Biologia Komórki/Budowa i funkcje struktur

Z Brain-wiki
Wersja z dnia 10:14, 21 maj 2015 autorstwa Annach (dyskusja | edycje) (Utworzono nową stronę "==BŁONY BIOLOGICZNE== Błona biologiczna jest to otoczka rozdzielająca odrębne przedziały w komórkach — jest ona podstawową strukturą budującą komórki ws...")
(różn.) ← poprzednia wersja | przejdź do aktualnej wersji (różn.) | następna wersja → (różn.)

BŁONY BIOLOGICZNE

Błona biologiczna jest to otoczka rozdzielająca odrębne przedziały w komórkach — jest ona podstawową strukturą budującą komórki wszystkich organizmów. Są to zarówno błony komórkowe jak i błony organelli wewnętrznych, których ogólna budowa we wszystkich organizmach jest taka sama. U eukariontów posiadających ścianę komórkową zawsze występuje po stronie wewnętrznej tej ściany.

Struktura i skład chemiczny

Przekrój przez błony eukariontów

Błony biologiczne składają się zawsze z dwóch komponentów: fosfolipidów (do których należą fosfolipidy, glikolipidy i steroidy; tworzących zrąb lipidowy) oraz białek.

Na przestrzeni lat powstało kilka teorii budowy błony komórkowej. Należą do nich:

  1. Model lipidowy (1895, Overton) — opierając się na fakcie, iż cząsteczki polarne znacznie wolniej przenikają do wnętrza komórki niż cząsteczki niepolarne uznano, że błona komórkowa zbudowana jest z lipidów.
  2. Model dwuwarstwy lipidowej (1925, Gortel i Grendel) — podsumowując wyniki badań dotyczących zawartości lipidów w erytrocytach sformułowano hipotezę, że błona komórkowa składa się z dwóch warstw lipidowych, a polarne główki cząsteczek lipidów muszą być skierowane na zewnątrz, a niepolarne łańcuchy węglowodorowe do wnętrza podwójnej warstwy lipidowej.
  3. Model trójwarstwowej błony (1935, Dowson i Danielli) — błony komórkowe zbudowane są symetrycznie z podwójnej warstwy lipidowej pokrytej po obu stronach warstwą białek (wyposażającą błonę w pewien stopień elastyczności i odporności mechanicznej oraz nadającą jej niskie napięcie powierzchniowe). Drobiny lipidowe są zorientowane równolegle do siebie i pod kątem prostym do płaszczyzny błony (niepolarne — nie naładowane — końce cząsteczek lipidów są kierowane do siebie, a polarne — naładowane — skierowane są na powierzchnię błony). Model ten zdawały się potwierdzać zdjęcia z mikroskopu elektronowego.
  4. Model płynnej mozaiki (1972, Singer i Nicolson) — "w morzu lipidów pływają góry lodowe białek..." — w modelu tym błony biologiczne są dwuwymiarowymi roztworami przestrzennie zorientowanych lipidów i sferycznych białek (białka nie tworzą warstwy na powierzchni lipidów, lecz pływają zanurzone w dwuwarstwie lipidowej). Dwuwarstwa jest rozpuszczalnikiem dla białek błonowych i stanowi barierę przepuszczalności. W monowarstwach istnieją tzw. „rafty” czyli lokalne obszary o składzie odbiegającym od rozkładu przypadkowego (bogatsze od sąsiednich obszarów monowarstwy w specyficzne lipidy, cholesterol czy białka). Błona taka jest asymetryczna, płynna i dynamiczna. Model ten, z kilkoma modyfikacjami, obowiązuje do dnia dzisiejszego.

Szczegółowa budowa błony biologicznej

  • Lipidy błonowe:
    • Fosfolipidy— związki polarne (hydrofilowe "główki" — dzie znajduje się fosforan — skierowane na zewnątrz błony — mające powinowactwo do wody oraz hydrofobowy "ogon" skierowany do wnętrza — nie mający powinowactwa do wody, złożony z dwóch łańcuchów kwasu tłuszczowego). Cząsteczki fosfolipidów mają w przybliżeniu jednakową szerokość, co sprzyja układaniu się ich w podwójne warstwy cylindrycznych struktur. Fosfolipidy łatwo przemieszczają się w obrębie jednej warstwy lipidowej błony (tzw. dyfuzja boczna, która zachodzi co około 10—6 s). Wymiana cząsteczek lipidów między jedną i drugą warstwą jest bardzo wolna (zachodzi nawet raz na kilkaset godzin). Charakterystyczną cechą fosfolipidów jest to, że oprócz reszt kwasów tłuszczowych występują w nich również reszty kwasu fosforowego (V). Wyróżnia się:
      • fosfolipidy cholinowe: fosfatydylocholina (lecytyna),
      • fosfolipidy aminowe: fosfatydyloetanolamina, fosfatydyloinozytol, fosfatydyloseryna.
    • Glikolipidy — zlokalizowane w zewnętrznej warstwie błony; zawierają w swoim składzie glicerol lub sfingozynę oraz kwasy tłuszczowe oraz składnik cukrowy (galaktoza lub laktoza). Domeny polarne glikolipidów wystają ponad powierzchnię błony komórkowej, prezentując swoje grupy polarne do środowiska. Warstwa glikolipidów pokrywa większość komórek zwierzęcych tworząc tzw. glikokaliks. Wyróżnia się:
      • sfingoglikolipidy,
      • glikolipidy obojętne,
      • glikolipidy kwaśne.
    • Sterole — w błonie lokalizują się pomiędzy łańcuchami węglowodorowymi fosfolipidów:
      • fitosterole — pochodzenia roślinnego; do tej grupy należą m. in. β-sitosterol, stigmasterol, kampesterol ,
      • zoosterole — pochodzenia zwierzęcego; do nich należy m. in. cholesterol.
  • Białka — biorą czynny udział w procesach takich jak transport, aktywność enzymatyczna, przyczep komórek i komunikacja międzykomórkowa. Wyróżnia się:
    • Białka integralne — na trwałe wbudowane w dwuwarstwę; posiadają w łańcuchu polipeptydowym przynajmniej jedną sekwencję składającą się z co najmniej 22 aminokwasów hydrofobowych, które pozwalają na zakotwiczenie się w błonie; do ekstrahowania używa się detergentów — solubilizacja detergentem — przeprowadzenie do roztworu wodnego kompleksów detergentu i składników błony). Wyróżnia się:
      • białka transbłonowe — przebijają całą grubość dwuwarstwy,
      • białka nie przebijające błony.
    • Białka powierzchniowe (peryferyjne) — leżą na powierzchni błony; są luźno związane z powierzchniami błony; nie perforują one żadnej z monowarstw błony, a z błoną związane są za pomocą słabych oddziaływań molekularnych, głównie wiązań jonowych, wodorowych i Van der Waalsa; dają się łatwo usunąć z błony wodą lub roztworami soli.
Schemat organizacji białek błonowych. 1. Białko transmembranowe 2. Białko monowarstwy zewnętrznej 3. Białko monowarstwy wewnętrznej 4. Białko wewnętrzne błony Niebieskie — białka peryferyjne

W błonie komórkowej obserwuje się asymetrię dwuwarstwy. Wyróżnia się dwie warstwy:

  1. lipidową zewnętrzną E (ang. exoplasmic) od strony środowiska,
  2. lipidową cytoplazmatyczną P (ang. protoplasmic) od strony protoplazmy.

Na taką asymetrię wskazują:

  • różnice w budowie obu powierzchni błony, skierowanych na zewnątrz i ku wnętrzu komórki lub organelli,
  • różnice w szybkości ruchów międzybłonowych pomiędzy poszczególnymi błonami,
  • różny skład fosfolipidów (w błonie erytrocytu człowieka warstwa E zbudowana jest głównie z fosfolipidów cholinowych (fosfatydylocholin = lecytyn i sfingomielin), natomiast warstwa P zbudowana jest z fosfolipidów aminowych tzw. kefalin: fosfatydyloseryny i fosfatydyloetanoloaminy),
  • asymetryczne rozmieszczenie cholesterolu. Jest charakterystyczny dla zewnętrznej części błony komórkowej (ta monowarstwa jest znacznie sztywniejsza),
  • duża ilość ujemnej fosfatydyloseryny w warstwie cytozolowej, wpływająca na ładunek ujemny wewnątrz komórki.

Właściwości i pełnione funkcje

Właściwości błon biologicznych

Schematyczna kinematyka błony lecytynowej
  • Dynamiczność — ruchy białek i lipidów (powodują m. in. zamykanie wszelkich wyrw i ubytków):
    • fosfolipidy — okolice polarne mniej ruchliwe; końce łańcuchów węglowodorowych wykonują szybkie ruchy,
    • białka — przemieszczane dyfuzyjnie w płaszczyźnie; wykonują ruchy obrotowe w osi prostopadłej do powierzchni błony; także wynurzają się i zanurzają w dwuwarstwie lipidowej.
  • Półprzepuszczalność — błony są w stanie przepuszczać niektóre rodzaje cząsteczek a zatrzymywać inne; w szczególności woda przechodzi przez błonę swobodnie, a wybiórczo substancje w niej zawarte. Przepuszczalność błony dla danej substancji zależy od rozmiaru i ładunku jej cząsteczki. Cząsteczki większe takie jak na przykład glukoza i jony różnej wielkości nie przedostają się z powodu zbyt dużych rozmiarów lub na skutek odpychania przez ujemnie naładowaną powierzchnię błony.
  • Polarność — ładunki dodatnie na zewnątrz, ładunki ujemne od wewnątrz (istotne znaczenie przy odbieraniu i przewodzeniu bodźców).

Funkcje błon biologicznych

  • Stanowią granicę pomiędzy światem zewnętrznym a światem wewnętrznym komórki lub organellum — co jest podstawą do zachowania jego odrębności i integralności:
    • pozwalają na utrzymanie homeostazy komórki oraz utrzymanie odpowiedniego środowiska wewnętrznego,
    • organizują komórkę i jej wnętrze (m. in. budują organella komórkowe); budują struktury błoniaste: endoplazmatyczne retikulum, aparat Golgiego, pojedyncza błona otacza wakuolę, lizosomy, peroksysomy a podwójna jądro komórkowe, mitochondria i plastydy.
  • Umożliwiają odbieranie i przewodzenie bodźców, pobieranie i wydalanie substancji i cząstek.
  • Umożliwiają oddziaływanie między komórką i podłożem oraz między komórkami.
  • Umożliwiają transport (na drodze dyfuzji, dyfuzji ułatwionej, transportu aktywnego oraz endocytoz — pobieraniu makrocząsteczek do komórki i egzocytoz — wydzielaniu produktów komórki do środowiska).
  • W błonach odbywają się niektóre procesy biochemiczne jak: fosforylacja w fotosyntezie, łańcuch oddechowy w oddychaniu tlenowym.
  • Wytwarzają potencjał elektrochemiczny — różna koncentracja jonów.
  • U części protistów jak i niektórych komórek zwierzęcych (np. amebocyty gąbek) przelewanie cytoplazmy powodujące uwypuklanie błony umożliwia przemieszczanie się tych komórek (ruchem pełzakowatym — ameboidalny).

Typy transportu przez błonę komórkową

Zachowanie komórki roślinnej znajdującej się w roztworze hiper-, izo- i hipotonicznym
Zachowanie komórki zwierzęcej (erytrocytu) znajdującej się w roztworze hiper-, izo- i hipotonicznym
Schemat dyfuzji ułatwionej

Sposób transportu cząstki z i do komórki lub organellum zależy od jej rozmiaru i właściwości.

Transport małych cząstek

  • Dyfuzja — swobodne przenikanie cząsteczek przez podwójną warstwę lipidową z obszaru o stężeniu wyższym do obszaru o stężeniu niższym (zgodnie z gradientem stężeń):
    • osmoza — transport wody lub innego rozpuszczalnika przez błonę; spontanicznie zachodzi od roztworu o niższym stężeniu substancji rozpuszczonej do roztworu o wyższym, czyli prowadzi do wyrównania stężeń obu roztworów; roztwór z którego ubywa rozpuszczalnika nazywa się hipotonicznym, tego w którym przybywa nazywa się hipertonicznym (gdy roztwory pozostają w równowadze osmotycznej, mówi się że są wzajemnie izotoniczne względem siebie),
    • dializa — transport substancji rozpuszczonych przez błonę.
  • Dyfuzja ułatwiona — niektóre cząsteczki, np. glukoza, potrzebują nośników białkowych (wiążących czasowo transportowaną cząstkę), co zwiększa tempo ich przedostawania się przez błony; ruch cząsteczek odbywa się tylko w kierunku zgodnym ze spadkiem gradientu stężenia; białko przenośnikowe po odłączeniu jednej cząsteczki może natychmiast wiązać się z drugą (nie ulega przemianie). Transport nośnikowy może być związany z ruchem kompleksów cząsteczka-nośnik w poprzek błony. Możliwa jest także sytuacja, w której nośnik wiąże substancję transportowaną po jednej stronie błony, zmienia konformację i następnie uwalnia przeniesione cząsteczki po drugiej stronie błony.

<videoflash>JShwXBWGMyY&feature=related</videoflash>

  • Transport aktywny — do zachowa¬nia wewnątrzkomórkowego składu jonowego komórek i do wprowadza¬nia cząsteczek, których stężenie na zewnątrz jest mniejsze niż w komórce, niezbędny jest aktywny transport cząsteczek i jonów wbrew ich gradiento¬wi elektrochemicznemu; transportowanie cząsteczek wbrew gradientowi stężeń z udziałem nośników białkowych i nakładzie energii (często z ATP), np. transport jonów Na+ i K+ za pomocą mechanizmu pompy jonowej: sodowo — potasowej (zlokalizowana w błonach plazmatycznych grupa specyficznych białek; transportuje ona jony sodu z wnętrza komórki na zewnątrz, jednocześnie przenosząc jony potasu w kierunku odwrotnym. Na jedną rozłożoną przez tę pompę cząsteczkę ATP przypada transport trzech jonów sodu i dwóch jonów potasu). W tym wypadku wytwarzany gradient stężenia dotyczy cząstek obdarzonych ładunkiem, zatem w poprzek błony tworzy się nie tylko gradient stężenia, lecz i także gradient potencjału elektrycznego. Schemat działania pompy sodowo — potasowej znajdziesz tutaj.Wyróżnia się:
    • translokację grupową — energia do transportu danej cząsteczki równa jest energii potrzebnej do wytworzenia nowych wiązań kowalencyjnych w transportowanej cząsteczce,
    • transport aktywny pierwotny — energia do transportu danej cząsteczki równa jest energii potrzebnej do wytworzenia nowych wiązań kowalencyjnych w nośniku (źródło: hydroliza cząsteczki ATP),
    • transport aktywny wtórny — aktywnie transportowana pierwsza substancja tworzy gradient potencjału elektrochemicznego, który warunkuje transport innej substancji.

Transport większych cząstek

Schemat endocytozy z podziałem na jej rodzaje
  • Endocytoza — pobranie do wnętrza komórki cząstek poprzez wytworzenie z błony komórkowej wodniczki, która oderwawszy się od plazmallemy przeniesie pobraną cząstkę do cytoplazmy. Przebieg endocytozy: wpuklenie błony → zamknięcie pęcherzyka (wodniczki) → transport pęcherzyka w głąb cytoplazmy. Wyróżniamy:
    • fagocytozę — transport bez ubytków błony; polega na otoczeniu pochłanianych cząsteczek przez mikrofałdy błony komórkowej i utworzeniu wokół nich wakuoli; cząstka pokarmu zostaje strawiona i wchłonięta do cytoplazmy, a niestrawione resztki są wyrzucane na zewnątrz, gdy wodniczka z powrotem łączy się z błoną komórkową; na drodze fagocytozy komórka pochłania duże cząstki pokarmowe np. bakteri,
    • pinocytozę — transport z ubytkami błony biologicznej; małe drobinki płynu zostają uwięzione w mikrofałdach błony komórkowej, z której odrywają się po stronie cytoplazmy drobne pęcherzyki; płynna zawartość pęcherzyków przenika powoli do cytoplazmy, zaś pęcherzyki powoli zmniejszają się, aż w końcu zanikają (pęcherzyki zostają w całości rozłożone enzymatycznie, przy udziale lizosomów, a następnie rozproszone w cytoplazmie).
  • Egzocytoza (cytopempsja) — proces przeciwstawny do endocytozy; to proces uwalniania metabolitów powstających wewnątrz komórki (np. hormonów czy enzymów), a także produktów ubocznych metabolizmu do przestrzeni pozakomórkowej. To również podstawowy mechanizm powiększania się błon. Przebieg egzocytozy: transport pęcherzyka w kierunku błony komórkowej → łączenie pęcherzyka z błoną komórkową → otwarcie pęcherzyka.

Istnieją dwa główne typy pęcherzyków uczestniczących w transporcie substancji do komórki:

  • dołeczki okryte — zagłębienia otoczone przez specjalne białka związane z błoną; służą do przenoszenia substancji w głąb komórki,
  • kaweole — zagłębienia otoczone przez białko kaweolinę; mogą skupiać substancje z przestrzeni zewnątrzkomórkowej, które dalej przedostają się do cytozolu (cytoplazmy) — potocytoza — a kaweole pozostaja dalej w formie zagłębień i nie tworzą pęcherzyków; w przypadku gdy kaweole tworzą pęcherzyki mamy do czynienia z trans cytozą; kaweole umożliwiają również uruchamianie systemu wtórnych przekaźników komórkowych przez zjawiska działające na komórkę z zewnątrz (wewnątrzkomórkowa sygnalizacja).

<videoflash>K7yku3sa4Y8</videoflash> <videoflash>E_fLwOsf2zY</videoflash>