142lfBhyhQsAT6TSWSkr6GpL3j8kykZ hMA2pxM8352iAYfJmrgJQl1HtSZojdnRRMKhQ7BggWqUdHRaGsuWwbffquc0Lq5uTNHRKC5W7x06 ACYvT2Xto8/69RR5a+Ce3lyb252I2pzJWh0yGmkgErRZCtqAoaTEV6+kVGKksX7f5YJQg5nnO3Ui 8u7BJBW24sE9e+i6Zg0f5OaBoeFyktp1XHSR+l1t1cvsbJVpduDAhtd3Muzd62tbjhXXpPPn4H9O JGiVobRUVT5tumJGnk8gLO/TB1Oh7UgAoj9G47EtCQaDalAOVR7koV+v4Y6kkfwyJYuJ66zMav80 YscONne7isAgceR4LbmSJhLA53I43pgE8IkEgAFtBrDk1l+59WoLM8ZEwsMPc96Xt2NE/VirVj41 35i7of55w9e2Jvzp3tS0scOMNNYfbtpeeDwiQRtxaaMVHZ2WxMiRcPHFdUVCTc2xZ+1oIsHZpQze Xc+0gv080K4dT+cOgE0RdTpHbdDSvXvd1V/Bl+9Aa6MKC+smQvN6fb/V2HEAIU4LYzK7kTlwIANC Qrhl13Z4dz0MKUL6+Vi19rFTp7r3kJ2tXLJxcXUT0J0s/vEduiXhr8H/nEho1JIQ42BCdTpeOBKk aLfTqEhoypKgde7BwVBkL8Iy8j7ylyTw5sOfMf17AefdwNPX7mZG5OMQGIjdXldk1LckgK9CDRrU +HVoQZn+1NTUPUdyTDK/3byCF88P4cFrouie+gGLuJgQyomO9t1LU+4GDadTlVX1unAC7ukHLgM3 Vm1gaWOtFL5plocPN1ypUkM7NDe38e91dFoCmZkqxkar78dKzZxb4oZJO3k2ZiNUG5kd3J//dOqE o0z5Dfw7R23Q0rmzr85s26ZEtuZu0DK4FhQ0DIQsKFDH+V+TZoEA1cbY7dA9KIgvevbkDfpCuQme 38yI9PQjqdi19lHLEKnVzfx8JRJCQ5tn3RatTevTRxcJfxX+Z0WCFpNgD3HAK+l4PNSZxdDU1L2j xiQEHaYg4n6mX96GLb++yqvfe6D/lSSzhZKXPkDGtTlS0eoHC9ZfFRLglVfgww/hsssav7fAwKNb EjQSIxNZcfMKFg6L5qobQxgqVvIbZ5IYcKDOufzvxV8kaImoWrVS7869NrizH50coZyfkcFbjfTy Whl5vU3HLuiWBJ2WjKg19OXkwOjRx7dg0oLCQh5stRbOz+OR0ES4sx9xdjV9WKv79UWC0ajiF8rK VH0ZPlzVfa2zt1jUTKTCwsZFwoUXqhxrGpq4gIZtRND+MLi3DzyUQonbzdCNG7k8M5PtdmUV1KYk alaDigolELT4pVPl0CF1rg4ddJHwV+F/QiTY7Q0DF0tLwRDnYHRmOgYj3LipDwl+poGqqsYtCWaz r7JoIiH90EYKSi5kZqc2/PDBNB7/2cMq8zW8dNN2Mu7/lO0kYbHUrWj1px02Zkm45x4YN+7Y93bw IGzapLY1JhIA4kPj+fWmX9nRpz3DxhkIM+Zz54f9OI8fgaO7G9xuJRQ0s6cqIBM3bEthYtu2/HPX Lu7ZtQuXnx22osIX79FU46KLBJ2WTOvW6t1mU6vAHk0k5DmdXLVlC5dmZtKqIpjYhwdxR+t48Ioj Hbu/dU2jsFBZCsLD1fdZWWoUv317XbdBdLQa1fu7G0CJhJ07605prC8S/K2NakVcAWujWNljAB93 786GigqebL8O8yM7KDM7sVp9loSKCiVQQkNPTCRs3gzLlzfcrrluWrfWYxL+KrToZEqgKnhhoVLo JpNPJBSZHcwbnE44kPRuH8o6WuscZ7c3yEMEqI7e6QSCc/n8i2l4581m5Jp8ZpXCXksEPw6/m0s/ v4P/jIpmmBW61na22hTIExEJxyIwUImdtm3VZykbuhv8iQmKYdmNy4hNv4T+d69l+Q/d+H7rBUzm 3wRangCUOdRiUcLA61XxEJpgqCMSgOICA9O7dKF7YCCTdu3i04ICbmndmtvatKGiwkp8vGrYKipU w1CfliQS3ntPCcn77/+jr0SnpaB17hddpOpaYyJBSsn7hw7xYFYWZiH4JCmJlc/G8KsUhIbWPY9W 9/1H0NnZENtaYggppNiSzcxfizB0kHj35PBP514u+Ww/LNjN0kOlBL5Rw9XeUA4TyzaSSKM/pdtG UlgYd2Sqotfra+vAN5DQ8M9bUlkuuCGuNVfHxHDJu7n8NHQ/nVLz4MVwFgZGMKIykrLyIGJjBGFh J+Zu6NVLK5+62/1FQmmpL7ldU7zzjhJodVbH1fmf4n/CkuAfLFNQAHvtDsqeTMdoUC6GpAhrg8jd +u4GKSWZO1fQxXs973SNJVvEc9NN0/j7ihLEeWP4+Naf6OwsJOPcJyE6+oiCr58nwelUr+OJSTgW gYHw6qu+z2VlTVsSNGJCI+CjnyjecQu9r8zk39368W8mE3/z6CPhy9o19Omj4gWaEgmaP3Vi27Zs GjiQK6KjmZ6bS8fUVPbcmoFpeCEYZJMjEG20Ul5+fOlrTydvvgmvv/7HXoNOy8HtVqN2zeUHDUXC Trudc9LTuW3nTv4WHc22QYO4NjaW4iJBZKSyRAqhYgw8nrruhiJ7Ee9teI/P+Du7L2nH0/YYuo7s T4fXz6Mgbwzz1t7Cv2qepbJgLsvMOfzWKYYfI0aRyhA8xgAuYSFzuJ5bnmjDJpnCVTuehT17Grgt /d0Nq1bBp5+qYEzwXY/FYKBbZju6PzOEqZ07E2AQLEvYR6/161l592o2jN7OtrjDVJtdx7VglT/1 Y6by8nwiAY5uTVi/HiZMgJdfPrHfPF6+/RZ++OH0nFvHx/+EJUETCUlJsGxbNSPSN4EXni7vQ3ur lY4dIS2t7nE11SVEOL7lx8e/xZCaSrvMbHoc9vAKsD0kmC+DRnPzJ7cTfN7FBAcE8OU0kPhcFFrl 1BoUzd0AqlOsH5NwsiJBStUQSQkZGccWCerHLPDtmzx+yyCe8f6TlZvb8f26bZCSAlOnEhA+ATCw ebPKijZ0qDrMXyRERflEQnU1JNmCeL1rV17o1Il5+fncvucgay/LhKEWZpTH8R9nHHH1LqyoSI14 3G4lRrp3P/57b04cDmUedbmUcGnMgqTz10LrQBMSVDAy+ERCRbWX5/ZnM3nfPtpaLCzp1YtRfg9N QYFyD2j1cvJk6NYNyso90O1biga8RexLi5FILDUDeHJHL65ZZyNh324OWdrwlvFyFkX2Z22rYEbf sonqVr/x277VeMUvcGAYsQXX4Vz3Mb3DHZzlXU63nQu4y/4CJD6BcfBQ/sEErPJqwIbNptobrxcm ToQBA9T1LFpU1zJQWgpRVhOT4uP5/NN42nX2MO7lMv7+cjHFg0t4OzQPvoLBG0K4KCaSXjURzHks lJdeMJCY2HQ5btsG/fr5Ph86pKZTxsaqz3l5Tadmfv559b5okUocJUTj+50MLpdPLDUVWK3TPLR4 S4LV6qsMKaOrqZicjrsGuK83XQxVHFy1mK5lUzjfNY5frxvO6iFtyYoNYMPWSKbMuoHRz82j8/YC ygeksHXKA7w4cStJFRU8415M8MWXH+nV/fMkQF2RYDSqzlAzP5aVNXQ3NDYF8lholoizz1bHpacf 3d1Qn+uTb4K301ge24rW4/JZe05XmDiRUU8PZyAqLdqePT5LghZjACrwqKBAiZvERN8qdsEmE7fE tYEJA7g9vR+kRTBHHKB9aipXbdnCTyUleGtrZVGRTxj8kS6HjAzfkr4bNvxx16HTfGjC82TRAp39 M59aLBKSy7iuIo1/793LpPh4Ng8cWEcggEpfrJnHP/sMCCzkw11T+DmlM1x7KQQW8nr7J9izfTzZ M3fz0GffExjVmbF8QyfPfn4e+l9WF4/Ds+NKLg9/huXjljOxMh++/Bgc4eT3m0TF+DbsHPEo0+jI 9cwmlsMcmjYXb2AwHzGOv93RBu65h84127DbVS61TZuUZURbyl67R1BtknavkZFQVmBkdGQktpmJ 3JE2kLnuoTC1G22FlRm5uVx9KJ1vxq3kii2ZvJWby956JgNtRkb9KdD+7gZoOnixtFTlULn0UuWS 0WKumouFC5v3fDpN06ItCdsmXMGVFSYujHVTGh3Ko60fo53bw4Jx95FcmIf5CrXfrYDLAAd/MFAQ E0b20GRe2ZpCuxFncc+Uv9EpIhptHcYfatd9r+9H88+TAEoAFBZSZ0lpf0uC3a7SvGqcrCUBVExC cjIsXqwqu3+2xqMRGgoUJGOcuZr7F7/AcOszXJYQw6sLclnLYD7mBnZsfBrnWDUvyt+S0KGDqrgb N6rAyR9+UKZBUJYFjwcGhYXy1r2hvNqrM55zDvPmwYOM2rSJLjYbE9q0Ia+6NSkpZjIzfSJByoZW ltPNunVKxFksyqI0atTv99s6zYuU6rn87jt47DHfqP5YpKfD+PGwdKmqF1oHagxz8Xl+CT+WlPBt STG87sQgg1nXvz99Q0IanMfhUMGBXbtCel4635mnI+7/hGUSwg9dzfjNvbho4xLGvPsUjqBI3hA3 M3HTBHZVJLJwGOCGM8/0rX2ixRa0jQ6DjBsg4wZ+2XiQX8o/4IUl71J13QdwqA/2tPGsS76WM264 hiGtdvPdee/S9ZMPebbgNf4WdBaZ74+nf9JlnHFG4JFBU31Lgjaij4z0xS5osxs6hVrghziefSGO 2A6SuLMrYGAxRZcVc+euXXiALjYbYyIjGRMRgUOEA6Y6IqGiQrlw4uLU/8RgaNrd8MMPSui9/DL8 9ptaqrpPn2P/H4+Xr75S75pFQ+f00aItCe7DhzC688iPN/HgU4+BkNz82uv8GNWRuztdxOcP3Urq py+zbNFPWI2l/Pyyh0E7i5H3bOSD3I+xJN9KQETdFkZT2/WyNTewJGgBQ/6BOZolQXM3+J/jZCwJ WkcaG6sSvyxapCrUsdwNd96p3jXREmQ188TZT7Bl4hacw4cSf9MBbhvekTHGhUye14VW/xpHF3YS FubzdWqWhGXL1OcVK3xmOy2+ICpKXYunzMyd8fFkDhzIb336MCgkhEezstjw8CrSL9xG+PAysnPU wY88ooTW72kCzMhQIqtvXyV6dP53+fpr9X/UFimaNev4jvvuOyUWP/1Msqa8nOml++C/GzinfCVX bd3KirIyLgyJhodSeMXRr1GBALBjlxuZ9DnTK86i79t9WZq1lBG77uHDeZPImLOM6RsfJJRy0u/9 iNsvymFuv6nYUhKP1EWAnj19SY20wYO/QE+MbcPjZz3OlLgsmPMtorw9XHgXV6W2YcIPN7Kn/SH2 3PYCZGcz5+K5uL0Gxi29nl92xcGECYRkrkYgG4gErW2LiFBuNylVpx4S4msrysog54CA7aEEf9WB sz7rR+GwYXyRnMw54eEsLCzkksxMKueshFc38kWrPXyWn88Bh4N9+1SlTkhQ1tWYmKYtCQsXKlHQ uTPceit88MGprfUgZd001vv2qXfNGtqSaM62z+lUouyDD5rvnCdKixYJKV+vYuH4fMY/8DHF7vak XnQp6yJX8njGKt7cvYiz73+XIVffx7DRI5HuMJYsUf+gVatoMpmSVpGOx5KgBS7WFwmNuRtOxpKg iYzYWJg6Fb74Qn0+1upq06cr87rVqkYq2nm6RHXh62u+5uV+S3mvW2s6PlTKv86MxbRiATvpRtI9 Y7jW8iUmXHTooO5j8WLVgBQW1h19QMOpU0IIhoeHM7tHD3KGDsU2tyOHo8sofWYjr/Zczxu5uUx5 Xaml5sjudrxoS+B27+5b6c7lgmefrbvATVMcOOCbNaPzx6KZkTWxpwUdHo1cp5Mv7Ifg31uYGLeS IRs28LnIhuIAXo7vyr4hQ9g2aBBT2nWBtVG4HA2bvaySLJ5a/hSjFnaCq68iNMDLqvAH2Lc4maXz XuTyXW+yxHgB703cwDCxmvU9/sG3P9sYM0Ydr7UNoBp1TeRo/v6kJN/32kDkjKFG2HUhcu43RH50 gOHeJ1idsxJuPos7tnfn2TVTWd2/L1dELONvybtYljIJvv8ew/Az2G5IosdnTyuFLJVg0IRAZKSq f1VVqj3U6jH4looHZfE4cADCzWYub9WKt7t1Y++QIfzWcRC81ZnAmgByuuRz9datJKSmcnbBanh2 MwtC9rO0uJjoBHeTImHtWjjnHPX3hAlKxCxefOz/ZVN8/bUSJ5qF6MABVaZNZa08Vex2JTpPpMOX Em64QcVsNJdQ2L1bCbFbbqnrXvo9adEiIdfhYGbvdPAI+s/uQzurlf79faN2rVIEBEB8vG8NgZUr 1XtjJu/jtSQEB6sK5XD4vtN+77331NTAYyVTOhZauubYWBXUoyVdGjz46McJocSBEKry17/Poa3P hfdXUj1nOdMSehLzzxLGXWgjr2ATH1VewX4SuGDJfQxhNb8s8zJ+vDpXaqo6XjMhhoaqBqaxmQvh IgDHR+15Lnswgz/vRUC+jbt37YLPVsEj25i6J4flJSVk7HVx4EDdY0tL1blXrz7+sjoa2dkqo17n zqpSSQl33QVPPAEvvnj0Y2tqVONz3nnNcy0tgZoaFXB2tAW8WgJSqql22ijJ64Xvv/f9HRmp8gfU Hyk6PB6WFhfzwO7dpKxbR/zq1WwYuYOA9g7cn7flm/Z9mZY1DPFUTyZ1anMkf0r92Q1F9iI+2PgB I2aOoPP0zvz3t5e5blsSs16+hF8f28LQe17CUFLCwkvepVf0IW7xvIM7pS9RUcqcXljoe278LQlx cdC7t7ruESPUtjPO8JnbtYFISorvmBH921Dx3SPcxU5sny5jWMIgpqycwhuiO3mXp7C0wxy+u/RK vHuzYMkSMq0D6f/rNPVDXbpwf96D9Cz6BZxOIiNVx5mVpc7dmEgIDFQWm/p1UwhBRGUgfBnP+anJ WP4xlNwhQ/m6Z08GFbVG2Dy8VXaA0RkZZD6/gtmj1jJu2zbezM0lraICl9eL16vOq1lTOnZU5bNz 5/E/G/VZtUoN2tav98WrDBigvjsd+Rpef11lyr3qquM/Zs4ctVx3Wpp6jpcsaZj59kTxn/J6KiLr VGjRImH8zp2YMcA9fegZq2q4FmkbGFh31N6pk29RkxUr1HtjlgStMh/LkpCYqExaZWW+fbV9Fi1S lbAxS0Jj6zQ0hZZYRfOrCaHU/yefHP85wsIaigRVLgL2nw2zfuTR1jv5yHk3w24T9L4dvuxdReQv b7OaM9jjSWB8+kRuifyS3MwSNm9WGePA17gUFzdMQLN3r2rIuyYK+noiaf1mT57dPRTmtocOVbxc uYdzNm2i9/6VJKat5qKMDB7NymLe4cMs2FRFRZWXyZOP/z6PhiYSEhPV/+vwYXj/ffWd5k5pirlz 1fufyU3xj39Ajx5w991/9JUcnW3bVGDc0qXqc2amGjVpMQijR6t6lZcn2V5VxWs5OVyYkUHkypWM zsjgk/x8BoSE8E67JLjsDF6y90fM7EjpijAqSg2EhtatjxaLxByzh/n7p3POR+cQ+1Isz3x0CyMW 5vHZKwPJfc7Ia7MXM9y1E3HnneriUlM5fPEtZOUH4/Go+tC6tbJ42Gy+mUPa4AJ8OUXqtwVr1sCW Lb7tJpMy2w8aBFdeqUau3y4y0DdiBLMun0XBgwXcGvw13tw+VKVM4036EPdKW/6v/EMmjRzJxFvX I7/7ju3x5/L3mo+55q0REBHBNR+O4QHvFMb3TsWCg5AQ1UYYjap+7N+vhHFCgupstQGOhpb/oTJN RwAAGgxJREFUpG9f1R5Z7RYujY6m9/pOJPy3DyXDh7N14ECGrexG4K5wNldVMWn3bgakpRG6YgWD 126g5tbdHEg8XBsQKUlM9Fn56lNZqbJO3nVX08+KFvi4bp0KnvR41Igd1IDtZPF44I47Gq5kq82W W7jw+N0Za9aoMg0IgEsuUQJy4sSTvzZQ1xUerly/pyKyToUWHbhoEoL7DvXmX4XWI6pUEwn1g/s6 dvRZEjTz+NHcDfUtCfHxapsWtZuSojrBjRvrCorFi1XEbv2YhJPxi2kjdP/gmxMN+AsNbeji0MRM Sopq53IyusBPz7Nu5mQuvmsZDyZ+xbPXfEXXHXauzMzjsvSPeLfoTeZME8R82Z9pDGctg4ipGERo SCfeeUewebNviVjwVaquXVXZ5eTAgQ0WEld3YPesDrw100v7YdWMHl+Jq3MVhddWMqvqMDnaVIvv BT/lBnHTtmB6BweRHBhMB08QXWJOwF+DKsOyMnUNWkT60qWq4ZswAd5+2yciGuPjj31/+5tsfy/m zp3Ltddee9z7FxSoZ9/URM2V0lcP6k8Lbmlo4kATaGvXggh1MfLuKuavrSL/mioYUkXyrirKcBMg BGeGhfF0hw6MiYwkJSgIIYQaYZXD+edD//5qFNe5M4SFS/YUZ/Hr/l9Zvn85v+7+meTLciifJ3gk pA1f74skLLsAj9hNqhzMi4Z7SY2/nHYX9OTtZ3zz9fwDlDWRkJmpOimt7hkMSlQbjU0nFwoIUOLN n4oKdYzm1ly5Em6/XX1nNVkZGnEp7311KRidvPDJSsqilrIkawm5/efyoZAs2NSaorhBiOF38cbo KP7PmEf4irU8Y56MyWnHhQnX7b0QZw9komUggVt6cXhvdxISQmjfXrVxBw9C+/a+a9JEgtbW7t+v rDqauDAIQVJQEMMrgzj0WRxpD0G1x8PGykrWlJfz3d4KGFbIVGsOU9dAtNmMY+gvHOh2KeF7rLSz WGhvsdDOaqW9xcITD5r5/nuByQSPPtp44jZNJKxdC2edpf72tyRICc89p8RWt26Nl39jLFwIM2ao fuE///Ft37yZI8LmwAHfmhhHY+tW9UyUlKjA1TFjVC4HbZr7ybBjh7ofo7GhkPm9OCmRIIS4A3gA aA1sAu6SUq47yv4jgJeBZOAA8B8p5UfH+p13u3Vj1zpV47RGvl07par8pzaBz7TVo4cvxemJuBt6 9lRmcK3SJyer9/Xr65r/R49WqzbPnFn3/DNmHNu0XZ/GRMKJUn+0BL4OJClJNQBaZxFsM9PBfR4V G89j0wdvEN5jPb91WMaiqcvJ2vALNZ9WI4LTGBu2iXvLXoUB8I0llA2mZLau7kvl1GSCB/aApCR2 7oghKEjQpo3qoAsLlcofOFA1MvmHDJQuCMKyKoiEXOhSDWtmQ7HLxaTXKpmzugpX50rWd6liXkE+ jtqU0EHrAzgzPpheQUH0Dg4mwWolymQiymwmwmTCVO9mtVkVmrsBVBAbqBHCO+8os9/NN6tt778P b72lrE0Wi2oMrrhCxYNs3OgzD58KUqrGpUuXY+87d+5cxoy5ln//WzVSRxMpxcWqMQ8JUa6axrLY 5eaq0fjIkarD8XhUA+OP3a6CX1NT1XmOJYxyc1Umy7ffbj4RVeXx8HlmFVxQxfYOVYzaUEVqmyrk NzXMBxgKOdZA2BjE+fYI/jE4hITScKKCjEeEvEZaGoREVlEZtJv4C7bw1cY0kktW03NIBjOurSK5 AB4oDeSdgzVYnHAJktF9YxBjz4BRo7j69XNI2x2mfPU58OEZdc/v32klJvoGElpWQo2wMPW/ORG0 diggQE1v/Oc/63ZymqUCj4WLk0eSnDyS5859jtsmFfPjthVE9VpLZcgaDOdNZaK3nIluiBgRQZcx ffB+EcPAHCN3JRTTYflSXrW/g+ENyY1ASVBbzGVJvEYSNS8lwrkJ6uFKSKCoMAIhBL17q58+cEBZ FbRZHxqxsepZkxJsRiNnhIVxRlgYrVfA0v+D3YU1bKeCdeXlTFu1lLLuF/J1YSXZDgdOP6e9uMxA yAUWqvZaGPSFhSvPttIjyqLEhNVKQKmF/HwTXbqo53XbNnVcjx6q/PLz4ddf4fHHVR3+/PPjL38t AZt/CmqnU43a779ftem7dzcuEvLyVK6G6dOVO2nrVjXDZvhwJRC6d4exY1W5dehw/NeUl6eeJZvN JxIMhrqpu39PTlgkCCH+jurwxwNrgXuBH4UQXaWUDcK/hBAdgEXADOA6YBTwnhDioJRyydF+KyYg gGW1nYCWulgIpXDrZwLTRMLIkb7CPBF3A9QdkYeEqH/svn0NZxtouQH897/kEvU6ETQTfv1MiCdC VFRDK4a2BENiolLZ2sjSYlGiIigIQkMMWAoH0UoMYvGNDzE528UzVecy5cLrKTlzA10TUwlM30Lf 7HJ65q/mnPxULA9LqD33RJOZsdYYSs6JZ2hgIg+JJHLWJ3BRSiyOyFjyN8fy5a/RXHqpkehoXyWM NJupWRvBoJwINiyAOzrBreO9DLmymrSSKuxdKhETq5iXn8+LjUQdhptMRNaKhiizmZoCE9xp5stg MxkVZkIuNbHgoBlrLzNBnU2kDDaz/BcjN98syMpSJs3qahVYdu65amR+1VVq9Ll+/amJhNJSeOYZ Vb7PPKNMja+/fuxRxKxZKtlMUBBMmdL0fvPnq2fG4VCitLFMdmtVegxuugl+/lnlyfBv2EEFA86a peJnXnjBl/TGH7sdHnhAldcbb6hMfxdcADfeePR70ZBSXUt8By9fp9mJ7F9FZpXvtdfhQF6HymB2 0EpNRRBhq1vT1xDEjAeDSLQGYjUaCBwFQ1+A4eeWM+SynYTE5XDfxF2UHdhFec5unPv24NyZw9SO FeSfBc+XwpwyQaBbdUJumwW6J2EangK9erHRMoTvJj3Pt5O/ZdQoJSg37VPxQB9+qKxJRzrmWrS2 p29fVfc1Ue8fUwA+K8PJcvvtqs4OGeLb5h/wGB/v+7tn50hmvzuW0jVjeeheePJxL7uLd7Mlfwtb C7aSkbeF+T23sP7sXbxproahEOSElIIguuyN4gyXmQHOnYwO2kj7N8vgvz6fww0BgQwztKfNuHZ8 Yoih/asxsC2Godti6JcQA2tjICqKhKAwauxhHD5srnPf+/Ypy0PnqAA6E8VFUVF84w0m/c4+bKoC m01S4HKR7XSSftDBrY86GXGLg/yuTtL2V/P2/hKcRTVaU6NYYKIm0EJhRgC3FQr4j+DGAyAmC96K FZRvE4jH4QuPoOt7goH9BCFBYBQCoxCYat+N+La5nYKfWgvi7xekZgte3C0ItQkO5gg8owQBFxow pAnm5wmqC9U5zLXnMgnBV4sEaRWCvz9qYN6HRvKcRjr1MDJqlIHRo8WR2RirV9cVCZmZSuBo450v vlAxLu+8o+rctGlKaPz0k4pJGDtWtSFff31qVomT5WQsCfcCb0spPwYQQtwOXATcDDQ2lv4nkCWl /Fft5x1CiOG15zmqSAA1GszMVEpN44UXGgZlaUqvXTu176pVTQuBwMCGloTG6NhRPfD1VaDW6J5q AqFPPlGN74kEO9Zn6tSGkbTdu6tzX3453HdfXZGQkqJEhRBKnGijli6dzbgrwzn83Xiuuw6m3Qce r4d+5xxgsnMnhi476HvmNvpEZmDbs5+AfQW0L88lIS+XDqVreDgAwp3Ah3AtwB6YiqDyRxulthCu qApj34gQRGQYF6wPx9Y6kgMdoqmZ1YpSWwwRC2J57uJQPnk3kAcHBdLvzFb8d34AnjZGnpou6TbQ xX1PuSn1uihy1b7cbrJqnNCvknl2N0W7Xbju8RVG57XA85DhFvy40oS9XOCcKbAYBTd5BTFbBHwA T7UVmN4XPO0WfLGhtkFBNSaF+YK9uwWDBgiCbb4GxigEeMFsEJgN6vO6NYJ0N1AiCHtEMKNY4FgD rWN8x/g3UkYhyKquZnN2NqZr4OV9AmsGREeC1g4IIRCA9MKLWyD5EYiOEnyQDtGb4Zuv4frrIdAq MACfZQvCr4bywQJGwls7BEPDlYnYgHqfuQO63wQpyYKpn0LcakFSN3VdBsAlJS9N97J4i5flb3nZ leNFXOZl6n4v2fu8OLxenFLi8HqbfOXme9l72A0VDgiUsA3amM0YD5iILPMyLtzL4v+W8vz1ecx+ LY9Iy2E61hTRr0sxO24vZUd5OcaKSmYm2Il+zc6+5zz8XAXRdjDNr/u8F5ttFEcmENG3A0Gdk3hp XjdSixJ55otk+v4toY6pLbkGwp8yMnasElJa0GS3bqphXr26oahq3VqJKm0Q0JQlITa26eyDx0tj OT6uvVbFzvjPoOjSxScYx4wBgzDQNaorXaO6clmSioCe/3cASdbhAgpc+7jjsX1kHNxLqnUfB67M 4yNzHht3HsZtqSKq2k37MkgohfZldhLKtpN5aAdxbY3YMg2UrPMyrcoNn6JewOWAC7DHmym02jC2 CsIdEszoshB6mUPJvyYEERiICAoirDCTB6yPsuXeYHKLQxh5YQgbvgll3jehDCGI9ydYadU2gPd/ CeGFSVGs3GimJEjw0w74aKmXbI+bi293ssPiYtUaSVCIxC0l5hBJQbWkyC7pPEhSUCzJqob8HZLO XSQeKfGAepfqGG2b3SHhSklJmMRbLXkoy4swSaQBeBielcDj8B7wXmYj/6xE4G3IAYbvB76EccBN v0CQ0Uiw0Yh5npHxXiPT1xqJsBqxFxn55QcjQ3obad/KSNoKI/u3G3GXGwldaOTtjUaG3Gxi5c8m Lr3JRFm1ibPPNnD4sKC0VPWF8+ervsntVpaL042QJzBXQwhhBuzAFVLKBX7bZwJhUsoGiyILIX4B 0qSU9/ltGwe8IqVsNG2QEKIfkJaWlkY//5ygRyE/X1Xe+fNVJ3nHHUqdNSYG2rZVcQUzZhz9nMuW qWCUSZPquhaKilRw1bp1Pr9YS+WNN5RpeeBAdS/+KnTkSLV9yhQ16hs8eCywgLff9j182mpvN92k Rt8jR6rphT//DJP+Vc4NE3PIKc9h5lc5fPPFQe4fl03msoO4D+bTJbiI9sYybIWVBFc6CXNKwh0Q 7oCw2vfg48glX2MQ2I1GHBYjLqsJaTPhFGYqnEZcBhNVbhNtOprwmE0c9AaxuSwMe1QY0X1DyJGh bCkNJio5iL0HzQRHGLGFmdibbcQjjHgNRrqnGCmpNLDvoIHO3QyUVhoICDJS4zWQk2fAjcASbKRd RwNeIfAKQbXLQPZBQYBN0CpOUF4pKCgRWAIFNR6IjBYUFIMlUBBgA2ECDwKPBGkAjxB4garHHocn nsVsBrcHhEFgMCohJwFhUC+vt3YUUes68ErA8PsNKcwuF0aXG5vXhcnlxlxTg026CHDVEFBTg8Vd g7XGidVZg8XpxFLlJMRhp2t2Nr32ZtF7z17iSquOGSldY4Qqm4nqoABqgqwcrA6k0BgF0TGs3xtP vqsj+Y5EDK3asaO4FZff2YbJr4QwZw5cd506x3PPKfGdnt74qOuSS8aSkbGgTmT/kiVqULFnz7Gt JfPnq9/yD7IEZZa3WutmNm0O3G5l8fJ3e+zapcSMxaKsH43lVtHu3etVf8+ZowRlRIRviev77oNP 50s+nF1J2o7DfL24gLStpVz5f6WcPaaUd2aVkLm7lLDYUlyeYs4fUICtuAxzeSXmCjuyoJqASidh rhrCazyEOX11O8gFgbWvO8rgU7P623KSeQ1cBnCbDLhMArdR4DIZcGDA4RF4hMAabEAaBTVeA+V2 gS3EACYDJovAaxB4DQakQeA1qr9LKgSlVQbiEwSVTgPVNYLCEgMuIQgMNxITb2LnPiMOrxGv1YQL I4GhJqqlkcBwI4cKjUS3M1LqMFPkCMAdZCGmqwWHxUJ1gJVqs4USTwCHHRbcgRYsrQIorLFgNwZQ Y7VQYwnAZat9P8pI0eTxEFjjwFDuwOpwEGB3YrE7sFQ7iDY7iTY6CBcObE4HwR4nwTUOirMP8vJH SwD6SylPKQ/tiYqEOCAXGCqlXOO3fQpwlpRyaCPH7AA+kFJO8dt2AcoFESildDZyzBnAytmzZ5Pk b287Bps3K/NcU0FdGuPHK2vD0ZZx/rNQXKxGQTff3NBf6nCosjKZVHzEiBH3Aq8wc6bPlJqersTQ Ndeo8tIyrrVrp3x2/rEhWu6IO+5Q/u7PP1eK1+mEM86QYHRCgB3MVTz9nJ3CsipmvFlBVGARHWJL uOi8Sr6YY8fsqSYmzEGYuZqqIiexYU5CTE4q8l1YZQ1BwoXB68YsPZi8XoIDPAQgMbq9mDxepBMC 8GL2SkweickLZg8EeMAg1csoQdS+GyQYvbXvv9P/RUOV+KnjBaQQSKEaQC8gDT5RA6jt2j5C1Pne I1Sj6zIIBB6Ex4XJ40J43BilGl05pdrPjQGPMOAxGvBgoEYakUYDLqMJuzThxITLFEB8ZxvWUAtO r43UjVaqaoLoPTCQrTuDyCsKZtQFIQwaEUFQZCy2sGhESEiDKNw77/RNlQ0J8aUwT0tTFrjdu9Uz OH++L12xlOrV1Eyje++9l8TEV+okqFm0qPGAucZwu9XsnuOJOTlduN3KLdK7t5qS3Rj9+6t3LSap qkpZKs480xc/tXixSoCmoYmer75SddnhUObvlSvhttvgb3+r+xterxIcs2fD4qVuzhnlwOGpZuzl DkIiHLi9btxeN9OemsZZl09g5scueiQ52ZFh58qx1bSNrsJdUU2g2Yl01eCtcbJrm4u9O9yEBbpJ THBTmu+mc3s3ZjwItxuD24NwezG43XgdHnL2eQm0eGkd40V4vQiPl+JCidflxSAlVrMX4ZFIj8Qs INAi8dRIPE6JxSgJsoKQEoNX4nWp7TaLmvrndoP0gNks8dSARCIk4AWDkJjNILzg9UiMhrrTBQ1S nRdvrfWW2jbHoLYLlHgTEjzCgMMYgN1qpTrIRqXNRoU1kCqrjaqgQCqtVipt6nOlzUZloI1Kq43K QN+2Gv+6c+CAFok5TErpF3J+4rRUkXAdMOdEbkRHR0dHR0enDv8npTyBSfUNOdGYhELAA9SPx48F msi9RV4T+5c3JhBq+RH4P2Af4GhiHx0dHR0dHZ2GWIEOqL70lDghkSCldAkh0oBzgQUAQghR+3l6 E4etBi6ot+282u1N/U4RcErqR0dHR0dH5y/MKbkZNE4m4+I04DYhxD+EEN2Bt4BAYCaAEOJ5IYR/ DoS3gE5CiClCiG5CiInAlbXn0dHR0dHR0WmhnPAUSCnlfCFENDAZ5TZIB8ZIKbU1uloD7fz23yeE uAgVnzUJNWPkFinl0lO9eB0dHR0dHZ3TxwkFLuro6Ojo6Oj8dWjRCzzp6Ojo6Ojo/HHoIkFHR0dH R0enUVqcSBBC3CGE2CuEqBZCpAohBv7R1/RnQQhxphBigRAiVwjhFUKMbWSfyUKIg0IIuxBiiRAi 8Y+41j8LQohHhBBrhRDlQojDQoivhBBdG9lPL/dmQghxuxBikxCirPa1Sghxfr199PI+TQghHq5t X6bV266XeTMihHiytpz9X1vr7XPKZd6iRILf4lFPAn1RK0z+WBsoqXPqBKECTSeisv7WQQjxEHAn avGuQUAVqvxPbP1mHX/OBP4LDEYtbmYGFgshjiQM18u92ckGHgL6Af2Bn4FvhBBJoJf36aR2UDce 1Xb7b9fL/PSQiZpA0Lr2NVz7otnKXErZYl5AKvCa32eBmg3xrz/62v5sL1Qm37H1th0E7vX7HApU A1f/0df7Z3kB0bVlP1wv99+13IuAm/TyPq1lHAzsAEYCy4Bpft/pZd785f0ksOEo3zdLmbcYS0Lt 4lH9gZ+0bVLd2VKgQbpnneZFCNERpUT9y78cWINe/s1JOMqKUwx6uZ9uhBAGIcQ1qFwuq/TyPq28 ASyUUv7sv1Ev89NKl1r38R4hxGwhRDto3jI/maWiTxfRqPV1Dtfbfhjo9vtfzl+O1qjOq7Hyb91w d50TpTY76avACiml5jvUy/00IIToicrqagUqgMuklDuEEEPRy7vZqRVifYDG1sXVn/HTQypqdeod QBzwFPBr7bPfbGXekkSCjs6fnRlAD2DYH30hfwG2A72BMFSG14+FEGf9sZf050QIEY8Sv6OklMex +LtOcyCl9F+XIVMIsRbYD1yNev6bhRbjbuDkFo/SaT7yUDEgevmfBoQQrwMXAiOklIf8vtLL/TQg pXRLKbOklBullI+hAunuRi/v00F/oBWwQQjhEkK4gLOBu4UQNajRq17mpxkpZRmwE0ikGZ/zFiMS ahWotngUUGfxqGZZqEKnaaSUe1EPj3/5h6Ki8vXyPwVqBcKlwDlSygP+3+nl/rthACx6eZ8WlgIp KHdD79rXemA20FtKmYVe5qcdIUQwSiAcbM7nvKW5G6YBM2tXmlwL3Ivf4lE6p4YQIgj1EInaTZ2E EL2BYillNspk+LgQYjdqme5nULNLvvkDLvdPgRBiBnAtMBaoEkJoyr5MSqktg66XezMihHgO+B44 AISglp0/G7X6LOjl3axIKauA+vPzq4AiKeW22k16mTczQoipwEKUi6Et8DTgAubV7tIsZd6iRII8 9uJROqfGANTUJFn7erl2+0fAzVLKF4UQgcDbqCj834ALpJQ1f8TF/km4HVXWy+ttvwn4GEAv92Yn BvVMxwFlQAZwnhZ1r5f370KdPCx6mZ8W4oFPgCigAFgBDJFSFkHzlbm+wJOOjo6Ojo5Oo7SYmAQd HR0dHR2dloUuEnR0dHR0dHQaRRcJOjo6Ojo6Oo2iiwQdHR0dHR2dRtFFgo6Ojo6Ojk6j6CJBR0dH R0dHp1F0kaCjo6Ojo6PTKLpI0NHR0dHR0WkUXSTo6Ojo6OjoNIouEnR0dHR0dHQaRRcJOjo6Ojo6 Oo3y/wSMxKqoXurUAAAAAElFTkSuQmCC " >

Ogólny schemat<a class="anchor-link" href="#Ogólny-schemat">¶</a>

W praktyce musimy najczęściej estymować widmo mając dany tylko sygnał. Wówczas powinniśmy postąpić według następującego algorytmu:

  • oszacować rząd modelu np. przy pomocy kryterium Akaikego
  • wyestymować parametry modelu
  • obliczyć widmo dla estymowanego modelu

Ćwiczenie<a class="anchor-link" href="#Ćwiczenie">¶</a>

Teraz, kiedy umiemu już estymować widma różnymi metodami proszę pobawić się prawdziwymi synałami. Przykładowe sygnały i sposoby ich wczytywania podane są

[<a href="http://brain.fuw.edu.pl/edu/TI:Programowanie_z_Pythonem/Wejście_i_wyjście#Przyk.C5.82ady">http://brain.fuw.edu.pl/edu/TI:Programowanie_z_Pythonem/Wejście_i_wyjście#Przyk.C5.82ady</a> tu].

Proszę zapisać sygnał c4spin.txt w swoim bieżącym katalogu, wczytać go i oszacować widmo metodą AR i metodą Welcha.

In [ ]:
<span></span> 

</body> </html>


Model AR

Rozważania na temat procesów AR są o tyle interesujące, że wiele sygnałów, które chcielibyśmy badać całkiem nieźle daje się opisać jako procesy AR . Wyobrażamy sobie wówczas, że rejestrowane sygnały są generowane przez pewien model AR (trochę tak jak funkcja realizacjaAR wytwarzała pojedyncze realizacje procesu). Pojawia się w tym momencie pytanie: jak możemy poznać wartości parametrów [math]a[/math] i [math]\sigma^2[/math], które pasują do badanych sygnałów?

Estymacja parametrów

Algorytmów służących do estymacji parametrów modelu AR jest kilka. Tu przedstawimy algorytm Yule-Walker'a:

  • mnożymy stronami równania opisujące proces dla póbki [math]t[/math] i [math]t-m[/math]
[math]x_t x_{t-m} = \sum _{i=1}^p a_i x_{t-i} x_{t-m} +\epsilon _t x_{t-m} [/math]
  • bierzemy wartość oczekiwaną lewej i prawej strony. Wartości oczekiwane [math]E\lbrace x_t x_{t-m}\rbrace [/math] to funkcja autokorelacji [math]R(m)[/math] więc:
[math]R(m) = \sum _{i=1}^p a_i R(m-i)+ \sigma _\epsilon ^2 \delta (m)[/math]

gdzie [math]m=0,\dots ,p.[/math]

  • Dla [math]m\gt 0[/math] możemy zapisać stąd układ równań:
[math]\left[\begin{array}{c} R(1)\\ R(2)\\ \vdots \\ R(p) \end{array}\right]= \left[\begin{array}{cccc} R(0)& R(-1) &\dots &\\ R(1)& R(0) &R(-1) \dots &\\ \vdots & & &\\ R(p-1) & &\dots &R(0) \end{array}\right] \left[\begin{array}{c} a_1\\ a_2\\ \vdots \\ a_p \end{array} \right] [/math]
  • stąd wyliczamy współczynniki [math]a[/math],

dla [math]m=0[/math] mamy

[math]R(0) = \sum _{k=1}^p a_k R(-k) + \sigma _\epsilon ^2[/math]
  • można stąd wyliczyć [math]\sigma _\epsilon ^2 [/math]

Ćwiczenie: estymacja parametrów procesu AR

  • Wygeneruj 2000 próbek sygnału z modelu AR o parametrach a = {0.9, -0.6}, epsilon=2
  • Oblicz funkcję autokorelacji tego sygnału: ak = np.correlate(x,x,mode='full')
  • Znormalizuj tą funkcję dzieląc ją przez liczbę pokrywających się próbek dla każdego przesunięcia [math]\tau[/math]
  • Oblicz parametry zgodnie ze wzorami z poprzedniego paragrafu dla modelu rzędu 2. (wypisz konkretną postać wzorów analitycznych a następnie zaimplementuj je)
  • Wypisz parametry prawdziwe i estymowane.
  • Sprawdź jak wpływa długość sygnału na dokładność estymaty (uruchom program kilka razy dla każdej z badanych długości sygnału)

wskazówka: R[0]=ak[N-1]

#wspolczynniki modelu AR 
a = np.array([0.9, -0.6])
sigma = 2
N = 200
x = np.zeros(N);

#generujemy realizacje procesu
for i in range(2,N):
    x[i] = a[0]*x[i-1] + a[1]*x[i-...] + ...

py.subplot(2,1,1)
py.plot(x)
py.xlabel('numer próbki')
py.title('wygenerowany sygnal')

py.subplot(2,1,2)
ak = np.correlate(x,x,mode='full')
# ak nieobciążona:
norm_ak = ...
ak /= norm_ak
m = ... # przesunięcia
py.plot(m, ak)
py.xlabel('przesunięcie m')
py.title('funkcja autokorelacij sygnalu x')

R=ak[N-1:]
r0=R[0]
r1=R[1]
r2=R[2]

# estymujemy wspolczynniki modelu na podstawie funkncji autokorelacji

a2 = ...
a1 = ...
s_2 = ...

print('prawdziwe wspolczynniki')
print(  a[0], a[1], sigma)
print('estymowane wspolczynniki')
print( '%.3f, %.3f, %.3f'%(a1,  a2, s_2**0.5))

py.show()

Estymacja parametrów dla modelu rzędu p

W przypadku modelu rzędu [math]p[/math] estymację parametrów metodą Y-W można zaimplementować np. tak:

def parametryAR(x,p):
    '''funkcja estymująca parametry modelu AR 
    argumenty:
    x- sygnał
    p - rząd modelu
    f. zwraca:
    a - wektor współczynników modelu
    epsilon - estymowana wariancja szumu

    funkcja wymaga zaimportowania modułu numpy as np
    '''
    N = len(x)
    ak = np.correlate(x,x,mode='full')
    norm_ak = np.hstack((np.arange(1,N+1,1),np.arange(N-1,0,-1)))
    ak=ak/norm_ak
    R=ak[N-1:]
    RL  = R[1:1+p]
    RP = np.zeros((p,p))
    for i in range(p):
        aa = ak[N-1-i:N-1-i+p]
        RP[i,:] = aa
    a=np.linalg.solve(RP,RL)
    sigma = (ak[N-1] - np.sum(a*ak[N:N+p]))**0.5
    return a, sigma

Jak znaleźć rząd modelu?

Kryterium Akaike (AIC):

[math]\mathrm{AIC}(p)= \frac{2p}{N} +\ln(V) [/math]

[math]p[/math] - ilość parametrów modelu,

[math]N[/math] - ilość próbek sygnału,

[math]V[/math] - wariancja szumu.

Kryterium to karze za zwiększanie ilości parametrów i nagradza za zmniejszanie niewytłumaczonej wariancji.

Poniższy kod jest przykładową implementacją kryterium AIC:

def kryterium_AIC(x,maxymalnyRzad):
    zakres_rzedow = range(1,maxymalnyRzad)
    N = len(x)
    AIC = np.zeros(len(zakres_rzedow))
    for p in zakres_rzedow:
        a,sigma = parametryAR(x,p)
        AIC[p-1] = (2.0*p)/N + np.log(np.sqrt(sigma))
        print 'p:', p, ' a:',a,' sigma: ',sigma
    return AIC

Zobaczmy jak działa to na przykładowym sygnale AR:

import numpy as np
import pylab as py
from numpy.fft import fft, fftshift
def parametryAR(x,p):
    '''funkcja estymująca parametry modelu AR 
    argumenty:
    x- sygnał
    p - rząd modelu
    f. zwraca:
    a - wektor współczynników modelu
    epsilon - estymowana wariancja szumu

    funkcja wymaga zaimportowania modułu numpy as np
    '''
    N = len(x)
    ak = np.correlate(x,x,mode='full')
    ak=ak/N
    R=ak[N-1:]
    RL  = R[1:1+p]
    RP = np.zeros((p,p))
    for i in range(p):
        aa = ak[N-1-i:N-1-i+p]
        RP[i,:] = aa
    a=np.linalg.solve(RP,RL)
    epsilon = (ak[N-1] - np.sum(a*ak[N:N+p]))**0.5
    return a,epsilon


def kryterium_AIC(x,maxymalnyRzad):
    zakres_rzedow = range(1,maxymalnyRzad)
    AIC = np.zeros(len(zakres_rzedow))
    for p in zakres_rzedow:
        a,epsilon = parametryAR(x,p)
        AIC[p-1] = (2.0*p)/N + np.log(np.sqrt(epsilon))
        print 'p:', p, ' a:',a,' epsilon: ',epsilon
    return AIC

#wspolczynniki modelu AR 
a = np.array([0.9, -0.7])
epsilon=2
N=600
x=np.zeros(N);
#generujemy realizacje procesu
for i in range(2,N):
    x[i]=a[0]*x[i-1]+a[1]*x[i-2] +epsilon*np.random.randn()

py.subplot(2,1,1)
py.plot(x)
py.title('wygenerowany sygnal')
py.subplot(2,1,2)

AIC = kryterium_AIC(x,6)
py.plot(range(1,len(AIC)+1),AIC)
py.title('Kryterium AIC')
py.show()

Widmo modelu AR

Widmo modelu można wyliczyć analitycznie znając jego współczynniki: Przepisujemy równanie modelu:

[math]x_t = \sum _{i=1}^p a_i x_{t-i} +\epsilon _t[/math]
[math]\sum _{i=0}^p a_i x_{t-i} =\epsilon _t[/math]

biorąc transformaty [math]Z[/math] obu stron mamy równanie algebraiczne:

[math]A(f)X(f) =E(f)[/math]
[math]X(f)=A^{-1}(f) E(f)=H(f) E(f)[/math]

Stąd widmo:

[math]S(f) = X(f)X^*(f)=H(f)VH^*(f)[/math]

Jak znaleźć A — transformata Z

Transformata Z jest dyskretnym odpowiednikiem transformaty Laplace'a:

[math]X(z) = Z\lbrace x[n]\rbrace = \sum _{n=0}^\infty {x[n]z^{-n}}[/math]

gdzie [math]z=Ae^{i \phi }[/math] jest liczbą zespoloną. Szczególnym przypadkiem tej transformaty jest dyskretna transformata Fouriera - wystarczy podstawić [math]A=1/N[/math] i [math]\phi = - 2 \pi k/ N [/math] porównaj.

Własności transformaty Z

Transformata ta jest liniowa tzn.

[math]\mathrm{Z}\lbrace a_1x_1[n] +a_2x_2[n]\rbrace =a_1X_1(z)+a_2X_2(z)[/math]

jak ją policzyć od sygnału przesuniętego w czasie to:

[math]\mathrm{Z}\lbrace x[n-k]\rbrace = z^{-k}X(z)[/math]

dla impulsu:

[math]\mathrm{Z}\lbrace \delta [n]\rbrace =1[/math]

więc

[math]\mathrm{Z}\lbrace \delta [n-n0]\rbrace = z^{-n0} [/math]

Stosując tą transfomatę do procesu AR dostajemy:

[math]\mathrm{Z}\lbrace x[n] + a_1 x[n-1] + \dots + a_p x[n-p]\rbrace = (1 + a_1 z^{-1} + \dots + a_p z^{-p})X(z)[/math]
[math]=A(z)X(z)[/math]

Widmo procesu

Najpierw rozważmy konkretny przykład. Niech model będzie rzędu p=2 i ma współczynniki [math]a_1 = 0.9, a_2 = -0.6[/math] i [math]\sigma_{\varepsilon} = 2[/math]. Wyliczamy wartości funkcji [math]A(z) = a_1 z^{-1}+a_2 z^{-2}[/math] dla [math]z = e^{i \omega}[/math]:

a=[0.9, -0.6]
sigma_eps = 2
w=np.arange(-np.pi,np.pi,0.1)
z=np.exp(1j*w)
# dla zadanego modelu
A=-1+a[0]*z**(-1)+a[1]*z**(-2);

Następnie obliczamy odwrotność A :

H=1./A

i obliczamy widmo:

Sp=H*H.conj()* sigma_eps**2
Sp = Sp.real

Możemy je wykreślić w funkcji częstości [math]\omega[/math].

py.plot(w,Sp )

Operacje te możemy uogólnić i zaimplementować jako funkcję do obliczania widma modelu zadanego przez parametry:

def widmoAR(parametry_a, epsilon, N_punktow):
    w = np.linspace(-np.pi,np.pi,N_punktow)
    z = np.exp(1j*w)
    A = -1 * np.ones(N_punktow) + 1j*np.zeros(N_punktow)
    for i in range(len(parametry_a)):
        A += parametry_a[i]*z**(-(i+1))
    H = 1./A
    Sp = H*H.conj()* sigma_eps**2 # widmo
    Sp = Sp.real
    return Sp, w

Ćwiczenie

Proszę:

  • Wygenerować realizację modelu AR [math]a = \{0.6, -0.7, 0.3, -0.25\}, \quad \sigma_{\varepsilon} = 2[/math]
def generujAR(a, sigma_eps, N):
    x=np.zeros(N)
    rzad = len(a)
    for i in range(rzad,N):
        for p in range(len(a)):
            x[i] += a[p]*x[i-(p+1)]
        x[i] += sigma_eps*np.random.randn()
    return x
  • Obliczyć widmo dla tego modelu
  • Wyestymować parametry modelu na podstawie sygału, zakładając, że rząd jest p = 3,4,5,6
  • Obliczyć widmo dla wyestymowanego modelu
  • Wykreślić widma prawdziwego modelu i modeli estymowanych
 *

Ćwiczenie

Dla modelu z poprzedniego ćwiczenia proszę wygenerować realizację sygnału długości 1000 punktów. Proszę porównać widma:

  • prawdziwe, obliczone z prawdziwych parametrów modelu
  • obliczone z estymowanego modelu
  • obliczone przez periodogram
  • obliczone metodą Welcha
  • obliczone metodą wielookienkową Thomsona
import numpy as np
import pylab as py
from numpy.fft import fft, fftshift,fftfreq
import gendpss as dpss

def generujAR(a, epsilon, N):
    x=np.zeros(N)
    r = len(a)
    for i in range(r,N):
        for p in range(len(a)):
            x[i] += a[p]*x[i-(p+1)]
        x[i] += epsilon*np.random.randn()
    return x
    
def parametryAR(x,p):
    N =  len(x)
    ak = np.correlate(x,x,mode='full')
    ak = ak/N
    R = ak[N-1:]
    RL = R[1:1+p]
    RP = np.zeros((p,p))
    for i in range(p):
        aa = ak[N-1-i:N-1-i+p]
        RP[i,:] = aa
    a = np.linalg.solve(RP,RL)
    epsilon = (ak[N-1] - np.sum(a*ak[N:N+p]))**0.5
    return a,epsilon

def widmoAR(parametry_a, epsilon, N_punktow):
    w = np.linspace(-np.pi,np.pi,N_punktow)
    z = np.exp(1j*w)
    A = -1 * np.ones(N_punktow) + 1j*np.zeros(N_punktow)
    for i in range(len(parametry_a)):
        A += parametry_a[i]*z**(-(i+1))
    H = 1./A
    Sp = H*H.conj()*epsilon**2 # widmo
    Sp = Sp.real
    return Sp, w

def periodogram(s, okno , Fs):
    s = s*okno
    N_fft = len(s)
    S = fft(s,N_fft)#/np.sqrt(N_fft)
    P = S*S.conj()/np.sum(okno**2)
    P = P.real # P i tak ma zerowe wartośći urojone, ale trzeba ykonać konwersję typów
    F = fftfreq(N_fft, 1/Fs)
    return (fftshift(P),fftshift(F))

def pwelch(s,okno, przesuniencie, Fs):
    N = len(s)
    N_s = len(okno)
    
    start_fragmentow = np.arange(0,N-N_s+1,przesuniencie)
    ile_fragmentow = len(start_fragmentow)
    ile_przekrycia = N_s*ile_fragmentow/float(N)
    print ile_przekrycia, ile_fragmentow
    P_sredni = np.zeros(N_s)
    for i in range(ile_fragmentow):
        s_fragment = s[start_fragmentow[i]:start_fragmentow[i]+N_s]
        (P, F) = periodogram(s_fragment,okno,Fs)
        P_sredni += P
    return (P_sredni/ile_przekrycia,F)#(P_sredni/ile_przekrycia,F)

def mtm(s, NW = 3, Fs = 128):
    K = int(2*NW-1)
    N = len(s)
    w = dpss.gendpss(N,NW,K)
    S=np.zeros(N)
    for i in range(K):
        Si = np.abs(fft(s*w.dpssarray[i]))**2
        S[:] += Si.real
    S = S/K
    F = fftfreq(N,1.0/Fs)
    return (fftshift(S),fftshift(F))


#wspolczynniki modelu AR 
a = np.array([0.3, 0.2, 0.5, -0.25 ,-0.3])
epsilon = 2
N=256
# obliczanie widma z modelu
Sp, w = widmoAR(a,epsilon,N)

#generujemy realizacje procesu

x = generujAR(a, epsilon, N)

# estymujemy wspolczynniki modelu metodą Yula-Walkera
# obliczamy widmo dla estymowanego modelu
a_est,epsilon_est = parametryAR(x,5)
Sp_est, w = widmoAR(a_est,epsilon_est,N)

okno = np.blackman(N)
Fs = 2*np.pi                    
P_periodogram,F_periodogram = periodogram(x, okno , Fs=Fs)
okno = np.blackman(N/4)
P_welch, F_welch = pwelch(x,okno, len(okno)/2, Fs=Fs)                
P_mtm, F_mtm = mtm(x, NW = 4.5, Fs =Fs)

py.plot(w,Sp)
py.plot(w,Sp_est)
py.plot(F_periodogram,P_periodogram)
py.plot(F_welch, P_welch/(len(P_periodogram)/len(P_welch)))#uwaga Welch ma inne df
py.plot(F_mtm, P_mtm)

#py.legend(('prawdziwy','estymowany z AR','periodogram','Welch','mtm'))

print 'enenrgia sygnału: ', np.sum(x**2)
print 'enenrgia spektrum AR',np.sum(Sp)
print 'enenrgia est',np.sum(Sp_est)
print 'enenrgia mtm',np.sum(P_mtm)
print 'enenrgia welch',np.sum(P_welch)
print 'enenrgia period',np.sum(P_periodogram)
py.show()

Co z tego musimy zapamiętać:

  • widmo sygnału stochastycznego estymujemy, a nie obliczamy
  • są dwie klasy technik:
    • nieparametryczne - widmo estymujemy bezpośrednio dla sygnału np. metodą periodogram, Welcha, wielookienkową
    • parametryczne: najpierw estymujemy model opisujący dane, a nstępnie dla modelu obliczamy widmo

Ogólny schemat

W praktyce musimy najczęściej estymować widmo mając dany tylko sygnał. Wówczas powinniśmy pwstąpić według następującego algorytmu:

  • oszacować rząd modelu np. przy pomocy kryterium Akaikego
  • wyestymować parametry modelu
  • obliczyć widmo dla estymowanego modelu