Wnioskowanie Statystyczne - wykład: Różnice pomiędzy wersjami

Z Brain-wiki
Linia 72: Linia 72:
 
</math>
 
</math>
 
po jednym punkcie za poprawną) i kilku pytań otwartych (po 2—4 punkty). Ostateczne przeliczenie punktów na oceny, jednakowe dla wszystkich, będzie ustalone a posteriori na podstawie statystyki i zdrowego rozsądku — w każdym razie próg zaliczenia powinien wyraźnie przekraczać 50% (po korekcie na odpowiedzi przypadkowe w części testowej).
 
po jednym punkcie za poprawną) i kilku pytań otwartych (po 2—4 punkty). Ostateczne przeliczenie punktów na oceny, jednakowe dla wszystkich, będzie ustalone a posteriori na podstawie statystyki i zdrowego rozsądku — w każdym razie próg zaliczenia powinien wyraźnie przekraczać 50% (po korekcie na odpowiedzi przypadkowe w części testowej).
 +
Ocena końcowa z przedmiotu = średnia ocen z ćwiczeń i z wykładu, pod warunkiem zaliczenia ćwiczeń '''i''' wykładu.
  
 
* nie wychodzimy z sali w trakcie egzaminu — bardzo proszę o przygotowanie się pod tym kątem :)  
 
* nie wychodzimy z sali w trakcie egzaminu — bardzo proszę o przygotowanie się pod tym kątem :)  
Linia 85: Linia 86:
 
* oddajemy kompletne arkusze wraz z notatkami i brudnopisami, nie jest dozwolone robienie kopii "na pamiątkę".
 
* oddajemy kompletne arkusze wraz z notatkami i brudnopisami, nie jest dozwolone robienie kopii "na pamiątkę".
  
Tematy do przemyślenia przed egzaminem == przerobiony na wykładzie program. Dla ustalenia uwagi, na przykład:
+
==Tematy do przemyślenia przed egzaminem ==  
 +
Dla ustalenia uwagi, na przykład:
 
** Sformułuj Centralne Twierdzenie Graniczne.  
 
** Sformułuj Centralne Twierdzenie Graniczne.  
 
** Wypisz i przedyskutuj definicje prawdopodobieństwa.
 
** Wypisz i przedyskutuj definicje prawdopodobieństwa.
Linia 102: Linia 104:
 
<!-- * Jeśli będzie egzamin ustny, to będzie obejmował tematy omawiane na wykładzie, jak np. powyższe.
 
<!-- * Jeśli będzie egzamin ustny, to będzie obejmował tematy omawiane na wykładzie, jak np. powyższe.
 
* W obu przypadkach na ocenę końcową mogą wpływać również punkty za aktywność na zajęciach.-->
 
* W obu przypadkach na ocenę końcową mogą wpływać również punkty za aktywność na zajęciach.-->
 
Ocena końcowa z przedmiotu = średnia ocen z ćwiczeń i z wykładu, pod warunkiem zaliczenia ćwiczeń '''i''' wykładu.
 

Wersja z 06:41, 10 lut 2023


Wnioskowanie statystyczne (wykład)

UWAGA: wymagane zaliczenie Technologii Informacyjnych i Komunikacyjnych z ćwiczeniami z programowania w Pythonie w wymiarze 45 godzin ćwiczeń


    1. Rozkłady gęstości prawdopodobieństwa
    2. Wariancja, mediana...
    3. Przykładowe rozkłady
    1. Centralne Twierdzenie Graniczne
    1. Wstęp
    2. Teoria klasyczna
    3. Statystyki i estymatory
    1. Weryfikacja hipotez statystycznych
    2. Test t Studenta
    1. Test [math]\chi^2[/math]
    1. Monte Carlo
    2. Testy permutacyjne
    3. Bootstrap
    1. Testy nieparametryczne
    2. Test serii
    3. Test Wilcoxona-Manna-Whitneya
    1. Metoda największej wiarygodności
    2. Regresja liniowa
    1. Interpretacja współczynnika korelacji
    2. Analiza wariancji
    1. TP/FP, ROC. Problem porównań wielokrotnych — miejskie legendy i przepowiednie
    1. Prawdopodobieństwo
    2. Twierdzenie Bayesa
    1. Elementy statystyki wielowymiarowej
    1. Sztuczne sieci neuronowe
    2. Algorytmy Genetyczne

Całość podręcznika jest udostępniona na licencji Creative Commons Uznanie autorstwa-Na tych samych zasadach 3.0 Polska. CC-88x31.png Na podstawie książki Wstęp do współczesnej statystyki. Autor: Piotr Durka.



Organizacja egzaminu

Do egzaminu podchodzą osoby, które zaliczą ćwiczenia — w braku zaliczonych ćwiczeń wynik egzaminu z wykładu nie "przenosi się" na przyszły rok. Egzamin składał się będzie z testu jednokrotnego wyboru ([math]N[/math] pytań, każde z czterema odpowiedziami do wyboru, bez punktów ujemnych za błędne odpowiedzi, ale z korektą dla [math]p[/math] poprawnych odpowiedzi [math] p_{\% kor} = \frac{p - N/4}{N - N/4} [/math] po jednym punkcie za poprawną) i kilku pytań otwartych (po 2—4 punkty). Ostateczne przeliczenie punktów na oceny, jednakowe dla wszystkich, będzie ustalone a posteriori na podstawie statystyki i zdrowego rozsądku — w każdym razie próg zaliczenia powinien wyraźnie przekraczać 50% (po korekcie na odpowiedzi przypadkowe w części testowej). Ocena końcowa z przedmiotu = średnia ocen z ćwiczeń i z wykładu, pod warunkiem zaliczenia ćwiczeń i wykładu.

  • nie wychodzimy z sali w trakcie egzaminu — bardzo proszę o przygotowanie się pod tym kątem :)
  • nie ściągamy. To niemodne i passé, a przeprowadzenie egzaminu w przyjaznej atmosferze leży w Waszym interesie
  • dla zachowania przyjaznej atmosfery i oddalenia pokus nieetycznych zachowań, torby/teczki/ubrania nie pozostawione w szatni zostawiamy na podłodze na froncie sali. Do ławki zabieramy ze sobą tylko długopis (lub dwa) oraz dowolne ID ze zdjęciem, które okazujemy na ew. prośbę Prowadzących (elegancko jest od razu położyć ID na brzegu ławki po podpisaniu testu)
  • w ławkach siadamy, zajmując dostępną przestrzeń możliwie równomiernie według wskazań Prowadzących, poczynając od pierwszych ławek
  • nie jest dopuszczalny kontakt z urządzeniami komunikacyjnymi i/lub elektronicznymi. Jeśli ktoś oczekuje pilnego telefonu w czasie egzaminu, powinien ten fakt zgłosić Prowadzącym _przed_ rozpoczęciem egzaminu. W pozostałych wypadkach telefony (po wyciszeniu a najlepiej wyłączeniu) itp. urządzenia potencjalnie komunikacyjne i elektroniczne pozostawiamy w torbach lub ew. w kieszeniach i nie wyjmujemy w czasie egzaminu. Do wykonania nielicznych wyliczeń wystarczy głowa, ew. długopis
  • odpowiedzi na pytania testowe będziemy wpisywać "na czysto" w tabelce przed samym oddaniem testu, strony z pytaniami testowymi można dowolnie pomazać, oznaczenia na pytaniach nie będą brane pod uwagę przy sprawdzaniu
  • odpowiedzi do pytań otwartych wpisujemy maksymalnie czytelnie i "na czysto". Nieczytelne i niewyraźne wywody nie będą sprawdzane. Kartki użyte jako brudnopis przed oddaniem przekreślamy.
  • oddajemy kompletne arkusze wraz z notatkami i brudnopisami, nie jest dozwolone robienie kopii "na pamiątkę".

Tematy do przemyślenia przed egzaminem

Dla ustalenia uwagi, na przykład:

    • Sformułuj Centralne Twierdzenie Graniczne.
    • Wypisz i przedyskutuj definicje prawdopodobieństwa.
    • Wypisz założenia wersji Centralnego Twierdzenia Granicznego, którą można stosunkowo prosto udowodnić (twierdzenie Lindeberga-Levy'ego). Udowodnij lub spróbuj nakreślić szkic dowodu.
    • Oblicz wartość oczekiwaną rozkładu równomiernego, określonego na odcinku [0, 2], danego wzorami p(x) = 0,5 dla [math]0\leq x\leq 2[/math] i p(x) = 0 dla x>2 lub x<0.
    • Oblicz wariancję rozkładu równomiernego określonego na odcinku [0, 2], danego wzorami p(x) = 0,5 dla [math]0\leq x\leq 2[/math] i p(x) = 0 dla x>2 lub x<0
    • Co to jest [math]\chi^2[/math]?
    • Wypisz / wyprowadź wzory na wartość oczekiwaną i wariancję rozkładu Poissona.
    • Z rozkładu dwumianowego wylicz prawdopodobieństwo, że wśród czworga dzieci będą co najmniej trzy dziewczynki — zakładając, że prawdopodobieństwa urodzenia dziecka każdej płci są równe.
    • Testy parametryczne i nieparametryczne: wady, zalety, przykłady.
    • Co ma wspólnego poziom istotności testu z poprawką Bonferroniego?
    • Co to jest i jak obliczamy moc testu?
    • Opisz w punktach (zwięźle i konkretnie) procedurę weryfikacji hipotezy o różnicy średnich dwóch grup wyników [math]\{x_{i}, i=1\dots N$\}[/math] i [math]\{y_{j}, j=1\dots M\}[/math] metodą repróbkowania (resampling).
    • Wyprowadź wzór na średnią N pomiarów [math]x_i[/math] o różnych wariancjach [math]\sigma_{i}^2[/math] z metody największej wiarygodności.
    • Dany jest zbiór rozłącznych hipotez [math]H_{i}[/math] pokrywających całą przestrzeń zdarzeń [math]\Omega[/math]: [math]\sum_{i}H_{i}=\Omega[/math] oraz prawdopodobieństwa wyniku eksperymentu W w świetle każdej z hipotez [math]H_{i}[/math], czyli [math]P(W\mid H_{i})[/math]. Korzystając z tych oznaczeń, wypisz i wyprowadź twierdzenie Bayesa, czyli wzór na prawdopodobieństwo prawdziwości hipotezy [math]H_{j}[/math] w świetle wyników eksperymentu W.